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Three-body kinematics for the binding effect in pion-nucleus elastic scattering
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A simple and effective method to include the nucleon binding effect in pion-nucleus elas-

tic scattering by using the three-body kinematics is proposed. It will be shown that the

binding effect can be incorporated into the usual form of the first order optical potential

calculation by making the two-body energy argument a variable parameter depending not

only on the energy, but also on the nucleon Fermi momentum. Numerical examinations of
the binding effect are carried out by m-' C elastic scattering and the binding effect will be

shown to have significant implications over the entire energy range considered, from low

through resonance to above resonance regions.

NUCLEAR REACTIONS Calculated 0(8) for ' C(a, e), E=SO—250
MeV. Binding effect. Three-body kinematics. Importance of the Fermi

motion.

I. INTRODUCTION

For microscopic calculations in multiple scatter-
ing theory, the use of the impulse approximation'
has been almost imperative in the past. Although
there exist many papers ' which have purportedly
employed a nonimpulse approximation, there exist
rather larger differences among these calculations
and hence a realistic alternative to the impulse ap-
proximation has not yet been satisfactorily devel-

oped.
The importance of the binding effect has been

rather elusive especially as to where it should ap-

pear. It may show up at low energy, ' or around
the P33 resonance peak" in pion-nucleus elastic
scattering, or at the high energy side of the reso-

nance tail. The past attempts to dispense with or
estimate the validity of the impulse approximation
may be grouped into two categories within the con-
text of multiple scattering theory. One is to simul-

tate the binding interaction by a simple model like a
nucleon bound inside the harmonic oscillator poten-
tial well, ' ' and the pion-bound nucleon scattering
matrix so obtained is substituted into multiple
scattering theory. Another is to set up a three-body
system and replace the real scattering dynamics by
the three-body kinematics (Refs. 5 —8, 13, 17, and
19). Unfortunately the conventional three-body
problem can be solved only approximately, ' ' ' al-
though for separable pairwise interactions and for
the deuteron target' ' ' ' it can be solved exactly.
Recently a new three-body method has been put for-
ward' ' in which the usual cyclic symmetry of

the standard three-body formalism~ is missing.
However, a practical demonstration of its usefulness
has yet to be seen. We refer to Ref. 22 for more ex-
tensive references.

In this paper we take a slightly different path to
this second approach. We will make use of the
three-body kinetics, but not as the three-body equa-
tions per se, but rather to take advantage of the
difference between the free and bound state Green's
functions. A similar step was taken previously by
Schmit and Gurvitz et al." The common idea is
to devise kinematics by which the series expansion
of the projectile-bound nucleon t matrix in terms of
the projectile-free nucleon t matrix may be truncat-
ed after the first term. Here we employ the three-
body kinematics to achieve this goal. Because of
this special kinematics it will be shown later that
the nucleon Fermi motion effect must necessarily be
included in the nuclear matrix element calculation,
that is, in the three-body kinematics one cannot
separate the nucleon Fermi motion from the bind-
ing effect.

In Sec. II we develop the basic formalism for the
inclusion of the binding effect. Section III deals
with the off-shell kinematics and approximation
schemes. Final results and some comments are
given in Sec. IV.

II. THEORY

In general, the many-body operator ~ for the
two-body process in the integral equation formalism
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of Kerman, McManus, and Thaler (KMT) (Ref. 2)
can be expanded in terms of a free two-body opera-
tor in many-body space t as ' ' '

r(E)= t (e)+t (e)Gp(e)

X Ie—E —Hp+Hg lG(E)r(E), (1)

where

Gp(e) =(e+ Kp —Hp)—

G(E)=(E+ Kp —H„)—

. =(E+ Kp —Hp —U)—
with Kp, Hz, and U being the kinetic energy opera-
tor of projectile, nuclear Hamiltonian, and the hind-

i

ing potential. The energy parameter E is uniquely
determined by the initial scattering configuration;
however e, being a parameter of the two-body in-
teraction in many-body space, is a completely arbi-
trary constant, although once chosen it has to be
kept in all subsequent calculations. The impulse ap-
proximation consists of truncating Eq. (1) after the
first term and setting e=E. The idea to dispense
with or to minimize the error in using the impulse
approximation ' is to make the. second term of Eq.
(1) vanish, namely the term enclosed by the brace.
Since e is at our disposal, if the eigenvalues of
Hamiltonians take tangible forms, we can choose e
so as to make this term disappear. In order to see if
this is possible, Eq. (1) is rewritten in detail

&K'i&
I
r(E)

I Kp;&& = &K'i&
I
t(&)

I kpi&&

A A

+fd Kf g de S' ' g p; —k

&k',8
I

(e)
I
K'pi, pz & I e E —e(k—;pi, . . . , pz )+E(K) I

X
e s(K—;pi, . . . , pq)+inst'

&k;P,, . . . , P„Ik;a&&k;a IWE)Ikp;a&
E E(K)+irt— (3)

where K, p;, E(K), and 8 denote the momenta of
pion and ith nucleon and the total energy in the mA

c.m.s. (center of mass system), and the nuclear
ground state. Furthermore,

I K;pi, . . . , pz & is an

aggregate of plane wave states with respective mo-
menta for pion and nucleons and e(K;pi, . . . , pz )

its energy. Primed and unprimed momenta refer to
after and before scattering, respectively. In deriving
we have used the fact that the states

I K;p,, . . . , pz & and
I
K;8& are the eigenstates of

Ho and HA, respectively, and that both Ho and HA

do not interact with .pions. In order to carry out in-

tegrations on nucleon momenta, we introduce two
approximations, the independent particle model for
a nucleus which is consistent with the lowest order
approximation of the optical potential and the
three-body kinematics for the evaluation of the
e(K; p i, . . . , pz ) term. Then the multidimensional
integrals on intermediate nucleon momenta can ef-
fectively be reduced to a single integral.

In order to choose the value of e, first we employ
nonrelativistic expressions' of energy for the nu-

cleon and core nucleus, and second the average nu-

cleon mass m=938.906 MeV is distinguished from
the atomic mass unit m*=931.481 MeV in order to
take the binding effect into account from the

where the pion energy E (Kp) =Qp +Kp and the
on-shell momentum Kp in the nA c.m. s. are defined

by the last line. Similarly the energy E(K) for off-
shell momentum K in Eq. (3) is given by

E(K)=E (K)+Am'+, . (5)
E

2Am ~

kirieinaticsThen the three-body

~«;,pi, p~) by

replace

l

many-body point of view. The use of m* is particu-
larly appropriate for the discussion of the binding
effect in the context of the multiple scattering
theory which treats all nucleons as equivalent, for
the binding effect is operative among core nucleons
at the same time when the binding effect of the
valence nucleon is examined and the bulk effect of
the former can be incorporated through the use of
m*.

Thus when a pion of mass p and the laboratory
kinetic energy of T (Iab) collides with a static nu-

cleus of A nucleons, the total energy of the system
in the center of mass is given by

E=E(Kp)=I@i+(Am') +2Am~[p+T (lab)]I'

&o'
=E~(Kp ) +Am *+



i630 K. NAKANO 26

'2
1 K ~ 1 A —1

s(K.;p „p„,}=E~(K}+m+ q ——+(A —1}m'+, q+ K
I

= E (K)+Am~+ + q +m —m~

qK I(—(m —m~) — +
2(A —1)mm~ Amm~ 2Amm*

where q is the nucleon Fermi momentum. Since
the last term in the parenthesis is very small, this
may be neglected. The additional term

[A/2(A —1)m]q +m —m~,

when compared with Eq. (5}, can be easily seen to
be the negative of the binding potential. With this
approximation, the term in the brace of Eq. (3) can
be seen to vanish, if we take

Ae=E+ q +m —m

Thus in the present three-body framework, we can
abolish the impulse approximation simply by taking
the nucleon Fermi motion fully into account and
making the two-body energy parameter in the
three-body space Fermi momentum dependent in
our calculations of the nuclear matrix element. The
importance of the nucleon Fermi motion has been
known (Refs. 6, 9, 10, 19, and 23 —25) not only by
virtue of itself, but also as a significant ingredient in

deriving nN c.m.s. energy and momentum from the
corresponding ~A c.m.s. counterparts. ""' But
the relationship between the q integral and impulse
approximation has never been fully examined and
these two subjects were treated independently, and
since the essential change in t matrix was not ex-
pected arising from the Fermi motion, most calcu-
lations resorted to the so-called factorizing approxi-
mation within the impulse approximation (Refs. 4,
5, 8 —13, 19, 22, 24, and 25}. However, here we
now have a new situation in which the inclusion of
the q integral is essential to dispense with the im-
pulse approximation. This is very natural, since in
the three-body kinematics the nucleon Fermi
motion must be explicitly taken into consideration

and since the binding interaction is inseparably re-
lated to the Fermi motion, the three-body kinemat-
ics automatically link up the Fermi motion with the
binding interaction. We cannot talk about one
without another in the three-body kinematics, as in
the past. Thus, although e and hence the ~X c.m.s.
energy become functions of q, by including the q
integral we can achieve both elimination of the im-

pulse approximation and improvement of the nu-
clear matrix element at the same time.

Once the two-body energy in the three-body space
e is determined, the nNc. m.s.. energy S can be ob-
tained from the invariant mN mass relationship

S =W Q, =(e—E, ) —Q-, (&)

where W, E„and Q, denote the total energy of the
nN system and energy momentum of the core nu-
cleus in the mA c.m.s. at the incident energy. The
expressions for the latter should be clear from Eq.
(6). As the q integral is performed, we have the
well-known complexity that the S may decrease
below the threshold (m+@) (Refs. 9, 11, 19, 20,
and 25). Since we use a separable mN t matrix, 6'2~

the extrapolation into the unphysical region is con-
veniently taken care of by the Fredholm deter-
minant. '

III. CALCULATION

A. Off-shell scattering kinematics

We employ the method of Belier et al. to relate
a mN scattering matrix element in the ~N c.m.s.
with the corresponding matrix element in the mA

c.m.s. In their formalism, a half-shell matrix ele-
ment in the mA c.m.s. is given by

t[E(Kp);K', p ', K., p]=N(K', p', Kp)F(P;a', a)t[to(K);a', a], '

where t is the two-body matrix element in the n N c.m.s., and we use the following notations:
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E(Kp) =E&(K)+Ez(p),

co(lc)=co, (lc)+co2(lc) =[E(Kp) P—J'~

Ec(K)=+wc +K, co;(«)=+me +«

E (K',p')co)(lc')cog(lc')E (K p)co)(«)cog(tc)

E, (K')E2(p')co(«')E, (K)E2(p)co(lc}

(10)

co(K )+co(lc)
E(K',p')+E(K,p)

'

P=K+ p =K'+ p
' .

The nN c.m.s. momentum «. is obtained from K and p by the proper Lorentz transformation of the relative
momentum.

K= I [co («)+2co(«)E2(p)+m2 m~—]K [co—(lc)+2co(lc)E~(K)+m& —m2 ]P]

This was called a canonical transformation in Ref. 28. The special transformation of Aaron et al. , when ap-

plied to the relative momentum, will also reduce to this form. After calculating a similar expression for «,
the scattering angle in the mN c.m.s. is given by'

K'K
cos8=

KK
(12)

The product NF reduces to the conventional transformation factor y in the on-shell limit.
On the other hand, a fully off-shell matrix element in the nA c.m.s. is expressed by the integral of the form

t(E K p K p)
( ) [ & ]

co(ka) =QE~—Pp2 .

+ Jd kF(P;lc', k)F(P;Ic,k)t[co(k);Ic', k]t~[co(k);Ic,k]

F '(P;ka, k) F-~(P lc k)
co(kp)+inst co(k) co(—lc)+iri co(k)—

Here the index zero implies the incident scattering configuration. Since the inclusion of the above integral in
calculating the nuclear matrix element is extremely time consuming, it has never been done thus far. Hence
we introduce the following accurate approximation. First, the above equation can be rewritten as follows,
after factoring out the common angular dependent part,

t (E;K',p', K,p} = F(P;cc',~)t(co(ka);~', a)
N K',p', K,p

F(P;«', k)F(P;~,k)F '(P;ka, k)
F(P;cc',tc)t[co(kp—);lc',a] Jk dk-

co kp +i' co k—
X t[co(k);tc', k]t~ [co(k);«,k]

k2 k
F(P;a', k)t[co(k);a', k]t~[co(k};Ic,k] (14)
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Then we drop the second and third terms on the right hand side altogether as an approximation. This is be-

cause the differences in each brace can be shown to be roughly the same constant below the inelastic threshold
in the separable model of nN t matrix elements and thus the combined terms vanish. In order to show this as-
sertion, we write the terms in the first brace by the separable model. After omitting the common factor it
takes the form

t[(ko}] 1 E(P&K',k}E(P;tc,k)E (PIkp~k} Imt[to(k)]F(P;a', tt) +— dc0 (k) . z
0

where f(k) and t[to(k)] are the off-shell function and the on-shell matrix element. Since the function
F(P;K',K) and the combination of F 's in the integrand are roughly the same (in both the nonrelativistic and
on-shell limits, they are exactly the same; otherwise they are slowly varying functions), neglecting the differ-
ence and separating the whole expression into the real and imaginary parts, we can see the above quantity to
be approximately some constant 0. Since the same constant will appear from the second brace of Eq. (14),
the combined terms vanish within the above mentioned approximation. The approximate matrix element so
obtained bears the correct off-shell character and' makes a smooth transition to the half-shell matrix element.

B. Approximation schemes

Although the above equations are mostly exact, in practice the inclusion of the nucleon Fermi motion re-
quires a very long computing time. ' Thus it is always desirable to seek some approximation schemes to
circumvent the integration on the Fermi momentum, without altering the content of the exact matrix element
too much. This is usually called the factorizing approximation (Refs. 4, 5, 8 —13, 22, 24, and 25). Theoreti-
cally this approximation is not expected to be a reliable one when the mN t matrix undergoes rapid variation
as around resonances, but in practice it works well owing mainly to the greater insensitivity of cross sections
to the details of input. ' ' Here we propose two approximation schemes which do cut down computing
time, but without resorting to the factorizing approximation.

The nuclear matrix element becomes in the symmetric form and in the separable model
't 3

4 exp[ —(Qb) ] f k dk ~ 1+ (k —Q )b exp[ —(kb} ]JdQ(k)g(p'[k])go(E, k)g(p[k]),~n 6

(15)

where the harmonic oscillator wave functions with
the oscillator parameters "b" are used. g and go are
the off- and on-shell factors including the FN term
in the previous subsection.

Q=(A —1)(K—K')/(2A), and k =q+.Q. First
the k integral becomes symmetric if the k direction
is chosen along Q or K+K', which will roughly
halve the computing time. Then, since for a spheri-
cal nucleus the integrand arising from the dominant
nuclear part is angle independent, the first approxi-
mation is obtained by neglecting the azimuthal an-
gle dependence out of the off-shell factors, i.e., by
reducing two-dimensional angle integrations to
one-dimensional ones, and the second approxima-
tion is obtained by completely neglecting the angle
dependence out of the off-shell factors. We remark
that the full angular integral is still to be carried out
over the on-shell part of the t matrix element. If
one further neglects even the k integral itself over
the off-shell factors, then one obtains an improved
Fermi averaged matrix element in which the nu-

clear overlap functions are exact.
In order to elucidate the role played by the bind-

ing effect, we have also calculated cross sections by
using the conventional kinematics, i.e., fully rela-
tivistic, asymmetric, and

Si=[gp +ED +gm +(p —Ko/A) ] —Q,

To separate the effect of Fermi motion out, an old
program was improved by including the q integral
and the full q integral over the on-shell part of t
matrix element. This approximation is called the
third approximation in the following.

We are now ready to calculate the cross sections.
The basic formalism is a momentum space integral
equation. ' The harmonic oscillator constant

ra 1.687 f——m and the size parameter
(A —4)/6=1.067 were taken from the table by
Jager et al. 32 which includes the proton size correc-
tion.
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IV. RESULTS AND DISCUSSIONS

Figure 1 displays differential cross sections from
50 to 250 MeV pion kinetic energy in the laboratory
system T (lab), and Fig. 2 shows the total and elas-

tic total cross sections and the real forward scatter-
ing amplitudes.

First of all, we notice that the binding effect in-

2
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creases the differential cross sections above the im-
pulse results over the entire angle domain, save for
the extremely forward direction, and second it Aat-
tens out both the total cross section and real for-
ward scattering amplitude by reducing the peaks
and by filling in the valleys; however, it does not
shift the peak positions. On the other hand, the
elastic total cross sections are somewhat increased
by the binding effect, which is related with the in-
creased differential cross sections.

As far as the total cross section is concerned, the
binding effect shows up at all three energy domains
mentioned in the Introduction. The increase of o,
at the high energy tail of resonance was also ob-
served in Refs. 12 and 13, however, in Ref. 12 it
was obtained by lifting up the o, over the entire en-

ergy region, while in Ref. 13 it was obtained by
shifting the overall energy dependence of 0, up-
ward. In our case the increase was obtained by nei-
ther cause. Thus the binding effect in terms of the
increased o., at high energy in the present calcula-
tion is more pronounced than the previous calcula-
tions. Although this finding helps improve the
agreement with the experimental data at high ener-

gy, it is detrimental at low energy, since it raises 0.,
above the impulse results and away from the experi-
mental results.
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FIG. 1. Elastic scattering differential cross sections
for m-' C collision. Explanation on the approximations is

in the main text.
FIG. 2. Total and elastic total cross sections and real

forward scattering amplitudes. See caption of Fig. 1.
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The reduction of the peak value has a somewhat
different bearing. In Ref. 13 it was reduced as in
our case, but in Ref. 12 it was markedly increased.
It is very likely that this difference was caused by
the special arrangement for the intermediate states
in Ref. 12. In this connection, we remember that
the reduction of peak value can be obtained even by
the effect of the Fermi motion alone. '

A rather large difference between the impulse and
binding differential cross sections was caused not
only by the binding effect, but also by the difference
due to the use of asymmetric and symmetric
kinematics. Since the asymmetric kinematics places
too much emphasis on the forward direction, it
tends to overestimate differential cross sections near
forward direction by supplanting the contributions
from large angles. This defect is amended by the
symmetric kinematics. The increased binding dif-
ferential cross section has also its cause in the use of
m~ as an embodiment of the binding effect. There
are many calculations (Refs. 4, 5, 15, 19, and 25) in
which the binding energy Ez is assumed to be the
separation energy Ez. The use of Eii and the subse-

quent replacement by Es gives distinctive differ-
ences from our kinematics. First of all, the use of
E~ amounts to some averaging of the major part of
the nucleon Fermi motion effect, which may be
perhaps an oversimplification of the three-body
kinematics, and thus it is better to treat the binding
interaction as a dynamical effect through the Fermi
motion rather than some averaged and static treat-
ment. Second, although Eq was introduced as the
mass difference between the nucleus and the core-
nucleon state, in the subsequent calculations the
nuclear and core masses were treated' ' as Am and
(A —1)m, respectively, which is inconsistent. The
introduction of m~ is consistent with the picture
that an approaching pion sees the nucleus as a tar-

get of mass Am ~, and not Am.
Turning to the difference between the exact solu-

tion and its two approximation methods, we observe
that both the first and second approximations fol-
low the exact calculations rather faithfully, except
for Ref(0). Furthermore, the difference between
two approximation methods is almost negligible.
This off-shell insensitivity has been pointed out pre-
viously. Hence, in practice, the second approxi-
mation will give a very useful calculational tool
which can closely reproduce most of the binding ef-
fects with minimum computing time.

Since there has not been a thorough and reliable
calculation of the binding effect, it is difficult to
give a quantitative estimate of various approaches
to the binding effect, which can be tested only by
comparing with the most exact theory if it exists.
However, elimination of a free parameter Es, inter-
nal consistency between m* and m, and the proper
perspective on the Fermi motion in the present
method of nonimpulse calculation should help
deepen our understanding of the binding effects.

We have proposed another method to include the
binding effects in particle-nucleus elastic scattering.
It is designed for a momentum space calculation in
multiple scattering theory, based on a simple yet
realistic three-body kinematics. It was found that
the binding effects have significant implications on
results of the first order optical model calculation.
It was also found that the nucleon Fermi motion is
an integral part of binding corrections in the three-
body kinematics, both in principle and in practice.
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