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In this work, we describe the fusion mechanism between two heavy ions as penetration

through a parabolic barrier in the presence of a proper Coulomb interaction with appropri-
ate boundary conditions. The parabolic potential is matched to the Coulomb potential in

order to avoid any discontinuity of the potential surface. The Schrodinger equations in the

exterior and interior regions containing, respectively, the Coulomb and the parabolic poten-

tials, are solved and the penetrability function is calculated from the logarithmic derivative

at the matching radius. The theory is then applied to calculate the fusion cross sections for
the reactions ' 0+' 0 ' C+ ' 9 Si, ' 0+2' Mg ' 0+ ' ' Si, and Ca+ Ca and are

found to reproduce the data quite well. The theory is valid for energies both below and

above the barrier.

NUCLEAR REACTIONS Heavy-ion fusion; effect of Coulomb in-

teraction; analytic expression for the penetrability function; application
to various reactions.

I. INTRODUCTION Vgt = Vs+A' l(l+1)/(2pRs ), (2)

During the last few years, a wealth of data has
been accumulated on fusion between heavy ions. In
most of the reactions, the fusion cross section as a
function of energy is found to exhibit small bumps
or structures superimposed on a smooth back-
ground which reaches a maximum and then falls
off slowly or saturates at higher energies. Several
theoretical models' have been proposed to explain
the data. Basically, two theoretical approaches have
been made to explain the fusion mechanism and in-

terpret the observed data. One approach attempts
to understand these data using a complex optical
potential with a repulsive core ' and seems to do
well near or below the Coulomb barrier. The other
approach, which seems to be more successful at en-

ergies higher than the Coulomb barrier, attempts to
describe the fusion process as penetration through a
barrier often taken to be of a parabolic type.

In the parabolic barrier approach, until recently,
the penetrability function, Tt(E), was calculated us-

ing the Hill-%'heeler expression

Tt(E) = I 1+exp[(2n. /fico)(Vst —E)]] ', (1)

where

and Vz and R~ are, respectively, the magnitude and
location of the top of the s-wave barrier. p, co, and l
are, respectively, the reduced mass, the oscillator
frequency, and the orbital angular momentum.
Both the approaches mentioned above relate the
fusion cross section to the reaction cross section.
However, as noted in Refs. 6 and 9—11, the Hill-
VAee1er expression is inadequate to explain the
fusion process at all energies especially in the pres-
ence of Coulomb interaction. Although Avishai's'
and later Dethier and Stancu's attempts to incor-
porate the Coulom. b interaction have been partially
successful at sub-Coulomb energies, their calcula-
tions cannot be used at energies near or above the
barrier. Besides, in their treatment, the potential
has a discontinuity near the top of the barrier for all
partial waves. As shown by Dethier and Stancu, "
this discontinuity results in an overestimation of the
penetrability function for higher partial waves at
energies well below the barrier top. Consequently,
the effect of this discontinuity wi11 be more pro-
nounced for heavier nuclei where a larger number
of partial waves contribute to the fusion process.

The purpose of this paper is to derive a proper
expression for the penetrability function in the pres-
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ence of Coulomb interaction which is valid for all
orbital angular momenta and for all energies and is
devoid of any discontinuity of the potential surface.
In addition, we also incorporate the correct asymp-
totic form of the wave functions. The model is then
used to calculate the fusion cross section for a num-

ber of reactions as well as determine the location
and magnitude of the interaction barrier which the
ions must overcome in order to reach the critical
distance for fusion.

The paper is organized as follows. In Sec. II, we
describe the model and the theoretical procedure
used to calculate the penetrability function and
hence the fusion cross section. Section III contains
the numerical details. Results and discussion of our
calculations are given in Sec. IV. In Sec. V, we con-
clude the paper.

II. THEORY

A. The model

While the parabolic potential is a good approxi-
mation to the real barrier in the region around the
maximum that determines the essential features of
the interaction, it completely ignores the long range
effect of the Coulomb interaction. As such, its ap-
plicability may not be meaningful, particularly for
particles with incident energies below the Coulomb
barrier where the tail of the Coulomb potential goes
to zero much more slowly than the parabolic bar-
rier. Our aim, therefore, is to incorporate the effect
of the Coulomb interaction into the fusion mechan-
ism explicitly and then derive an analytic expression
for the penetrability function which would be valid
at all energies. In doing so, we retain the parabolic
approximation only up to a certain distance R„,
which is taken to be the distance between the two
ions when they just touch each other or are about to
touch each other. R„,however, should not be inter-

preted as the radius of fusion. For most systems,
particularly the lighter ones, the fusion barrier oc-
curs at very large distances outside the touching ra-
dius. This is discussed later in Sec. IV. Beyond R„,
the interaction is taken to be of a purely Coulomb
type. We further impose the condition that the po-
tential should be continuous and hence the
Coulomb potential should match onto the parabolic
one at r =R„. This will eliminate the discontinuity
in the potential which is present in the model of Av-
ishai' and Dethier-Stancu. "

Thus we wish to consider penetration through a
barrier given by

Vi = Vp+R 1(l + 1)/(2pR+ )

where

(4)

Vp
——, pro (R—„Ro)+—Z)Z2e /R„.

From this, the location of the barrier top is obtained
at

Ro =R —[2( Vp —Z~Z28 /R )/(pet) )]

Our purpose here is to obtain the penetrability
function, T~(E), through such a barrier. Once that
is obtained, the fusion cross section, O.f, is given by

of ——nk g(21+1)T((E)
1=0

with

'=k =(2pE/A )'i

Here E is the center of mass energy.
T~(E) can be calculated by solving the

Schrodinger equation in the exterior region having
the potential (3b) and in the interior region having
the potential (3a) and matching the two logarithmic
derivatives using the boundary condition appropri-
ate for transmission. Following Blatt and

Weisskopf, ' we note that the boundary condition
for transmission requires that the logarithmic
derivative of the wave function should be complex
with the imaginary part less than zero.

B. Solution in the region r & R„

We shall follow the procedure of Feshbach
et al. ,

' which has been outlined in detail by Blatt
and Weisskopf, ' in developing the formulae in this

section. In this region, there is only the Coulomb
potential (3b) and the equation for u~(p) (r times the
radial wave function) is

~ "t(P) 2q l(l+1)+ 1 — —,u/(p)=O, (9)
dp p p

with p=kr and

g=pZ~Z2e /(A k) .

V~ —, pro—(r—Ro), for r &R„, (3a)
Vj(r)= '

Z~Z2e /r+h l(l+ I)/(2pr ), for r &R„,
(3b)

with the condition that the potentials match at
r =R„. Here, Z~ e and Z2e are the Coulomb
charges of the two ions. The matching condition at
p'=Rn yields
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ui~p) =Aui '(p)+Bui+ '(p),

where

(10)

The solution, ui(p), of the above differential equa-
tion can always be written in the form

where

and

g = (2pco/fi) '~'(r R—o), (21)

uI'+ (p) =exp( ia—i)[G&(p)+iF&(p)],

ui' '(p)=complex conjugate of u~'+'(p), (12)

are the outgoing and incoming waves, respectively.
oi is the Coulomb phase shift; Fi(p) and GI(p) are
the "regular" and "irregular" Coulomb functions
having the asymptotic forms

ai = —(E—Vi)/(~) . (22)

The solutions of Eq. (20) are E(ai, g) and E"(ai, g),
where the E's are complex linear functions of the
parabolic cylinder functions W (Ref. 14);

E(a&,g)=y ' 'W(a&, g)+iy' 'W(a&, —g),
(23)

FI(p) —sin(p —ml/2 —il ln2p+cri),

GI(p) —cos(p —irl/2 —rl ln2p+oz) .

(13)

(14)

E*(ai,g) =y '
W(a&, g) i y' W—(ai, —g),

(24)

with

The logarithmic derivative at r =R„,defined by y =[1+exp(2m ai )]'~ —exp(mar ), (25)

=R„
dQI /C& and

y '=[I+exp(2mai)]' +exp(mal) . (26)
finally gives for the penetrability function

4siImfi-
Ti(E)=

(Ref( 5i) +(Im—f( —si)

where

(16)

The expression for the penetrability function
given by Eq. (16) requires that Imf~ be negative.
The required solution, fulfilling this boundary con-
dition and the regularity of the wave function near
the origin, is uniquely given by

kR„ui[Gi——(p)dGi(p)/dp ui(g) =TE'(ai, g), (27)

with

SI =kR~VI,

+F~(p)dFj(p) Idplr=a„

(18)

Ui =1/[Fi'(p)+ Gi'(p)].=z„. (19)

C. Solution in the region r ~R„

In this region, we are to solve the Schrodinger
equation with the potential (3a) and choose only
that solution which makes the logarithmic deriva-
tive complex with the imaginary part being nega-
tive. The function ui(r) (r times the radial wave
function) in this region satisfies the equation

d uildg +[—a(+ —,g ]ui ——0, (20)

The expression (16) for Ti(E) is quite general in
the sense that no assumption has so far been made
about the interaction for r &R„. The properties of
the colliding ions for r &R„enters into TI(E) only
through the logarthmic derivative f~.

where T is the amplitude of transmission. The log-
arithmic derivative, f~, is then given by

du((g) Id(fi =R„(2pco/A)'~2 . (28)
ui r=R„

Using Eqs. (24), (27), and (28), we obtain, after
straightforward algebra, the following expressions
for Ref~ and Imfr. .

Ref, =R„(2p~/~)'"~ /B,
Imfi = R„(2pco/A')' /B, —

where

(29)

(30)

2 =[y 'W(ai, g)dW(ai, g)Id(

+yW(ai, —g)dW(ai, —g)/dg]„ ii, (31)

B=[y 'W (ai,g)+yW (ai, —g)]„x . (32)

In deriving Eqs. (29) and (30), we have made use of
the fact that the Wronskian of the functions
W(ai, +g) is equal to 1.

The relation of the penetrability function to the
logarthmic derivative of the wave function at a
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D. Asymptotic form of T~(E)

That the penetrability function Tr(E) has the
correct asymptotic behavior can be seen as follows.
In the high energy limit,

ar ——E/fuu &0 . (33)

boundary is one of the basic ideas of R-matrix
theory. However, the essential difference between
the formalism presented here and the R-matrix
theory lies in the boundary condition imposed on
the logarithmic derivative of the internal wave

function. Our treatment of using a complex loga-
rithmic derivative is embedded in the Kapur-Peierls
theory' as expanded by Brown, ' whereas Wigner-
Eisenbud theory' uses a real logarithmic derivative.
This treatment, which is basically similar to the
theory of Feshbach, Peaslee, and Weisskopf, '

reduces to the one-level Kapur-Peierls theory pro-
vided we impose either purely outgoing or incoming
waves as boundary condition on the internal wave
function.

III. NUMERICAL DETAILS

Instead of using the series expansion, the parabol-
ic cylinder functions W(ar, +g) and their derivatives
are evaluated by directly integrating the differential
Eq. (20) backward using the method of Runge-
Kutta' of order four. The starting values for
W(ar, g) and d W(ar, g)/dg are determined from the
asymptotic expansion of the functions for
g —4ar »0, while for fV(ar, —g) and its derivative,
closed form expressions for (=0 are used. ' At the
top of the barrier, i.e., for u~

——0, the asymptotic ex-

pansion for both W(ar, g) and its derivative are
singular. Hence, near the top of the barrier
(

~
ar

~
& 1), numerical computation is done using the

series expansion. It may be pointed out here that
for

~
ar

~
& 1, use of series expansion becomes high-

ly inefficient because of the slow convergence rate.
The regular and irregular Coulomb functions are

evaluated by using the method of Wills, ' where,
first, the irregular functions Gr(p) for l=0, 1, ,L
are formed by using the recursion relation. Next,
the Gr(p) functions are kept recurring to form the
sum

When ar is negative, the function 8'(ar, g) is oscilla-
tory' for all g. In such a case, it is convenient to
write

S=g 1 /G;(p) G;+ r(p) .
i=l

(3g)

E'( agr)=C exp( —iX), (g&0), (34a)

dE'(ar, g)/dg= Dexp( —iP), (—(&0) . (34b)
and

FL (p)=Gr. (p)S (39)

The regular functions Fr(p) are then obtained from

The asymptotic forms of C, D, X, and P for
and ar &0 are Fr r(p)=GL, —r(p)S+1/GL(p) . (40)

p
—1/2

D p1/2

X-n./4+p(,
P- —~/4+pg,

(35a)

(35b)

(35c)

(35d)

fr — ikR„, — (36)

where k is given by Eq. (8).
For the Coulomb functions, it is well known that

in the asymptotic limit, i.e., p=kr &&1,

h~ -0 and s~ —kR„. (37)

Using Eqs. (36) and (37) into expression (16) for
Tr(E), we find that in the high energy limit,
Tr(E)~1.

where p=( —ar)' . Using Eqs. (35a)—(35d), it is
easy to see that the expression for the logarithmic
derivative asymptotically reduces to

Finally, the backward recursion relation is used to
determine Fr(p) for 1 =L —2, L —3,...,0.

IV. RESULTS AND DISCUSSION

Before presenting our results for a number of
cases, it would be appropriate to note that (a) we
have completely eliminated the discontinuity in the
potential which occurs in the treatment of Avishai'
and Dethier-Stancu, " and (b) we have incorporated
the effect of the Coulomb potential exactly. We
also note that the theory has only three free param-
eters which are Vo, %co, and R„. This is less than
those used in many calculations. At high energies,
however, it may be necessary to limit the summa-
tion over l in Eq. (7) to a critical l, as is done in the
sharp cutoff model calculations. This point will

be discussed later.
In the following, we apply this model to calculate

the fusion cross sections for the reactions ' 0+ ' 0,
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FIG. l. Comparison of the observed fusion cross sec-
tion (solid circles) with present calculations (solid line).
The experimental data are from Ref. 27.
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12C+28, 29,30S 160+24, 26M 160+28, 29,30S. and

Ca+ Ca. In Figs. 1 —5, we present the experi-
mental data along with our calculated results. In
this context, we note that for the Ca+ Ca reac-
tion, there are two sets of data differing from each
other by as much as an order of magnitude. Both
the sharp rise in the cross sections in the low energy
region and the saturation of the data at higher ener-

gies are reproduced quite well by our calculations.
For the reactions ' 0+ ' Mg, the calculation
slightly overpredicts the data near the shoulder of
the excitation function, while for the ' 0+ ' ' Si
reactions, it underpredicts the data in the sub-

barrier region. The reason for this underprediction
could be attributed to the fact that the model does
not take into account the formation of transfer re-
action products and the static or dynamic deforma-
tions of target and/or projectile which are known to
enhance the sub-barrier cross sections.

Regarding the choice of parameters, one ap-
proach would have been to search for parameters
through a least squared procedure which yields an
optimum fit to each data set individually. The sta-
bi1ity and trends of the derived parameters would
then have served to define the applicability of the
model. However, we have done no such search but
instead fixed fico and allowed only V0 and R„ to
vary. %co is fixed at 5.0 MeV for all reactions in-
volving ' 0 (except for ' 0+ ' 0) and the

Ca+ Ca reaction, and at 8.0 MeV for reactions
involving ' C. For the ' 0+' 0 reaction, fico is
taken to be 7.5 MeV. These values of %co are chosen
so as to get optimum agreement between the calcu-

900—

0
lo

--I
l5

I

20
I

25
I

35
I

30

(MeV}

I

40 45

l500

l2 30

I200—

900—
E

b 600—

300—

I

l5
I

20
I

25
I

30
I

35
I

40

E c.rn. (MeV)

FIG. 2. (a) —(c) The same as that of Fig. 1 except
that the data are from Ref. 28. In (c), the dashed line
corresponds to calculations with Vo ——17.5 MeV,
fico=7.5 MeV, and R„=7.0 fm and is shown only where
the disagreement with the solid line is large enough to
show on the drawing.
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FIG. 3. (a) and (1) The same as that of Fig. 1 except
that the data are from Ref. 29.

lated and experimental results. Also, once the value
of R„ is fixed for a particular reaction, there is very
little room to vary Vo, which is taken to be only
slightly greater than ZiZ2e /R„. This is done in
order to avoid the possibility of approximating a
substantial portion of the below barrier region by a
parabola. Values of the parameters used in the cal-
culations are listed in Table I. Because of the large
error bars, other combinations of Vo, fun, and R„,
which differ slightly from the values in Table I, are
also capable of reproducing the data equally well.
This is shown in Fig. 2(c) for one of the reactions.
The overall effect of the change in the values of the
parameters on the magnitude of the fusion cross
section is summarized in Table II. The shape of the
cross section as a function of energy is, however,
mostly controlled by %co and Vo, the former being
the dominant one.

It is interesting to note in Table I that the param-
eter r„, defined by R„=r„(A&' +A2' ), increases
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FIG. 4. (a) —(c) The same as that of Fig. 1 except
that the data are from Ref. 28.
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FIG. 5. The same as that of Fig. 1 except that the
data are from Ref. 30. As mentioned in the text, it
differs from the data of Ref. 31 by almost an order of
magnitude.

0
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from Si to Si for both ' 0 and ' C projectiles.
This is expected because Si is the most tightly
bound amongst the three, followed by Si. It is
also well known that Mg is more deformed than

Mg, and hence, one needs a somewhat larger ef-
fective radius for the reaction involving Mg. It is
not surprising to find that both ' 0+' 0 and

Ca+ Ca reactions require an r„greater than that
needed for reactions involving Si because, in gen-
eral, ' 0 and Ca are considered relatively soft and
amenable to deformation in the presence of the
Coulomb field. In this context, it might be noted
that this treatment has tacitly assumed that all nu-

clei are spherical and the fusion takes place via a
static potential.

Some of the existing models demand that the
limit to the fusion cross section is set by a critical
angular momentum /, . This is based on a semiclas-

sical picture. For partial waves l &I„ the potential
has a "pocket, " i.e., a minimum followed by a bar-
rier maximum. As noted by Galin et al. ,

' the
value V, of the potential and the radius R, at this
minimum may be the relevant quantities limiting
complete fusion during a collision between two
complex nuclei. For l )l„ the pocket in the poten-
tial disappears (or in the static picture, the effective
barrier disappears) and it is no longer possible to
form a compound system without breakup, even

though the ions may be brought to an arbitrary
separation by increasing the bombarding energy.
Thus, the critical angular momentum may be
viewed as that angular momentum for which the to-
tal potential has a local maximum value equal to
the incident energy. Semiclassically, corresponding
to this critical angular momentum, there is a criti-
cal energy E, beyond which the ions do not fuse for
all partial waves, or alternatively, the energy for
which the fission barrier vanishes. The critical
energy, therefore, corresponds to the maximum in
the fusion cross section. Hence, by looking at data,
one can deduce l, from the following approximate
semiclassical relation noting that for this 1, the nu-

clear part of the potential is zero:

l, (l, + 1)= (2pR„ /err )E, . (41)

In our calculation, /, is determined from the experi-
mental maximum of the cross section and is not an
additional parameter. Except for the '60+' 0 re-
action, the cross sections of none of the reactions
considered here reach maximum and as such we

have not used any critical l, . For the ' 0+' 0 re-
action, the observed data reaches its maximum at
about 28.0 MeV. Thus, using Eq. (41) with

E, =28.0 MeV, we obtain 1,=26. As can be seen
from Fig. 1 the calculated cross section using this l,

TABLE I. Values of the best fit parameters fico, V0, and R„, where R„=r„(A1' '+32' ').
R0 is determined by Eq. (6) and V, (R„)=Z1Z2e'/R„.

Reaction Z1Z2 AN (MeV) V0 (MeV) r„(fm) R„(fm)" R0 (fm) Vc(R„) (MeV)

16p+ 16p

12C+30S1
16p+ 24Mg

16p+ 26Mg

16p+ 28S1

16p+ 29si

16p+ 30si

Ca+ Ca

64
84
84
84
96
96

112
112
112
400

7.5
8.0
8.0
8.0
5.0
5.0
5.0
5.0
5.0
5.0

13.0
21.5
18.4
17.5
22.7
23.8
23.0
22.5
22.0
56.0

1.587
1.155
1.268
1.292
1.264
1.259
1.314
1.356
1.377
1.601

8.00
6.15
6.80
6.97
6.83
6.90
7.30
7.58
7.75

10.95

7.48
5.62
6.50
6,84
5.91
5.78
6.76
6.96
7.14

10.20

11.54
19.70
17.82
17.38
20.27
20.07
22.13
21.31
20.85
52.69
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TABLE II. Summary of the effect of changes in the values of the potential parameters
on the fusion cross section. f/g represents increase/decrease in the values of the parameters
and the magnitude of the cross section,

Parameter Change Low energy

Effect on 0-f

High energy Comment

effect is very
pronounced

effect is pro-
nounced in the
high energy
region

increase/decrease
in the high
energy region
are large

does follow the data.
If one plots the calculated o.f as a function of

E ', in all cases the calculated fusion cross section
in the low energy region is described by the well

known relation

Of —7TRf [ I —V(Rf )/E] (42)

where Rf =rf(A ~' +22' ) is interpreted as the ra-
dius of the interaction barrier V(Rf) which must be
overcome in order to reach the critical distance for
fusion to occur. A sample case of this behavior is
shown in Fig. 6. From this plot, one can determine

V(Rf) using the graphical method of Gutbrod
et al. Rf can then be deduced from the simple re-
lation

Rf =Z&Zze /V(Rf) . (43)

In Table III, we present the values of V(Rf) and Rf
deduced from our calculations. For all the reac-
tions, it can be seen that V(Rf) is always a little less
than the Coulomb barrier V, (R„). This is expected
because before the two ions can fuse together, they
have to at least overcome the Coulomb barrier.
Also, as expected, the interaction barrier height in-
creases considerably with Z~Z2.

At this stage it is worth noting that although oth-
er calculations such as the one by Glas and Mosel
could in many instances reproduce the data, there
are some inherent theoretical inadequacies in their
formalism which is based on the approximate bar-

rier penetration formula of Hill and Wheeler. s As
noted by Avishai' and Vaz et al. , the Hill-

%heeler expression for penertration might be un-
realistic in the sub-barrier region in the presence of
Coulomb interaction. This is because, in deriving

Eq. (1), the asymptotic form of the wave function is
taken to be

(500

I200

900—
E

b
600

500

0.02 0.04 0.06 008

[Ee ~ (Mev ) j
FIG. 6. Plot of the calculated fusion cross sections as

a function of E, ' for the reactions ' C+ 'Si (solid
line), ' C+ Si (dashed line), and ' C+ Si (chain line).
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TABLE III. A comparison of the values of the interaction barrier height and radius de-
duced from this calculation with the Glas-Mosel parameters V(R~) and R&.

Reaction
Present work

V(Rf) (MeV) rf (fm) Rf (fm)

Glas-Mosel
V(R&) (MeV) R~ (fm)

16Q+ 16Q

"C+"Si
' C+' Si
16Q+24Mg
16Q +26Mg

16Q+28S1

16O+29S

16Q+ 30Si

Ca+ Ca

11.10
16.00
14.29
13.33
16.67
17.09
17.50
17.39
17.09
50.00

1.649
1.421
1.582
1.683
1.538
1.477
1.661
1.661
1.679
1.687

8.31
7.57
8.48
9.08
8.31
8.10
9.23
9.29
9.45

11.54

11.0
15.0
13.7
13.7
16.0
16.6
16.6
16.0
16.4

7.56'
740
8.31b

8.80b

8.48'
8.72'
8.06b

8.52b

906

'Reference 27.
Reference 28.

'Reference 29.

Tef/ /2(i& i/2 —r R ))0
e '&

~g'~
" ' +R '& ~g~" ', r Rs&&0,— (45)

where

g= (r Rs )(pco lfi) '—
and

(46)

e=(E Vsi)l(%co) .— (47)

V. CONCLUSION

In conclusion, it is legitimate to ponder why such
a simple parabolic barrier could reproduce the data
for fusion. Surely, the nuclear part of the potential

These asymptotic forms of the wave function are
invalid for the Coulomb potential. In fact, asymp-
totic behaviors (44) and (45) do not properly
represent plane waves.

In view of that, we have compared our derived

Rf and V(Rf) with the corresponding parameters
Rii and V(Rs) of Glas and Mosel and have includ-
ed them in Table III together with our results. Al-

.though they are similar, they could differ by as
much as 10%. Of course, Glas and Mosel's calcula-
tions use five parameters and we have essentially
two (or at best three) parameters.

is much more complicated. Reasons might simply
be that at energies above the Coulomb barrier (or
near it), only the top of the nuclear potential comes
into play. This part of the ion-ion potential is
reasonably approximated in many cases by a
smooth parabola as can be seen from the empirical
potential used to explain ' 0+' 0 or ' C+' C elas-
tic scattering data. ' Thus, the energy range of the
data analyzed here does not test the real shape of
the entire potential but is only sensitive to the struc-
ture of the potential near the top. To test the 1ower
part of the nuclear potential, fusion data at energies
below the Coulomb barrier are needed.
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