Unusually low fragment energies in the symmetric fission of ²⁵⁹Md

J. F. Wild, E. K. Hulet, R. W. Lougheed, P. A. Baisden,

J. H. Landrum, R. J. Dougan, and M. G. Mustafa

University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

(Received 12 April 1982)

The 103-min isotope ²⁵⁹Md has been identified as the daughter of an electron-capture decay branch of ²⁵⁹No produced via the ²⁴⁸Cm(¹⁸O, α 3n) reaction. Chemical separations were used to confirm the identity of ²⁵⁹Md, which decays by spontaneous fission. The kinetic energies of coincident fission fragments were measured, corresponding to a fragment mass which is highly symmetric, similar to those of ²⁵⁸Fm and ²⁵⁹Fm. However, the total kinetic energy distribution for 259 Md is considerably broader (FWHM ~60 MeV) than those of ²⁵⁸Fm and ²⁵⁹Fm, and peaks at 201 MeV, about 35-40 MeV lower in energy. Furthermore, the maximum total kinetic energy of 215 MeV for mass-symmetric events is about 30 MeV lower than for similar events from the spontaneous fission of ²⁵⁸Fm and ²⁵⁹Fm. A hypothesis that this energy difference resulted from the emission of light, hydrogen-like particles at scission in a large fraction of ²⁵⁹Md spontaneous fission decays was shown to be unfounded. From experiments to observe such particles with counter telescopes, an upper limit of 5% was determined for the fraction of fission events accompanied by light-particle emission. The total kinetic energy deficit at mass symmetry must, therefore, be distributed between internal excitation energy and fragment deformation energy at scission. Although the presence of a large amount of fragment deformation energy seems incompatible with symmetric fission into spherical Sn-like fragments, we prefer this explanation because the low total kinetic energy suggests a lowered Coulomb energy resulting from greater separation of the charge centers of deformed fragments at scission.

RADIOACTIVITY, FISSION ²⁵⁹Md (SF); measured $T_{1/2}$, fragmentfragment coin, deduced mass, TKE distributions. ²⁵⁹No; measured EC decay to ²⁵⁹Md, upper limit to SF decay.

I. INTRODUCTION

A major transition in fission behavior appears for heavy nuclei lying between Z = 98 and 104. The earliest manifestations of this behavior are the extremely sharp decreases in the spontaneous fission (SF) half-lives^{1a} and the appearance of symmetric fission in the heaviest Fm (Z = 100) isotopes.^{1b-3} Another indication of abrupt changes in systematic behavior was the reversal in the trend of SF halflives rapidly decreasing with increasing N after the 152-neutron subshell.⁴ Between ²⁵⁴No and ²⁵⁸No, SF half-lives fall by a factor of 10^8 , whereas in the element 104 isotopes they increase by a factor of about 40 between ²⁵⁴[104] and ²⁶⁰[104].⁵ These sharp departures from the fission behavior of the lighter actinides tend to make this region of nuclei an important one for the study of the fission process from both an experimental and theoretical viewpoint.

Fission fragment kinetic energies and the mass distributions derived from them provide the most detailed information on the fission process. For elements beyond Fm these properties have been measured for only 252 No (Refs. 6 and 7) and 262 [105].⁸ The mass distribution of 252 No SF is clearly asymmetric, but this fissioning nuclide is too light to provide a relevant test of fission theories. In the case of 262 [105], the measured mass and kinetic energy distributions were masked to a large extent by a high SF background from 2.6-h 256 Fm, rendering the conclusion that its mass distribution is asymmetric as problematical.

The discovery of ²⁵⁹No as a 1-h α emitter with an associated SF activity⁹ provided an opportunity to study the SF properties of a heavy transfermium nuclide without interference from the SF of lighter actinides. Although earlier workers had tentatively

26

1531

259 No Q_{EC} (MeV)	259 Md $Q_{\rm EC}$ (MeV)	259 Md Q_{α} (MeV)	Refer- ence	
+1.24	+0.33	7.17	10	
+0.32	-0.30	7.18	11	
+0.45	0.57	6.91	12	
+1.12	-0.31	7.06	13	
+1.1	-0.4	6.9	14	
+0.87	-0.37	6.93	15	
+0.89	-0.71	6.60	16	
+1.18	+0.33	7.35	17 (Myers)	
+1.01	+0.12	7.34	17 (Groote, Hilf,	
			and Takahashi)	
+0.9	+0.2	6.8	17 (Seeger and Howard)	
+0.51	-0.27	7.17	17 (Liran and Zeldes)	

TABLE I. Decay-energy predictions for ²⁵⁹Md and ²⁵⁹No.

assigned this SF activity to ²⁵⁹No with an abundance of about 20%, we felt that there was a possibility that the fissions arose from the decay of ²⁵⁹Md produced by electron-capture (EC) decay of ²⁵⁹No. Calculations of $Q_{\rm EC}$ for ²⁵⁹No (Refs. 10–17) (see Table I) indicated a possible EC-decay branch of a few to over 40% for an allowed ground-to-ground state transition with log ft = 6.2, an average value for this mass region.¹⁸ More importantly the fission properties of either ²⁵⁹Md, a nuclide with 158 neutrons, or ²⁵⁹No would be of considerable interest in testing theories concerning fission-fragment mass-energy distributions and potential energy surfaces.

Once we had identified the source of the SF activity as 259 Md, we aimed our investigation toward obtaining the fission mass distribution to determine if a trend toward asymmetry would appear as the proton number is increased beyond that of Fm. It should be noted that 259 Md is only one proton added to 258 Fm, which undergoes SF in a highly masssymmetric mode.² In addition, the total kinetic energy (TKE) released in the SF of 258 Fm is 238 MeV, a very high value and one close to the Q value for the fission process.

In recent years, fragment shell structure has appeared to be the more likely factor in determining the mass and TKE distributions from the fission process, as evidenced by the appearance of symmetric fission in the heaviest Fm isotopes. The magnitude of the TKE is related to the ability of the fragments to resist deformation. In the case of the SF of ²⁵⁸Fm and ²⁵⁹Fm, the mass division is highly symmetric due to the energetically-favored formation of two very stable, Sn-like fragments with Z = 50 and $N \sim 79$. These fragments possess high spherical rigidity and, therefore, very little of

the total energy available from fission is lost to deformation, resulting in high values of TKE. According to Mustafa and Ferguson,¹⁹ increasing Z above 100 while maintaining N essentially constant results in a transition back to asymmetry. Fission then remains asymmetric until N approaches 164, when the effect of the emergence of the N = 82 shell during fragment formation becomes dominant. Thus, for ²⁵⁹Md, we expected the first indications of this transition from symmetry to asymmetry in the mass distribution.

Our measurements of the kinetic energy and mass distributions for the SF of ²⁵⁹Md reported in this paper did indeed show a slightly larger asymmetric fission component than does the mass distribution obtained from the SF of ²⁵⁸Fm. However, several surprising dissimilarities were observed that prompted further measurements of these distributions and a search for a very large enhancement in the emission of hydrogen-like particles accompanying fission. The main difference between the SF of ²⁵⁹Md and ²⁵⁸Fm is the broader and lower (by 37 MeV) TKE distribution measured for ²⁵⁹Md. The question posed by this unexpected reduction in kinetic energy is the form in which the excess energy exists at scission. Our measurement of lightparticle emission in ²⁵⁹Md was directed at examining an attractive possibility.

II. DISCOVERY EXPERIMENTS

We performed experiments to identify the source of the SF activity associated with ²⁵⁹No and, subsequently, to determine fragment mass and kinetic energy distributions and other decay characteristics of this activity. In all of our experiments, we initially prepared a radiochemically-pure sample of ²⁵⁹No, produced via the (${}^{18}O,\alpha 3n$) reaction with ${}^{248}Cm$ at the 88-inch Cyclotron at the Lawrence Berkeley Laboratory. The ${}^{248}Cm$ targets, typically about 0.9 mg/cm² thick, were prepared by vacuum sublimation²⁰ of ${}^{248}CmF_3$ in a 6-mm-diameter spot onto a 0.013-mm-thick Be foil. The energy of the ${}^{18}O$ ions entering the target was 97 MeV; about 2 MeV was lost upon passing through the target.

The target was clamped in a Cu block and mounted facing away from the incoming cyclotron beam. The target was cooled by a stream of N_2 gas impinging on the face of the Be foil opposite the Cm deposit. Reaction products recoiling from the target were collected on a thin foil of either Au or Pd mounted about 3 mm directly behind the target. At the end of a bombardment, typically 2 h long, the foil was dissolved in HCl-H₂O₂ and the Au or Pd removed by adsorption onto an anion-exchange column. The eluate from this column was evaporated to dryness, redissolved in 0.1 N HCl solution, and loaded onto a chromatographic-extraction column consisting of di-(2-ethylhexyl)orthophosphoric acid (HDEHP) dissolved in nheptane and supported on an inert fluorocarbon powder. Only No, among the actinides produced in the bombardment, exists commonly in the divalent oxidation state in aqueous solution rather than the trivalent state usual to the transplutonium actinides. Thus, it was not extracted by the chromatographic column from 0.1 N HCl solution. Other contaminating SF activities produced in the bombardment, such as ²⁵⁶Fm, ²⁵⁴Fm, and ²⁴⁸Cm transferred from the target, were extracted, separating them from the No. Any transactinides produced in the bombardments are too short-lived to have survived the time required for the chemical separations. Therefore we were assured of starting with a pure source of ²⁵⁹No from which we could observe the decay of a SF branch or the growth of ²⁵⁹Md SF activity following EC decay. Isotopic purity was assured by measuring α energies using surface-barrier detectors. The analog signals from our detectors were routed through an analog-to-digital converter (ADC) to a small computer which recorded the energy and sequential time of occurrence of each counting event for subsequent off-line analysis. Pulses from fission events were recorded in a channel at the high-energy end of the pulse-height spectrum.

We obtained a half-life of 59 ± 13 min for 259 No from the measured time history of α events in the energy range 7.4–7.8 MeV, corresponding to 259 No α decay. This value is in good agreement with the half-life of 58 ± 5 min obtained by Silva *et al.*⁹ A background correction was made for the contribution from the parent-daughter pair 7.2-h 211 At/0.5-s 211 Po; the 211 At resulted from the 18 O bombardment of the Au recoil collection foil and was not completely removed by our chemical procedure. The 211 Po daughter decays primarily via a 7.45-MeV α transition.

There was no long-lived SF activity in these samples which would have indicated the presence of ²⁴⁸Cm contamination. However, the recorded time history of the fission events in these samples indicated a SF activity that could not have originated directly from ²⁵⁹No decay, since fitting a single-component decay curve to these counting data yielded half-lives which were more than twice as long as the value determined for ²⁵⁹No. This was evidence that we were observing fissions from the decay of ²⁵⁹Md, which would be the EC daughter of ²⁵⁹No.

To confirm our tentative identification, we adsorbed pure ²⁵⁹No on a column of cation-exchange resin and eluted trivalent species at measured intervals of 20 to 30 min with a solution of 0.5 M ammonium α -hydroxyisobutyrate at pH 5. Samples of the eluate were evaporated on Pt disks and the α energies analyzed. The ²⁵⁹No, being a divalent ion, is complexed considerably less by the αhydroxyisobutyrate solution than are trivalent ions. Thus, the ²⁵⁹No remained essentially at the top of the column while the daughter atoms ²⁵⁵Fm and 259 Md, produced by the α and EC decay of 259 No between elutions, were removed rapidly. A decay curve derived from summing the SF activity in the eluate fractions indicated a single component decaying with a 1.5- to 2-h half-life. The number of fission events observed in this experiment is consistent with that observed after complete decay of initially pure ²⁵⁹No samples, suggesting that essentially all of the born SF activity is associated with a trivalent daughter, which we believe to be ²⁵⁹Md. There were no α events in the energy range associated with the α decay of ²⁵⁹No, thus none of the observed SF events were due to ²⁵⁹No.

We calculated a weighted-average half-life of 103 ± 12 min for ²⁵⁹Md, based on four measurements. One of these was the milk experiment just described, and the other three were decay measurements of SF activity in initially pure ²⁵⁹No samples. For these latter three measurements, we fit twocomponent decay curves to the SF activity data using a fixed half-life of 59 min for the ²⁵⁹No parent. Although there are too few events counted in these experiments to indicate whether a SF-decay curve consists of one or two components, the chemical

separations we performed assure us that each experiment was initiated with ²⁵⁹No free of other actinide species. We know from the milk experiment that all of the SF activity originated from ²⁵⁹Md. Any contribution to the SF activity from 20.1-h ²⁵⁵Fm (100% α ; 2.4×10⁻⁵% SF), the α -decay daughter of ²⁵⁹No, or from 39.8-d ²⁵⁵Es (92% β^- ; 8% α ; 4.1×10^{-3} % SF), the α -decay daughter of ²⁵⁹Md, was negligible due to the long SF half-lives of these isotopes. Electron-capture decay of ²⁵⁹Md to give 1.5-s²⁵⁹Fm, a known SF emitter,³ is expected to be either energetically impossible (see the $Q_{\rm EC}$ predictions for ²⁵⁹Md in Table I) or of low abundance. The most positive estimate for the $Q_{\rm EC}$ of ²⁵⁹Md, 0.33 MeV, results in a half-life of 1.5 d for a transition with $\log ft = 6.0$, using the $\log f$ tables of Gove and Martin.²¹ This corresponds to an upper limit of 5% for ²⁵⁹Md EC decay. Therefore, we interpret the fission-counting data obtained from direct counting of initially pure ²⁵⁹No samples as a parent-daughter two-component decay curve, and the decay data from the Md milk experiments as a one-component curve.

We observed no α events in the energy range 6.5-7.0 MeV in the Md-milk experiment. Predictions of Q_{α} for ²⁵⁹Md, presented in Table I, range from 6.6 to 7.3 MeV. Mendelevium-259 presumably has a ground-state configuration of $\frac{1}{2}$ - [514] \downarrow , and would likely α decay to a similar state in ²⁵⁵Es at an excitation energy of about 0.4 MeV. With the subtraction of another 0.15 MeV for recoil and screening corrections from the Q_a estimates, it is apparent that α particles from ²⁵⁹Md would have energies of 6.8 MeV or less. According to the α -decay systematics proposed by Viola and Seaborg,¹⁸ such a transition would occur in less than 0.1% of the total decays. From our observations we can set an upper limit of about 3% for 259 Md α decay. Because EC decay and α decay could contribute at most only a few percent to the decay of ²⁵⁹Md, we conclude that SF is the predominant decay mode.

The branching ratio for 259 No EC decay was determined from these experiments to be $25\pm4\%$. An estimate of the SF-decay branch for 259 No was also obtained, although too few SF counts in the growth and decay curves render it qualitative at best; a value of $1\pm9\%$ was calculated for this branching ratio.

III. INITIAL FISSION COINCIDENCE STUDIES

Following the discovery of ²⁵⁹Md, we performed experiments to determine the kinetic energies of

fragment pairs from its SF decay. We prepared two coincidence counting systems, each consisting of two 450-mm² surface-barrier detectors mounted facing one another inside a vacuum chamber. Samples of ²⁵⁹No, chemically purified as described in the preceding section, were evaporated on thin polyvinyl-acetate-chloride copolymer (VYNS) films (typically 25 to 35 μ g/cm²) and placed between the detectors. Fission fragments from the decay of the daughter ²⁵⁹Md were detected in coincidence in opposing detectors, and the kinetic energy of each fragment and the sequential time of occurrence of each fission event were measured. As before, the digitized signals were processed by a small computer which recorded the fragment energies and event times on magnetic tape. The mass of each fragment in a coincident event was deduced from kinematic considerations.

We used a source of ²⁵²Cf mounted on VYNS film to calibrate the fragment-energy response of the detectors, and employed the mass-dependent calibration procedure of Schmitt, Kiker, and Williams²² to correct the detector responses for the pulse-height defect. The ²⁵²Cf SF calibration source was prepared in the same manner as our ²⁵⁹Md SF sources, and the thickness appeared to be similar.

We derived fragment mass and kinetic-energy distributions from the detection of 397 coincident SF events obtained in 18 separate bombardments. We only note the main characteristics at this time, because we later obtained mass and kinetic energy distributions for ²⁵⁹Md SF using thinner sources because of improved chemical separation procedures. The provisional mass distribution (no fragment neutron-emission correction) that we obtained from these initial fission studies was quite symmetric, with small wings indicative of a small asymmetric component. In this respect, ²⁵⁹Md is quite like ²⁵⁸Fm and ²⁵⁹Fm in undergoing principally symmetric mass division. However, the provisional TKE distribution from ²⁵⁹Md SF in these studies was considerably different from those of ²⁵⁸Fm and ²⁵⁹Fm; the most probable TKE was about 190 MeV and the distribution was quite broad, with a FWHM of about 106 MeV. These earlier results are described fully in Ref. 23 and the newer results are reported in Sec. V of this paper.

IV. LIGHT-PARTICLE EMISSION STUDIES

Unlike that of ²⁵⁸Fm and ²⁵⁹Fm, the low TKE measured for ²⁵⁹Md suggested that the fragments were considerably deformed at scission. Since, how-

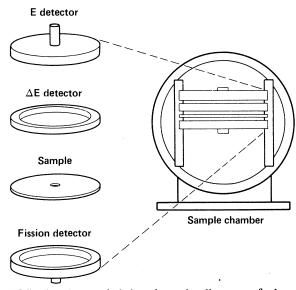


FIG. 1. An exploded, schematic diagram of the counter telescope used to search for light-particle emission by ²⁵⁹Md.

ever, calculations based on Strutinsky shell corrections from the two-center shell model²⁴ do not show a stable minimum in that region of the potential energy surface favoring highly-deformed masssymmetric fragments (see the Discussion), we decided to test the hypothesis of light-particle emission at scission. If a light, preferably hydrogen-like particle (p, d, or t) were emitted at scission, it could remove 25 MeV or more of the energy available (Qvalue) in the fission process. Furthermore, the removal of a Z = 1 particle during symmetric mass division occurring in about half of the SF events could account for most or all of the 30 MeV energy deficit in the vicinity of mass symmetry.

We assembled two similar counter telescopes, each consisting of a ΔE and E detector placed above the sample, and a 450 mm² Si(Au) surface-barrier detector below it (see Fig. 1). A coincidence $(2\tau = 470 \text{ ns})$ was required between the ΔE and E detectors before the energies deposited in each detector were recorded; the ΔE detector measured energies between 0.7 and 15 MeV, while the Edetector measured energies between 0.5 and 30 MeV. The energies obtained from a ΔE -E coincident event were required to fall within certain limits based on known range-energy relationships of light particles in Si. Fission-fragment kinetic energies were obtained during these experiments by analyzing coincident fission pulses from the detector below the sample and the ΔE detector above it.

We calibrated our detector systems with sources of ²⁵²Cf evaporated from aqueous solution onto

VYNS films as before. To determine the detection efficiency of light particles from ²⁵²Cf SF for our two counter telescopes, we fit the long-range α energy distribution accumulated for each system to a Gaussian curve with the mean energy and the distribution width fixed at values determined by Cosper, Cerny, and Gatti.²⁵ We then corrected the area under this curve to account for the non-Gaussian α -energy distribution at low energies observed by Loveland.²⁶ On this basis, and assuming a value for ²⁵²Cf SF of 3.30 ± 0.20 long-range α 's per 10³ SF derived from Cosper *et al.*,²⁵ Loveland,²⁶ and Raisbeck and Thomas,²⁷ we obtained effective geometric efficiencies of 10.6% and 14.0% for our two systems. Owing to the thicknesses of our ΔE detectors, which were more favorable for the detection of Z = 1 particles than α 's, the minimum α energies observable in the two systems were 11 and 15 MeV. Additionally, since the geometries were high for these systems, there was a significant chance of not detecting light particles because one of the fission fragments would strike the ΔE detector at the time that a light particle from the same event passed through it, thus masking the critical light-particle ΔE energy. However, since the probability was the same for ²⁵⁹Md light particles as for ²⁵²Cf light particles, it was canceled out. The number of tritons

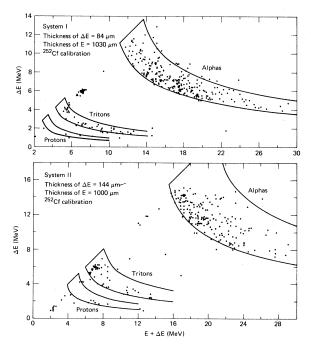


FIG. 2. Energy deposited in the ΔE detector versus incident particle energy for the ²⁵²Cf calibration of the two counter telescopes used to measure light-particle emission by ²⁵⁹Md.

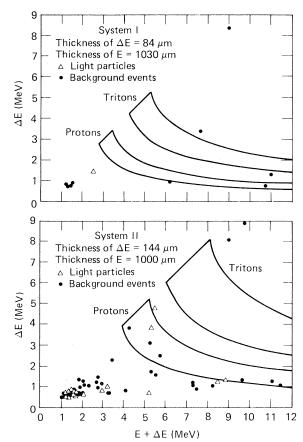


FIG. 3. Energy deposited in the ΔE detector versus incident particle energy for the light particle events detected from eleven samples of ²⁵⁹Md and also the events obtained during over 17000 min of background counting.

observed during the ²⁵²Cf calibrations agreed well with literature values for the relative abundances of α particles and tritons.^{25,27} The geometric efficiency of each system for detecting singles fission events in the detector below the sample was about 65%.

The ²⁵²Cf calibrations for each of the counter telescopes are shown in Fig. 2 as plots of energy deposited in the ΔE detector versus total particle energy. The envelopes shown for each type of particle represent the range of energies which would be deposited in the ΔE detector as a function of the incident particle energy and the angle at which the particle entered the detector. The ratio between the number of fission-originated α particles (long-range α 's) and the number of fissions recorded by the detectors below the samples provided a calibration with which to compare our ²⁵⁹Md results.

Samples of ²⁵⁹Md on VYNS film from 11 bombardments were counted for a total of over 4800 min in the two counting systems; in addition, background counts were taken in each system for over 17000 min. The events detected in both the ²⁵⁹Md light-particle counts and the background counts are shown in Fig. 3 as plots of ΔE versus total particle energy for each system. Unfortunately, we had contaminated the ΔE detector in system II with a small amount of ²⁵²Cf during our calibration procedure. This contamination amounted to about one fission per 8-9 min. In order to reduce the effect of this contamination, we turned the ΔE detector over so that the contaminated side faced the Edetector. In this way, no light particles from the Cf could pass through both the ΔE and E detectors simultaneously. However, coincidences were generated between the detectors by such species as degraded fission fragments, fission-product betas and gamma rays, and 6.1-MeV α particles from ²⁵²Cf decay; these are the source of the relatively high sample and background counting rates seen in the bottom plot in Fig. 3.

We observed a net total of 2 ± 2 light particles during these runs, all of them protons, and a total of 443 fissions as recorded by the detectors below the samples. After corrections for geometrical efficiency based on our ²⁵²Cf calibrations, these values correspond to an emission rate of 1 ± 4 light particles per 100 ²⁵⁹Md SF decays.

V. FISSION PROPERTIES OF ²⁵⁹Md

We also redetermined the fission properties of ²⁵⁹Md by measuring the kinetic energies of coin-

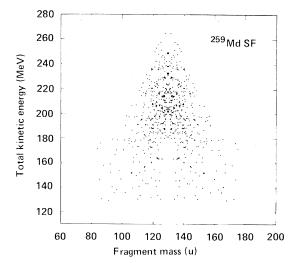
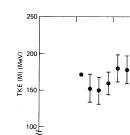



FIG. 4. Mass-TKE distribution for the SF of ²⁵⁹Md. Each coincident fission event provides two points which are reflected in the mass plane.

60

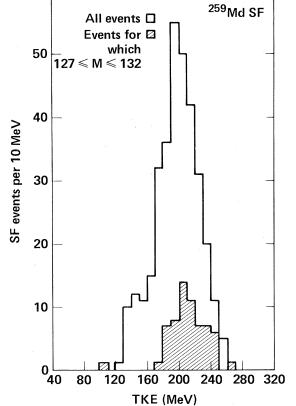


FIG. 5. Provisional TKE distribution for the SF of ²⁵⁹Md; the hatched area is the distribution of TKE from those events with both fragments having masses between 127 and 132 u.

cident fission fragments concurrently with the acquistion of the light-particle data, as described in Sec. IV. Our initial fission-coincidence studies, described in Sec. II of this article, suffered by comparison from relatively thicker sources of ²⁵⁹Md. This thickness resulted from mass contamination by such common cations as Ca⁺⁺, Mg⁺⁺, Na⁺, etc., which were not separated from No⁺⁺ on the extraction-chromatographic column we used to purify the No from other bombardment products. In order to reduce the quantity of mass contamination in our samples, we performed a gradient elution separation of the No from the contaminating monovalent and divalent ions with dilute HNO₃.

We measured fragment energies for 333 coincident fission events; these are shown in Fig. 4 as a reflected plot of TKE versus fragment mass for each event. It can be seen that there is a high concentration of events at mass symmetry, as there was in our initial studies, and a smaller contribution from asymmetric fission at lower TKE's. The provisional TKE distribution (no fragment neutron-

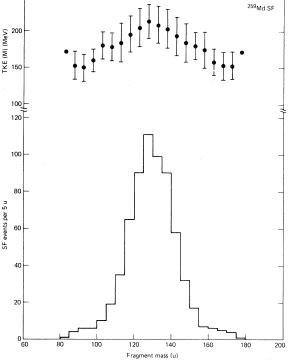


FIG. 6. Provisional mass distribution from the SF of ²⁵⁹Md (bottom) and the average TKE (top) associated with each mass increment shown in the histogram below.

emission correction), shown in Fig. 5, is considerably narrower than that obtained from our first studies, but the most probable TKE is essentially the same. The most probable TKE for the SF of ²⁵⁹Md, obtained by fitting a Gaussian curve to the distribution, is 200.7+1.4 MeV, while the FWHM of the distribution is 60.6 ± 3.4 MeV, considerably broader than the values for ²⁵²Cf (40.6 MeV) and ²⁵⁶Fm (41.4 MeV) that we measured in the same counting systems using sources evaporated from solution onto VYNS films.

Also shown in Fig. 5 is the TKE distribution of those fission events with both fragment masses between 127 and 132 u, i.e., at mass symmetry. These events, about 19% of the total, have an average TKE of 215 MeV, still about 30 MeV below what would be expected for similar events from the SF of ²⁵⁸Fm and ²⁵⁹Fm. This distribution is also quite broad (FWHM ~ 50 MeV), with one quarter of the events having a TKE less than 200 MeV.

The provisional mass distribution is shown in Fig. 6 along with a plot of the average TKE for each 5-u mass bin. The mass distribution is decidedly symmetric, with a FWHM of 27.8±0.6 u. Although this is more than twice as broad as the mass

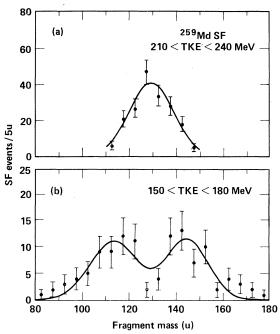


FIG. 7. Provisional mass distribution for the SF of 259 Md (this work); (a) events with TKE between 210 and 240 MeV; (b) events with TKE between 150 and 180 MeV.

distributions for ²⁵⁸Fm (FWHM ~8 u) (Ref. 2) and ²⁵⁹Fm (FWHM ~11 u),³ it is narrower by about one-third than the provisional mass distribution obtained by Balagna *et al.*²⁸ for the SF of ²⁵⁷Fm.

The SF events from ²⁵⁹Md with lower TKE

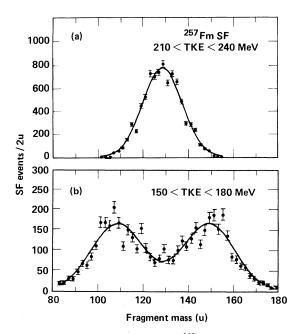


FIG. 8. Same as Fig. 7 but for ²⁵⁷Fm SF (Ref. 28).

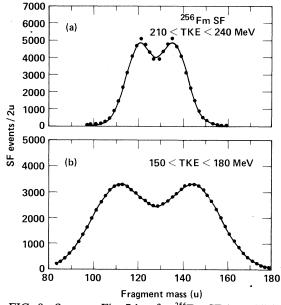


FIG. 9. Same as Fig. 7 but for 256 Fm SF (unpublished data).

values clearly form an asymmetric mass distribution. In Fig. 7 we show plots of the mass distribution for events with TKE between 210 and 240 MeV and for events with TKE between 150 and 180 MeV. For comparison, we show similar plots in Figs. 8 and 9 for ²⁵⁷Fm (Ref. 28) and ²⁵⁶Fm (unpublished data). The solid curves are Gaussian fits to the mass distributions. The lower-TKE mass distribution for ²⁵⁹Md shown in Fig. 7(b) is no longer as symmetric as it was in our initial fission studies; this was apparently due to unequal energy losses by coincident fragments caused by the thicker ²⁵⁹Md samples.

Our study of the SF properties of ²⁵⁹Md was not complicated by any background from the SF of ²⁵⁶Fm, as were those of ²⁵⁸Fm and ²⁵⁹Fm, due to our chemical purification of the ²⁵⁹No parent. Since there were fewer than 500 gross fission events in either of the Fm experiments, the subtraction of this sizable background (45% to 65% of the total events) resulted in considerable distortion of the TKE and mass distributions. The total number of fission events in our study is not large, either, but we are confident that they have all arisen from ²⁵⁹Md, resulting in greater reliability in our determination of the mass and TKE distributions.

VI. DISCUSSION

The important questions posed by the experimental results we have presented here are the following:

1539

Nuclide	Q (MeV)	TKE (MeV) ^a	Q-TKE (MeV)	Reference ^b
²⁴² Pu	197.9	178.5°	19.4	31, 42
²⁴² Cm	210.8	183 ^d	27.8	39, 40
²⁴⁴ Cm	210.1	183.7	26.4	43
²⁴⁶ Cm	210.4	183.9	26.5	39
²⁴⁸ Cm	209.1	182.2	26.9	39
²⁵⁰ Cm	208.7	179.8	28.9	44
²⁵⁰ Cf	220.5	187.0	33.5	39
²⁵² Cf	218.9	185.9	33.0	39
²⁵⁴ Cf	220.3	186.9	33.4	39
²⁵⁴ Fm	233.9	195.1	38.8	45
²⁵⁶ Fm	235.3	197.9	37.4	39
²⁵⁷ Fm	237.2	199.0 ^e	38.2	28, 33
²⁵⁸ Fm	249.3	238 ^f	11.3	2
²⁵⁹ Fm	249.6	242.4 ^f	7.2	3
²⁵⁹ Md	246.6	202.9 ^g	43.7	this work
²⁵² No	247.3	202.4	44.9	7

TABLE II. Calculated fragment excitation energies for SF-emitting actinide nuclides.

^aAverage preneutron TKE except where noted to be provisional.

^bRefers to \overline{TKE} values only.

^cTKE obtained by reducing TKE for ²⁴¹Pu(n, f) from Ref. 42 by a factor of TKE (²⁴⁰Pu SF)/TKE (²³⁹Pu[n, f]) from Ref. 31.

^dAverage value between TKE vs $Z^2/A^{1/3}$ systematics of Unik *et al.* (Ref. 39) and Viola (Ref. 40).

^eData from Ref. 28 using different neutron-emission correction derived from the data in Ref. 33.

^fProvisional values.

^gMost probable TKE using kinetic energies corrected for neutron emission with the $\bar{\nu}(M)$ function scaled to $\bar{\nu}_T = 4.15$.

Why is there a deficit of 30 MeV in the TKE of fragments at mass symmetry in the SF of ²⁵⁹Md, and what has happened to the remaining energy? We show in Table II calculations of the energy available from fission after the Coulomb energy, i.e., the TKE, has been subtracted, for a number of SF-emitting actinide nuclides. These energies were obtained by subtracting the measured preneutron average TKE value for each nuclide from a preneutron mass distribution-weighted fission Q value. The Q values were calculated from the Comay-Kelson ensemble-averaged mass-excess values,²⁹ with the relative abundance of each mass split determined from Gaussian-curve parameters used to fit the experimentally-determined mass distribution. Fragment atomic numbers were calculated from the prescription of Nethaway.³⁰ In the cases of ²⁴⁰Pu SF (Ref. 31) and ²⁵²Cf SF (Ref. 32), for which the total fission energy balance has been determined, the experimentally determined residual energy values are in good agreement with the values in Table II. This energy at scission is divided between internal excitations (vibrational, rotational, and single-particle motions) and deformation energy. All forms are ultimately released with the emission of prompt neutrons and gamma rays from the fragments and, to a very minor extent, light charged particles emitted at scission.

The excitation energies in Table II increase monotonically with Z, expect for the nuclides 258 Fm and 259 Fm. These nuclides have predictably low excitation energies due to the proximity of the fragments to the doubly magic 132 Sn configuration. We would expect 259 Md to exhibit a similarly low excitation energy, which is not the case. This means that 259 Md SF has available some 35 MeV more of excitation energy at scission to dissipate than do 258 Fm and 259 Fm. For SF events with both fragment masses between 127 and 132 u (for which the fission Q value is about 256 MeV), the available energy is 41 MeV, which must be principally in the form of internal energy and deformation energy.

The proximity of ²⁵⁹Md to ²⁵⁸Fm and ²⁵⁹Fm (only one proton or one neutron and proton different)

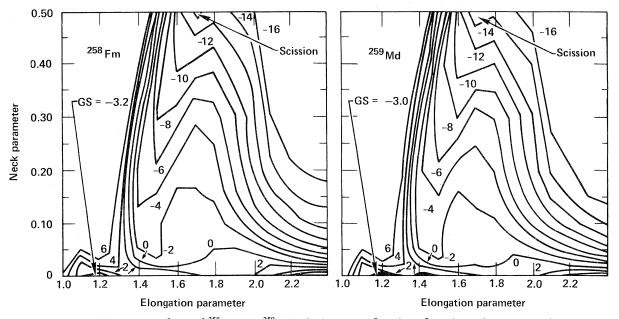


FIG. 10. Potential energy surfaces of ²⁵⁸Fm and ²⁵⁹Md calculated as a function of an elongation and a neck parameter (Refs. 24 and 46). The numbers labeling the contour lines are energies in MeV.

strongly suggests that all three nuclides should have similar properties. This is in accordance with the two-center shell model in which fragment shell structure is the factor determining mass and TKE distributions from fission.

Calculations of the potential-energy surfaces for ²⁵⁸Fm and ²⁵⁹Md have been carried out by using the two-center plus Strutinsky model including oddparticle effects. These calculations, shown in Fig. 10, do not show any measurable difference between these two nuclei, and certainly no minimum potential energy path can be found where one or both fragments are highly deformed. The fragment shell effect dominates the potential-energy surface leading to a narrow path to scission with nearly spherical, symmetric fragments. The mass distribution for ²⁵⁹Md SF is certainly similar to that for ²⁵⁸Fm and ²⁵⁹Fm, being symmetric although broader by more than a factor of 2. However, this additional breadth should not be a factor in the 30 MeV TKE deficit at symmetry for ²⁵⁹Md relative to ²⁵⁸Fm and ²⁵⁹Fm.

Four possible explanations for this TKE deficit are the following: (a) the mass distribution for ²⁵⁹Md SF could become asymmetric after correcting the fragment kinetic energies for neutron emission, and therefore the fission properties of ²⁵⁹Md are not similar to those of ²⁵⁸Fm and ²⁵⁹Fm; (b) there is a significant light charged-particle emission at scission, which removes Coulomb potential energy from the fissioning system without perturbing the mass distribution much; (c) there is a large amount of available energy distributed into internal excitation at scission; and (d) there is a large amount of potential energy in deformation at scission. We explored each of these possibilities as thoroughly as was practical to try to account for this TKE deficit.

We had not to this point corrected the fragment kinetic energies from ²⁵⁹Md SF for the effects of neutron emission because there is no experimental information available for this purpose. When applied to the SF of ²⁵⁷Fm,²⁸ this correction caused a noticeable valley to appear in the mass distribution at symmetry. To examine this possibility, we constructed a sawtooth $\overline{\nu}(M)$ function from the ²⁵⁷Fm. neutron multiplicity distribution of Hoffmann et al.³³ and normalized the function to a value for \overline{v}_{T} (total average neutron emission per fission) of 4.15, which is the measured value for ²⁵²No,⁶ and the highest yet observed in SF. The mass distribution obtained after applying this neutron-emission correction to ²⁵⁹Md is shown in Fig. 11. This distribution is somewhat less sharply peaked than the provisional one shown in Fig. 6, but there is no significant dip at mass symmetry as there is in the case of ²⁵⁷Fm SF. The application of this neutronemission correction to the ²⁵⁹Md fragment kinetic energies broadened the mass distribution by about 4 u and increased the most probable TKE by 2.2 MeV. We cannot, therefore, explain the TKE deficit by saying that the true mass distribution for ²⁵⁹Md SF is asymmetric and that its fission proper-

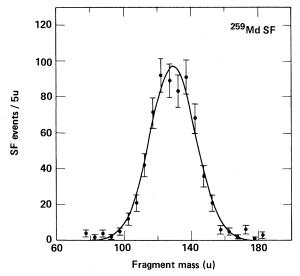


FIG. 11. Preneutron emission mass distribution for ²⁵⁹Md SF. The fragment neutron-emission correction was assumed to be that of ²⁵⁷Fm, but scaled to $\bar{\nu}_T = 4.15$.

ties are completely dissimilar to those of 258 Fm and 259 Fm.

Another possibility for reducing the Coulomb potential energy at scission, and thus the TKE, is the occurrence of three-body fragmentation. Threebody fragmentation in fission is well known and has been the subject of much experimental and theoretical study in the past two decades (see, for example, Refs. 34 and 35). Three-body fragmentation usually occurs at the rate of a few events per thousand binary fissions; the third particle emitted is typically much smaller than either of the other two fragments, and the process is therefore often referred to as light charged-particle (LCP) fission.

Angular distributions of these light particles with respect to the fission axis indicate that they are emitted before the heavier fragments are able to attain any significant velocity, i.e., at or before scission. Alpha particles account for about 90% of these light particles followed in abundance by tritons, ⁶He, and protons. Nuclei as large as oxygen have been observed in LCP fission.³⁶ The emission of light particles appears to cost the fissioning system at least 25 MeV in potential energy,³⁵ composed of the loss in binding energy of the light particle, and the disturbance of the Coulomb energy repelling the two major fragments caused by the light particle between them.

The SF of ²⁵⁹Md might represent a special case of LCP fission in which the rate of emission of Z = 1

particles is greatly enhanced over the fraction of a percent observed for the SF of other nuclides.³⁷ If the path from saddle to scission in the SF of ²⁵⁹Md is sufficiently slow to permit the increasing influence of nucleon shells in the developing fragments (the adiabatic approximation), the preformation and subsequent emission of a Z = 1 particle might result in a path of minimum potential energy by which the residual fissile nucleus, now a heavy Fm isotope, could fission symmetrically into two Z = 50 fragments. Owing to the Coulomb potential energy removed by this charged particle, the fragment kinetic energies would be lower than those observed for the binary SF of ²⁵⁸Fm and ²⁵⁹Fm.

However, the LCP emission rate that we measured, 1 ± 4 light particles per 100 ²⁵⁹Md SF decays, was significantly below the frequency of ~50% required to explain the magnitude of the TKE deficit in the symmetric fission of ²⁵⁹Md. Our results provide no evidence that the LCP emission rate is significantly different from that which would be extrapolated from LCP emission rates already measured for some actinide SF emitters.³⁷ If the LCP emission rate for ²⁵⁹Md SF were enhanced to 50%, we would have observed about 40 light particles.

The two final explanations, the presence of a large amount of internal excitation energy and the presence of a large amount of fragment deformation energy, can be addressed together, since these two degrees of freedom are complementary in the fission process at the point of scission.

Schultheis and Schultheis have calculated limits for energy dissipated by the SF of ²⁵²Cf,³⁸ based on experimental measurements of energies of fission fragments, prompt neutrons and gamma rays, and calculated static fragment potential energies. These calculations show that, for symmetric mass division and under the assumption of reasonable fragment shapes, only about 20%, or 7 MeV, of the available excitation energy (33 MeV) is present as internal energy; the remainder is presumably deformation energy which is converted to internal energy as the fragments move apart from scission. Furthermore, Schultheis and Schultheis calculate maximum fragment deformations for ²⁵²Cf SF, which form a sawtooth-shaped curve with fragment mass, showing the expected trend of low deformation (high sphericity) for fragments with A = 130 - 132. It is reasonable to consider these shapes valid for fragments from the SF of ²⁵⁹Md; thus a distribution of available energy at scission for ²⁵⁹Md weighted heavily in favor of fragment deformation energy is implausible, because a larger portion of the mass division yields fragments near the region of minimum distortion for ²⁵⁹Md than for ²⁵²Cf. This means that the "average" total deformation of the fragments from ²⁵⁹Md SF at scission should be less than that of the fragments from ²⁵²Cf SF. This argument suggests, then, that a significantly larger portion of the excitation energy at scission available from the SF of ²⁵⁹Md (41 MeV at symmetry; 44 MeV overall) is present as internal excitation energy.

There is one important factor, however, which speaks against a low fragment deformation energy for ²⁵⁹Md SF, and that is that the measured TKE is only about 200 MeV. That this TKE is about 40 MeV lower than those of ²⁵⁸Fm and ²⁵⁹Fm indicates clearly that the scission configuration for ²⁵⁹Md cannot be as compact as those of ²⁵⁸Fm and ²⁵⁹Fm; the charge centers of the fragments at scission must be farther apart. This means that the fragments from ²⁵⁹Md SF must be more deformed than those fragments from the SF of ²⁵⁸Fm and ²⁵⁹Fm, even though the fissioning mass and the mass division are essentially the same. There is no readily apparent reason within the framework of current fission theory why the fragments from ²⁵⁹Md at scission should be considerably more deformed than those from ²⁵⁸Fm and ²⁵⁹Fm.

A resolution of the form of this excitation energy for ²⁵⁹Md might be obtained by performing experiments to measure the neutron-emission angular distribution for ²⁵⁹Md SF. If there is a large amount of internal excitation energy at scission, it would likely be dissipated through the emission of neutrons before the fragments have attained any significant velocity. These neutrons would be emitted isotropically in the laboratory frame of reference with respect to the fission axis. If, however, the energy were mostly deformation energy, it would not be dissipated through neutron emission until the fragments had achieved essentially their final velocities and, in the laboratory frame of reference, these neutrons would be strongly focused in the direction of the fission axis. Considering the small number

^{1a}E. K. Hulet, J. F. Wild, R. W. Lougheed, J. E. Evans,
B. J. Qualheim, M. Nurmia, and A. Ghiorso, Phys. Rev. Lett. <u>26</u>, 523 (1971).

- ^{1b}W. John, E. K. Hulet, R. W. Lougheed, and J. J. Wesolowski, Phys. Rev. Lett. <u>27</u>, 45 (1971).
- ²D. C. Hoffman, J. B. Wilhelmy, J. Weber, W. R. Daniels, E. K. Hulet, R. W. Lougheed, J. H. Landrum, J. F. Wild, and R. J. Dupzyk, Phys. Rev. C <u>21</u>, 972 (1980).
- ³E. K. Hulet, R. W. Lougheed, J. H. Landrum, J. F.

of atoms that can be produced, this is an exceedingly difficult experiment.

In sum, the SF decay of ²⁵⁹Md is principally symmetric, as is that of ²⁵⁸Fm and ²⁵⁹Fm, but the average TKE is about 40 MeV lower, about what one would expect from the systematics of TKE vs $Z^2/A^{1/3}$.^{39,40} The deficit in TKE at mass symmetry compared with that expected based on the fission properties of ²⁵⁸Fm and ²⁵⁹Fm is not caused by significant light charged-particle emission at scission, and is therefore most likely in the form of unusually large deformation or excitation energy.

It is possible, then, that the SF properties of 259 Md represent a transition from the highly symmetric, high-TKE fission of 258 Fm and 259 Fm back to asymmetric, low-TKE fission as Z increases beyond 100. The observed SF properties of 259 Md are not consistent with predictions based on fragment shell effects within the Strutinsky method. Finding a consistent fission model which is able to explain the SF properties of all three nuclei, 258 Fm, and 259 Md, is at this time an open challenge.

ACKNOWLEDGMENTS

The authors wish to thank the operating crew of the 88-inch Cyclotron at the Lawrence Berkeley Laboratory for performing the ¹⁸O bombardments. We wish to thank J. E. Bigelow of the Transuranium Element Production Program of the U.S. Department of Energy for the ²⁴⁸Cm target material used in these experiments, which was produced by the High-Flux Isotope Reactor at the Oak Ridge National Laboratory. We also wish to thank D. C. Hoffman and G. P. Ford of the Los Alamos National Laboratory for helpful discussions and for providing their data on the fission-fragment kinetic energies and neutron emission from ²⁵⁷Fm SF. Finally, we wish to thank A. Ghiorso and J. M. Nitschke of the Lawrence Berkeley Laboratory for their assistance during the early phase of this work.

Wild, D. C. Hoffman, J. Weber, and J. B. Wilhelmy, Phys. Rev. C <u>21</u>, 966 (1980).

⁵G. M. Ter-Akopyan, A. S. Iljinov, Yu. Ts. Oganessian, O. A. Orlova, G. S. Popeko, S. P. Tretyakova, V. I. Chepigin, B. V. Shilov, and G. N. Flerov, Nucl. Phys. <u>A255</u>, 509 (1975).

⁴Yu. Ts. Oganessian, A. G. Demin, A. S. Iljinov, S. P. Tretyakova, A. A. Pleve, Yu. E. Penionzhkevich, M. P. Ivanov, and Yu. P. Tretyakov, Nucl. Phys. <u>A239</u>, 157 (1975).

- ⁶Yu. A. Lazarev, O. K. Nefediev, Yu. Ts. Oganessian, and M. Dakowski, Phys. Lett. <u>52B</u>, 321 (1974).
- ⁷C. E. Bemis, R. L. Ferguson, F. Plasil, R. J. Silva, F. Pleasonton, and R. L. Hahn, Phys. Rev. C <u>15</u>, 705 (1977).
- ⁸C. E. Bemis, R. L. Ferguson, F. Plasil, R. J. Silva, G. D. O'Kelley, M. L. Kiefer, E. K. Hulet, and R. W. Lougheed, Phys. Rev. Lett. <u>39</u>, 1246 (1977).
- ⁹R. J. Silva, P. F. Dittner, M. L. Mallory, O. L. Keller, K. Eskola, P. Eskola, M. Nurmia, and A. Ghiorso, Nucl. Phys. <u>A216</u>, 97 (1973).
- ¹⁰W. D. Myers and W. J. Swiatecki, Nucl. Phys. <u>81</u>, 1 (1966).
- ¹¹B. M. Foreman, Jr., and G. T. Seaborg, J. Inorg. Nucl. Chem. <u>7</u>, 305 (1958).
- ¹²V. E. Viola and G. T. Seaborg, J. Inorg. Nucl. Chem. <u>28</u>, 697 (1966).
- ¹³P. A. Seeger and R. C. Perisho, Los Alamos National Laboratory Report LA-3751, 1967.
- ¹⁴P. A. Seeger, American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill, New York, 1972), Sec. 8, pp. 136 and 137.
- ¹⁵V. E. Viola, J. A. Swant, and J. Graber, At. Data Nucl. Data Tables <u>13</u>, 35 (1974).
- ¹⁶N. N. Kolesnikov and A. G. Demin, Joint Institute for Nuclear Research Report P6-9420, 1976.
- ¹⁷W. D. Myers, At. Data Nucl. Data Tables <u>17</u>, 591 (1976); H. V. Groote, E. R. Hilf, and K. Takahashi, *ibid.* <u>17</u>, 591 (1976); P. A. Seeger and W. M. Howard, *ibid.* <u>17</u>, 591 (1976); S. Liran and Zeldes, *ibid.* 591 (1976).
- ¹⁸V. E. Viola and G. T. Seaborg, J. Inorg. Nucl. Chem. <u>28</u>, 741 (1966).
- ¹⁹M. G. Mustafa and R. L. Ferguson, Phys. Rev. C <u>18</u>, 301 (1978).
- ²⁰R. W. Lougheed and E. K. Hulet, Nucl. Instrum. Methods <u>166</u>, 329 (1979).
- ²¹N. B. Gove and M. J. Martin, At. Data Nucl. Data Tables <u>10</u>, 262 (1971).
- ²²H. W. Schmitt, W. E. Kiker, and C. W. Williams, Phys. Rev. <u>137</u>, B837 (1965).
- ²³E. K. Hulet, J. F. Wild, R. W. Lougheed, P. A. Baisden, J. H. Landrum, R. J. Dougan, M. Mustafa, A. Ghiorso, and J. M. Nitschke, *Proceedings of an International Symposium on the Physics and Chemistry of Fission, Jülich, 1979* (IAEA, Vienna, 1980), Vol. II, p. 299.
- ²⁴M. G. Mustafa, Bull. Am. Phys. Soc. <u>24</u>, 848 (1979).
- ²⁵S. W. Cosper, J. Cerny, and R. C. Gatti, Phys. Rev. <u>154</u>, 1193 (1967).

- ²⁶W. Loveland, Phys. Rev. C <u>9</u>, 395 (1974).
- ²⁷G. M. Raisbeck and T. D. Thomas, Phys. Rev. <u>172</u>, 1272 (1968).
- ²⁸J. P. Balagna, G. P. Ford, D. C. Hoffman, and J. D. Knight, Phys. Rev. Lett. <u>26</u>, 145 (1971).
- ²⁹E. Comay and I. Kelson, At. Data Nucl. Data Tables <u>17</u>, 463 (1976).
- ³⁰D. R. Nethaway, University of California Radiation Laboratory Report UCRL-51640, 1974.
- ³¹A. J. Deruytter and G. Wegener-Penning, Proceedings of the International Symposium on the Physics and Chemistry of Fission, Rochester, 1973 (IAEA, Vienna, 1974), Vol. II, p. 51.
- ³²H. Nifenecker, C. Signarbieux, R. Babinet, and J. Poitou, Proceedings of the International Symposium on the Physics and Chemistry of Fission, Rochester, 1973 (IAEA, Vienna, 1974), Vol. II, p. 117.
- ³³D. C. Hoffman, G. P. Ford, J. P. Balagna, and L. R. Veeser, Phys. Rev. C <u>21</u>, 637 (1980).
- ³⁴I. Halpern, Annu. Rev. Nucl. Sci. <u>21</u>, 245 (1971).
- ³⁵R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic, New York, 1973), pp. 374-400.
- ³⁶J. B. Natowitz, A. Khodai-Joopari, J. M. Alexander, and T. D. Thomas, Phys. Rev. <u>169</u>, 993 (1968).
- ³⁷R. A. Nobles, Phys. Rev. <u>126</u>, 1508 (1962).
- ³⁸H. Schultheis and R. Schultheis, Phys. Rev. C <u>18</u>, 317 (1978).
- ³⁹J. P. Unik, J. E. Gindler, L. E. Glendenin, K. F. Flynn, A. Gorski, and R. K. Sjoblom, *Proceedings of* the International Symposium on the Physics and Chemistry of Fission, Rochester, 1973 (IAEA, Vienna, 1974), Vol. II, p. 19.
- ⁴⁰V. Viola, Nucl. Data <u>1</u>, 391 (1966).
- ⁴¹R. L. Walsh, J. W. Boldeman, and M. E. Elcombe, Proceedings of an International Symposium on the Physics and Chemistry of Fission, Jülich, 1979 (IAEA, Vienna, 1980), Vol. II, p. 129.
- ⁴²J. N. Neiler, F. J. Walter, and H. W. Schmitt, Phys. Rev. <u>149</u>, 894 (1966).
- ⁴³Yu. A. Barashkov, Yu. A. Vasil'ev, A. N. Maslov, E. S. Pavlovskii, M. K. Sareava, L. V. Sidorov, V. M. Surin, and P. V. Toropov, Yad. Fiz. <u>13</u>, 1162 (1971) [Sov. J. Nucl. Phys. <u>13</u>, 668 (1971)].
- ⁴⁴D. C. Hoffman, G. P. Ford, and J. P. Balagna, Phys. Rev. C <u>7</u>, 276 (1973).
- ⁴⁵J. E. Gindler, K. F. Flynn, L. E. Glendenin, and R. K. Sjoblom, Phys. Rev. C <u>16</u>, 1483 (1977).
- ⁴⁶U. Mosel and H. W. Schmitt, Nucl. Phys. <u>A165</u>, 73 (1971).