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Qualitative arguments are given to show that although first-order distorted-wave Born
approximation calculations are adequate for the treatment of single-nucleon transfer reac-
tions, there is little reason to trust them for two-nucleon or multinucleon transfer reactions.
A first-plus-second Born approximation calculation is presented for the Pb(' 0, ' 0) Pb

ground state transition, at bombarding energies below and slightly above the Coulomb bar-
rier. It is found that successive transfer (two-step) processes account for almost all the ob-

served cross section.

NUCLEAR REACTIONS Theory of one- and two-step contributions

to ' 'Pb("0 "0) Pb.

I. INTRODUCTION

Early analyses' of two-nucleon transfer data
with light iona involved simple generalizations of
the one-particle transfer first-order DWBA codes
then available. Because these generalizations did
not use a normalizable interaction, it was impossible
to use them to calculate absolute cross sections.
They were therefore limited to the calculation of the
shapes of angular distributions, or the calculation of
the relative cross section for the population of dif-
ferent final states in the residual nucleus. The first
attempts ' to calculate two-nucleon transfer cross
sections using a realistic, normalized interaction in
a DWBA calculation underpredicted the observed
cross section by factors of 3 to 10. Similarly, first-
order DWBA calculations of two-nucleon transfer
between heavy ions, performed with careful
treatment of recoil effects, also underpredicted the
cross section. Was this due to remaining uncertain-
ties in the one-step DWBA calculation (form fac-
tors, configuration mixing, optical potentials), or
was it due to the fact that the physical transfer pro-
cess involved multistep routes that were not includ-
ed in the one-step calculation'7 This is still a contro-
versial question.

One type of multistep route involves inelastic ex-
citation of the target, projectile, ejectile, or residual
nucleus. If such inelastic excitations are strong, it is
clearly important to include them, and this can
readily be done by replacing the optical model cal-
culations of DWBA by coupled-channels calcula-
tions. When we consider ground state transitions
for a spherical even-even target and projectile, such

inelastic multistep routes should be of minor impor-
tance. However, for two-nucleon transfer we also
have the possibility of a multistep route involving
two successive single-nucleon transfers. This is the
multistep process that will be investigated in this
paper.

Some workers have found that if they take suffi-
cient care in the treatment of the interaction and
bound states, they can account for the observed
cross section with a one-step calculation. ' Howev-
er, those who have attempted to calculate the con-
tribution of successive transfer processes" ' have
usually found them to make comparable or greater
contributions to the reaction amplitude than does
the one-step process.

The uncertainties in these calculations associated
with the optical potentials can be minimized by
considering bombarding energies below or at the
Coulomb barrier. Franey et al. ' studied the

Pb(' 0, ' 0) Pb ground state transition below
the Coulomb barrier and found that a one-step, fi-
nite range, full-recoil calculation underpredicted the
observed cross section by a factor of about 10.
They then used a semiclassical method' to estimate
the contribution of a process in which the two neu-
trons are transferred successively, and found that
the inclusion of this process brought the predicted
cross section close to the observed one. It was as-
sumed that the oxygen and lead nuclei move past
each other on a classical Coulomb trajectory, during
which time the two neutrons can make the transi-
tion from one well to the other. Of course, it would
be more satisfactory to have a fully quantum-
mechanical treatment of the successive transfer pro-
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cess. This is especially important for bombarding
energies at, or slightly above, the Coulomb barrier.
Here the classical trajectory brings the colliding nu-

clei close enough so that they are absorbed by the
imaginary part of the potential. It fails to include
the quantum mix:hanical refiection due to the
change in potential, even when the bombarding en-

ergy is over the Coulomb barrier. This effect can be
included by means of the Wentzel-Kramers-
Brillouin (WKB) method using complex turning

points.
In this paper we have investigated the effect of

successive-transfer processes within the framework
of the second Born approximation. We first present
some qualitative arguments to show that although
first-order DWBA is probably adequate for single-

nucleon transfer, there is little reason to expect it to
be adequate for two-nucleon or multinucleon

transfer. We then apply to the
20sPb('bO, 'sO) bPbs, reaction studied by Franey
et al. '9 a combined first-plus-second Born approxi-
mation analysis, and find that the second Born ap-

proximation terms contribute most of the transition
amplitude. The resulting cross section is in reason-

able agreement with the available experimental
data.

II. QUALITATIVE COMPARISON
OF ONE-STEP AND TWO-STEP TRANSFER

with

a =b+nl, B =A +ni (1NT)' (2a)

or

a =b+ nl+n2 B =A+nl+n2 (2NT) .

(2b)

In the post representation, the "exact" transition
amplitudes require the evaluation of the matrix ele-

ments

In this section we will present qualitative argu-

ments showing that one-step DWBA can be expect-
ed to be a poorer approximation for two-nucleon

transfer (2NT) than for one-nucleon transfer (1NT)
reactions.

We label the participants in the reaction in the
usual way

A +ash+8

TINT (~f (rBb)&(4 rA 1)kb(kb) I
u(rbl) I

q 1NT)

T2NT (~f (rBb)NB(CA rA1 rA2)'t'b((b)
l u(baal )+u(br2)1 +2NT )

2(~f (rBb)NB(CA Al A2)kb(kb)
l
u(&b])

~
q2NT) ~

(3a)

(3b)

In (3), ~p'1+2NT is the exact wave function, subject to
the boundary conditions appropriate to an incoming
A +a channel. gA and g» represent internal degrees
of freedom of the "core" nuclei 2 and b, and r„„
rA2, rb1, and rb2 locate the transferring nucleons
relative to the centers of the cores. Xf '(rBb ) is the
optical wave function of relative motion of B and b

in the final channel, and u (rb; ) is the interaction be-
tween transferring nucleon i and the core b. We
take u to have a Woods-Saxon shape,

u(r) =
r —R1+exp

q 2NT(DWBA) = (tA(KA ) j4(5b rb 1 rb2)

XX,'+'(r .), (4b)

(a)
n~b

exact wave functions ~p'+' in (3) by optical model
approximations to the elastic channel alone

+1NT(DWBA) =PA (4 )0 (kb rb 1)~' ( rA

(4a)

with depth and geometry appropriate to a shell-
model description of nucleus a. In particular, the
diffusivity parameter has a value of a =0.65 fm, so
that for r & 8, u (r) falls like exp( r /0 65 fm). — .

The first order Born approximation replaces the

FIG. 1. Schematic representation of two regions of
configuration space needed for the evaluation of the
one-nucleon transfer transition amplitude, T»T. The
region in which n I is far from b makes a smaller contri-

bution to T~~T because of the presence of U (rq &) in the
integrand (3a).
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leading to

TIN'P (Xf (&Bb)'4(4A ~31)kb(kb )
I

U «bl )
I 0~(4 )0.(kb bi }X'

T2N'/=2(X/ (re)pii((~, rgi, rg2)pb(gb)
~
u(rbi)

~
6(4)ilia(kb rbi rb2)Xi (~Aa)} . (Sb)

The adequacy with which T'"'~ approximates T de-

pends upon how well the elastic channel wave func-
tion (4) represents the exact wave function qI'+) in
the region of configuration space important for the
evaluation of the matrix element (3).

Figure 1 shows two regions of configuration
space included in the evaluation (3a) of TiNT The.
region illustrated by Fig. 1(a) resembles the incom-
ing channel. In this region we have the most reason
to expect that %'&NT is well represented by
%"iNT(DWBA). On the other hand, the region illus-
trated in Fig. 1(b} looks quite different from the in-
coming channel, and here we would expect that
%"&NT'(DWBA} is a poor approximation to qlINT.

Fortunately, the factor U (rb, }in (3a} implies that re-
gions with particle 1 far from b play a small role in
the evaluation of TiNr. Thus we have reason to ex-

pect that TiNg of (Sa) is a good approximation to
TiNT of (3a), since O', NT(DWBA} is a good approxi-
mation to 4'iNT' in the region of configuration space
that dominates the matrix element. In some cases it
may be important to improve this approximation by
adding to ql'iNT(DWBA) terms corresponding to ex-
cited states of a and/or A. This can be done by re-

placing the optical model calculation of X';+'(rz, )

by a coupled-channels calculation including inelas-
tic excitations of the A +a system.

Figure 2 shows two regions of configuration
space included in the evaluation (3b) of T2Nr. The
configuration of the incoming channel is represent-
ed by Fi(. 2(a), and here we would expect that VzNT
and VzNT(DWBA) are quite similar. As before, we
would not expect ViNT and VzNT(DWBA) to be
similar in the region of configuration space illus-
trated by Fig. 2(b), since particle 2 here is far from

b H.owever, there is no factor v(rb2) in (3b) to tell

us that configurations such as Fig. 2(b) are unim-

portant in the evaluation of TiNT. On the contrary,
since particle 2 is bound to A in the final state, the
region illustrated in Fig. 2(b) may be quite impor-
tant. Since we have little reason to believe that
qIzNT(DWBA) is a good approximation to VzNT

throughout the entire region of configuration space
important to the evaluation of T2NT, we have little
reason to believe that T2N'g is a good approxima-
tion to Tz&T.

We attempt to improve the approximation to
'P'AT by adding a term X to 0''iNT(DWBA), where X

Cc

(a)

nb0) (b)

FIG. 2. Schematic representation of two regions of
configuration space needed for the evaluation of a two-

nucleon transfer matrix element, TqNT. Since the in-

tegrand (3b) contains a factor v(rb&), but no factor
v (rb2), there is no reason to neglect the configuration in

which rb2 is large.

(b)

FIG. 3. (a) C, b, and n~ in "standard" configuration,
with ro. along the z axis, rb& in the x-z plane, and

( r b ~)„&0. (b) The result of applying rigid-body rotation
(a, Il, y) to the configuration of (a). Note that changing

y causes rb~ to rotate about the direction of ro. .
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gives a better description of the wave function in
the region shown in Fig. 2(b}. The calculation of X
is similar to finding the amplitude for transferring
particle 2 to target A in a one-nucleon transfer reac-
tion

A+a~c+C, c =b+n~, C=A+n2 .

The contribution of X to (3b) has the structure of a
two-step process, with u acting twice. The relative
contributions of 0"2~NT(DWBA) and X in (3b) de-

pends upon the tightness with which particles 1 and
2 are bound to each other and to the cores b and
A. ' If particles 1 and 2 are bound very tightly to
each other compared to their binding to b and A,
then the configuration represented by Fig. 3(b) will

have a very small amplitude, and T2NT will be dom-
inated by TiNii'. If this binding is not so great, the
regions of Figs. 2(a) and (b) may make comparable
contributions to T2NT, and then the approximation
T2NT-T2N'g will be poor. It is difficult to predict
a priori which regime is appropriate to the actual
physical situation. Most analyses of two-nucleon

transfer data reported in the literature have as-
sumed that T2NT T——zN'g. However, in those cases
where two-step contributions have been calculated,
they have been found to be significant. " ' This is
also the situation for the analysis of

Pb(' 0, ' 0) Pb reported in this paper.

III. DERIVATION OF FORMULAS

We assume that the a ground state consists of a
doubly-closed b core plus a zero-coupled pair of
neutrons. Similarly the A ground state consists of
two zero-coupled holes in a doubly-closed .8 core.
The low-lying single-hole states of C and single-
particle states of c are represented by

(gg, rg2, 02) and y,
' '(gb, rb], cr]), respective-

ly. The basic assumption of this work is that we
achieve a significant improvement to g'+' in the
configuration of Fig. 2(b) by including only the
lowest few single-particle states of c and single-hole
states of C:

~ ~

'PzNT=+zNT(DWBA)+ g &sea'(rcpt)[kc(4 &~2 o'2)kc'(fb rbi o'i)]a~
J'i ~J)
K,M

The vector r c, in (6) goes from the mass center of C ( =A +n 2 ) to the mass center of c ( =b +n i ). Our main
task is to find the functions ux~(rc, ) which describe the relative motion of C and c during the intermediate
stage of the two-step process. To accomplish this, we consider the related quantity fxbl( r c, ) defined by

~ ~

KM r Cc C c M 2NT rr Cc fixed

~ ~

=&[0c4,']M l
&'+'(&~a)6(4)da(gb rb 1~i rb2o2} &-„+iixM'(rc, ) .r Cc fixed

We can find a differential equation for f&M by taking the scalar product of the Schrodinger equation

2

(E —H)%2NT ——0= E Hc H, + —V-,——U( r c, ) —u (r,2) %2NT
(+) ~ 2 ~ (+)

2p c cc

with

[/cfog,

']br The result is.
P

(7b)

'+kc. ' — ' «rc. ) fxM(rc )= „, &[4c4'll lu(r. 2} lfzNT)-, „,„„ (9)

The use of the optical potential U( rc, ) to represent the interaction between c and A is consistent with the usu-
al procedures of one-particle transfer theory. We write the solution of (9) in terms of a Green s function,
G(rc„r c, ):

Cc
fz~ (rn)= f d 'rc G( err ct)&[4c4']M lu(r 2} lq'zNT')-„~r Ccrixed

(10)

To use (10) for the calculation of AM(rc, ), we require an approximation for 'PENT. Here we use the pres-
ence of u(rc2) in the integrand to conclude that VzNTDWBA of (4b} will be adequate for this purpose. This is
essentially a one-nucleon transfer matrix element, and DWBA should suffice. With this approximation, Eqs.
(10), (7b), (6), and (3b) can be combined to give
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T2NT= g C; (BA)C, (ii.,b)T2N'g(jf j;)+S, (B,C)S, (C A)S; (a,c)S (c,b)
JgJg

X [T2NT(Jf Ji } T2NT(Jf~Ji)] (1 la)

where

T2NF(Jf Ji} 2 2 I c d bid A 2[4 (rA1 +15 ( A2 +2)]o +f (rBb}
O)O2

X u (rb 1)[||'(rb1,o 1)lt("(rb2o2}]o, (1 lb)

Tp'T(jf, J',. )=2 g g J d'rc, d'rbld'rA2Xf (rBb}'[p' -(rA1 &1W '("'» ~2 ]o
E,M O), Op

I I
O), 0'2

0

Xu(r»)[lt( (rA2 o2)Q (rbl ol)]M

rc, r~2d ry],G ~c r cc
~ Ce fixed

X[1(' ( r A2 o2)$ (r Al o1)]M
4

X[lj'i'(r bl &I )ltd'(r b2 &2}]o&'+'(rA } (1 lc)

T2NT(Jf Ji } 2 g g f d rCcd rbld rA2~f (rBb)'[0 (rA1 &14' (rA2 &2}lo
K,N O), O2

I
O), O2

Xu(rbl)[$ (rA2 &2)Q (rbl, &1)]M

X f d rA2d rb 1 [ It (r A2 ~2K' (r bl ~1 }]M
~ G;fixed

X [e ( r b 1 +1 ) P ( r b 2 +2 )](X' ( r Ao } (1 ld)

e

Here CJ (B,A) is the spectroscopic amplitude for the addition of zero-coupled [g fg ]o to the ground state of
A to yield the ground state of B, and CJ (a,b) is the corresponding spectroscopic amplitude for the (a,b) pair.

SJ (c,b} is a one-nucleon spectroscopic amplitude for the addition of aj; nucleon to the ground state of b, lead-

ing to an angular momentum j; state of c, etc.
The nonorthogonality term T2NT is similar in structure to T2Ng, in that both (1 lb) and (1 ld) contain only

one interaction, u (rb 1 ), whereas T2NT of (1 lc) contains two interaction factors u (rb 1)u (r,'2 ). Gotz et al. ' have
shown that if a no-recoil approximation is made, and it is assumed that the interaction between the transferred
nucleons is negligible, then T2NT cancels T2N'g exactly. This is reasonable, since this limit is governed by a
Hamiltonian which is completely separable in the two nucleons, and the amplitude for two-nucleon transfer is
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just the product of the amplitudes for their separate transfer. Each amplitude contains an interaction, so the
two-nucleon transfer amplitude should contain no terms with only one interaction.

To evaluate (1 lc) we need a partial-wave expansion of the Green's function

Y'(r)Y' '(r')
G(r, r ')= g . , fI(k, r& )PI(k, r) ) . (12)

I
—ikrr'

,Nl

Here fI and PI are solutions of the homogeneous equation

d2

dr

1(1+1) 2Pcc
( ) k q ~( )

r

respectively, regular and irregular at the origin. At large r, P~ is purely outgoing. Summation over the spin
components and some algebraic simplification yields the following expression:

128i(pc, /fP) ( —1)f

4akBbkc [(2J +1)(2Jf+1)]'"

Xg(2K+1)((lf p )~ (1;—, )1,. I(lf1;)»( 2 2)p)»

exp(i [o'I+oI ])
X Yo«Bb)S»I, I(21+1)

(13a)

rcc rob

3 3
$»I I(rcc ) FI(rBb)

S»I I=f d ro.d rbIv(rbI) uIf(rcI)ui (rbI)

X[Y'(r~)Y'(rBb)]M [Y (rcI)Y'(rbI)]M, (13b)

fI (kc„r )PI (kc,r) ) F („„' )
~»I,I(rc )—=J„d rc d r~z

Cc fixed rcc r

Xu1 (rA2)ul1(re2)[ Y (r ~2) Y'(r ~2)]M*[Y'(r 'cc)Y'(r ~a )]M .f (13c)

Here FI(r) is the radial part of the 1th partial wave in the expansion of the optical wave function

X'+'(r„, )= gi'e 'F, (r„,)Y'(r„) (14a)

(kBb rBb) X I e FI(rBb)Y (rBb)Ym(kBb)
kBb "Bb

(14b)

and the o.'I' are Coulomb phase shifts. The quantity

((lf —,),. (1;—, )J, ~
(if1;)»(—,—, )p)»

is a j-j to L-S transformation amplitude, in an obvious notation. Note that the integrals in (13b) and (13c) are
both independent of M, since they are essentially scalar products of eigenstates of the total angular momen-
tum.

One further approximation has gone into the derivation of (13) from (ll). The function g~ (r~I, crI) inmf

(11c) has been replaced in (13b) by i(~ (r, &,
0.I). The justification for this approximation is that rz I and r, Imf c

differ by
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and the bound-state wave function iij~ changes by a small fraction of itself in this range. We must also make

a similar replacement of tp
'

( r bi, o2) by 1(j
'

( r,'2, oq). Notice that we do not attempt such "no-recoil" approx-

imations in the optical wave function X,'+'(rz, ), X~ '(rilb), fi(k, r(), or Pl(k, r) ). At the high relative mo-
menta associated with nucleus-nucleus collisions at tandem Van de Graaff energies, these functions are highly
oscillatory and no-recoil approximations are of doubtful validity. We have more confidence in the approxima-

tions made here, since they involve only the more slowly varying bound-state wave functions 1lj~ and p~~ .
Nfi Sly

The integrals in (13b) and (13c) are each six-dimensional. We can reduce them to thrm-dimensional in-

tegrals by using rotational invariance. Consider, for example, SKI I of (13b). Since it is independent of M, we
C

can sum over M and divide by 2' +1. The resulting M sum yields an integrand

1

2K+1
SKI,I("C ) F(rjib)

[Y'(rc.)Y'«Bb)]bi'[Y (rci»'(rbj)lbI
rc rBb ~= g

(15)

which is spherically symmetric. Now we note that any configuration of C, b, and n i can be reached by apply-
ing a rigid-body rotation to a configuration in which r& lies along the z axis and rb I lies in the x-z plane with

a negative x component (see Fig. 3). We choose the six variables a, p, y, 8, rbi, and rc, as new integration
variables for (13b). Since the integrand (15) is rotationally invariant, it is independent of a, P, y, so the a, P, y
integration simply yields a factor of Sir . Thus the six-dimensional integral reduces to a three-dimensional in-

tegral over 8, rb I, and rc, To .evaluate the integrand (15) for a given 8, rb I, and rc, we can use the "standard"
configuration of Fig. 3(a), since we know that the integrand has the same value for any orientation. The result
ls

86
Klc,l= 2~+1 M= —E

1/2

(l, lOM
l
KM)

4m

SKI,I("Cc) F~(rjjb )
X f rcc drccrbi drbisin8d8v(rbi}

'
ul (rci)ul (rbi)

rc, rBb f

X Ybi(rijb)~[Yr(rci)Y'(m 8,0)]M, — (16a)

where rijb and rci are obtained from rc„rb &, and 8 by

rBb = my+1 Ply +Bib+2 mg +@lb+2
rc + rb&cos0 z+ rb &

sin8x,
mz +2 (mb+ 1)(mq +2) (mb+. 1)(mq +2)

(16b)

P?lb Pl b ~ Arc]= rc- rb i cos8 z- rb ) sln8x
mb+1 mb+1

(16c)

For computational purposes, the vector-coupled quantity in (16) can be expressed in terms of the generalized
spherical harmonic addition theorem described in Appendix 2 of Ref. 5. The remaining three integrals in
(16a) were evaluated by Gaussian quadratures. A similar analysis was applied to reduce sKI l(rc, ) of (13c) to

1/2

SKI l(rc )= X (lclOM
l
EM)2&+1 ~= x

'

fj (kc„r( )Pl (kc„r) ) p („„)
X rc, 'drc, r&2 'dr„'2d cos8'

Cc fixed rc, r

Xv(rc'z)uj&(F2)ui (rc'2)[Y (r ~2) Y'(r cz)]iu Ybj(r „',), (17a)
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TABLE I. Single-particle spectroscopic amplitudes. If
these are used together with normalized single-neutron

radial functions calculated in the Woods-Saxon wells

specified below, the resulting asymptotic tails wi11 be con-

sistent with those measured by Franey et al. in their

study of sub-Coulomb single-neutron transfer. The wells

have the form

1 d
V(r) = —Vof (r,R,a) — V„mc "rdr

)&f(r, R,a)1 o,

f(r, R,a)=[exp((r —R)/ }a+1]

For the oxygen systems, V„=6MeV, a =0.65 fm, and

E =1.243 ' ' fm. For the lead systems, V„=7 MeV,

a =0.65 frn, and R = 1.30M ' ' fm. In all cases, V0 was

adjusted to yield the observed single-neutron separation

energy.

rAa=
mg —1 mg +I?Ig

rc~ — F2 cosO z
m, (m&+1)

Ply +mg
r„'2 sin8' x . (17c)

m, (mz+ I )

To evaluate T2NT(jf j; ), we note that (1 ld) can be
obtained by replacing

2pcc
G(rcc r cc) 2 u(rc2)

$2

in (1lc) by 6(r« —r c, ). Then if we compare the
part&ai wave e&pansion of the 5 function with (12),
we see that (16) and (17) can be used to obtain

T2NT(jf,j; ) if we simply replace

u(rc2)fi (k„,r& )I'i (k„,r, )

in (17a) by

where

Nuclei

(18O 17O)

(18O l7O)

(17O 16O)

(17O 16O)

(208pb 207pb)

(208pb 207pb)

(208pb 207pb)

{207pb 206pb)

(207pb 206pb)

(207pb 206pb)

5+
2

+
2

5 +
2
1+
2
1—
2
5—
2
3

2
1—
2
5—
2
3

2

0.901

0.344

0.937

0.950

0.957

0.861

0.875

0.720

0.368

0.546

Q2
ikc — @rc,—rc )

27?2

The calculation of the nine-dimensional integral

TzN'g(jf j;) of (lib) was performed using the
methods of Ref. 6.

DeVries, Satchler, and Cramer have pointed out
thai it is more correct to use

u(r»)+u(rbz)+ V '"'(rzb) —V '"'(riib)

as the interaction in (3b). In all the calculations re-
ported here, this Coulomb recoil correction has been
included. Since our application is to a neutron-
transfer reaction, the effect of this correction is
small.

IV. APPLICATION
TO 206pb(16O 18O )206pb

AT E1,b ——69, 73, AND 86 MeV

r 2= — rc + cos0' z
mg+1

mg
fg2 sing X )

mg+1

The potential used for the calculation of the opti-
cal parameters was of Woods-Saxon shape, with
real well parameters V= —6S MeV, ro ——1.3S fm,
a =0.34 fm, ro, ——1.30 fm, and volume imaginary

TABLE II. Comparison of calculated relative partial cross sections at 0=157. For each
encl gy o p is normalized to 1 .0. The first number is o.

J J from the one-step calcula-
1/2 ~3/2 JfJf

tion. The number fo11owing it in parentheses is the corresponding o.
J J from the one-step-
J]Jf

plus-two-step calculation.

Energy
(MeV)

69
73
86

5/2 ~ l /2

0.150 {0.177)
0.118 (0.172)
0.090 {0.120)

5/2 ~3/2 5/2 I5/2 os
1/2 ~1/2 1/2 ~3/2 1/2 5/2

os os

0.094 (0.091) 0.147 (0.185) 0.5 (0.671) 1.0 (1,0) 0.171 (0.207)
0.047 (0.086) 0.170 {0.231) 0.5 (0.674) 1.0 (1.0) 0.194 (0.229)
0.043 (0.045) 0.177 (0.298) 0.5 (0.602) 1.0 (1.0) 0.116 {0.261)
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FIG. 4. Comparison of calculated differential cross sections and experimental data. The dashed lines give the result of
the one-step calculation, and the solid lines the result of the one-step-plus-two-step calculation. The data are from Refs.
21 and 22.

well parameters 8' = —45 MeV, ro ——1.34 fm,
a =0.33 fm. These parameters give a good account
of the observed elastic scattering angular distribu-
tions '

The optical parameters used for the calculation of
the optical wave functions needed in (16) and (17)
are given in Table I. They give a good account of
the observed elastic scattering angular distribu-

tions. ' At 69 and 73 MeV, these angular distri-

butions differ little from the Rutherford scattering
law over the entire angular range: At 86 MeV, the
Rutherford scattering law is obeyed out to about
100'. Thus the 69 and 73 MeV ' 0 projectiles are in

the sub-Coulomb range, and the optical wave func-

tions used in (16) and (17} will be almost pure
Coulomb wave functions. The 86 MeV wave func-
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tions will differ somewhat from pure Coulomb
wave functions, and this makes our 86 MeV calcu-
lation somewhat less reliable.

The classical distances of closest approach of the
' 0 and Pb are 14.7, 13.9, and 11.8 fm at ' 0
bombarding energies of 69, 73, and 86 MeV, respec-
tively. The sum of the nuclear radii
[1.3X(16' +208' )] is about 11 fm. Thus we ex-

pect the transfer to take place when the neutrons
are in regions governed by the exponential tails of
their bound state wave functions. What is required
in (11) is the product of a one-nucleon-transfer
spectroscopic amplitude times an asymptotic
bound-state wave function for each of the four pairs
(B,C), (C,A), (a,c), and (c,b). These same products
are required in sub-Coulomb one-nucleon transfer
studies, and have been measured by Franey, Lilley,
and Phillips ' for all the cases needed here. The
spectroscopic amplitudes given in Table I, used in
conjunction with the bound-state wave functions
calculated in the well specified in the caption of
Table I, will give SP products that agree with the
measurements of Franey, Lilley, and Phillips. Thus
the bound state aspect of the two-step two-nucleon
transfer process is uniquely determined by one-
nucleon transfer data, at least at sub-Coulomb ener-
gies. Unfortunately, we have no such assistance in
determining the one-step spectroscopic amplitudes

CJ (B,A) and CJ (a, b) needed in (1 la), or the bound

state radial functions needed there. We have to rely
on the results of shell-model calculations ' for the
spectroscopic amplitudes. We take these to be

C5g2( 0, 0)=0.893, CIg2( 0, 0)=0.450,

(208Pb 206Pb) 0 769

C~g2( Pb, Pb) =0.477,

and

Cq~q( Pb, Pb) =0.426 .

We have calculated the single-nucleon radial wave
functions using the same well geometry as was used
for T2N+, choosing the depth of the well to bind
each nucleon with half the two-neutron separation
energy. It has been shown by Kunz et al. and
Feng et al. ' that this may underestimate T2N'g by
a factor of the order of v 2, compared to a calcula-
tion in which the two-nucleon tail is treated more
carefully. It will be seen in the next section that
such a factor will not change the essential con-
clusions of this paper.

The range of relative angular momentum I values
included in the partial wave sum in (13a) was zero

to 69, 74, and 84 for bombarding energies of 69, 73,
and 86 MeV, respectively.

Figures 4(a) —(c) show calculated angular distri-
butions and available experimental data. ' At 69
MeV, the measured 157' differential cross section is
1.8+0.4 pb/sr. The one-step calculation yields 0.12
pb/sr, too small by a factor of 15. When one- and
two-step contributions are added together, the result
is 1.15 pb/sr. This is still somewhat smaller than
the measured value, but it is probably as close as we
could reasonably expect to come considering the
limited set of oxygen and lead configurations we in-
cluded. However, our calculation shows that at this
angle, and over the entire angular range shown in
Fig. 4, the two-nucleon transfer process is dominat-
ed by the two-step component. The situation is
similar when the bombarding energy is 73 MeV.
Here the measured 157' differential cross section is
11.5 pb/sr, compared to the one-step calculated
value of 0.55 pb/sr. The one-plus-two step calcu-
lated value of 7.9 pb/sr is smaller than the data by
about the same factor (0.7) as for the 69 MeV case.

At a bombarding energy of 86 MeV, which is
over the Coulomb barrier, the cross sections are
larger and the data are more plentiful. Figure 4(c)
shows that our one-plus-two-step calculation gives a
rather good representation of the absolute magni-
tude of the differential cross section over the entire
measured angular range. Our calculation under-
predicts the data points by about a factor of 2 for
0, (130'. We have noted that the 86 MeV case is
the only one we have studied where there is sensi-
tivity to optical potentials, and this may account for
part of the discrepancy. Figure 4(c) shows that the
one-step calculation underpredicts the cross section
by about a factor of 40.

If the nonorthogonality terms Tzzz had been
omitted from (1 la), the effect on the solid curves of
Fig. 4 would have been to raise them by about 15%%uo.

Thus there is rather little overlap between the two
terms used in (6) to approximate the exact wave
function.

Much of the information that has been extracted
from one-step analyses of two-nucleon transfer data
has relied upon predictions of the relative cross sec-
tion for transfer into or out of different single-
particle states. Thus it is of some interest to ascer-
tain whether inclusion of two-step contributions af-
fects these predictions of the relative cross section.
This information is summarized in Table II. The
notation oJ J refers to the 157' differential crossJ;Jf
section for transfer from a pure (j; ) + state in ' 0
to a pure (jf )

+ state in Pb. Since we are in-
terested here in ratios, the o.

J J have been renormal-Jt.Jf
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ized to make 0, z
——1. It is clear from the com-

s1/2 P1/2

parison presented in Table II that at each energy,
the pure one-step calculation predicts relative OJ.J
in rather good agreement with those predicted by
the one-plus-two-step calculation. This observation
has also been made by Feng et al. ' Thus we find
no reason to question spectroscopic conclusions that
have relied on ratios computed with one-step codes.

2p Vp
coska

ikA
(20a)

Here p is the reduced mass and k is the wave num-

ber. To get the Born series for r, it is sufficient to
expand (19) in a power series in Vo. The first two
terms in this expansion are

V. CONCLUSIONS

2
2p Vp

ikfi
1

coska +—sinka
2

The transfer of two neutrons in the
Pb(' 0, ' 0) Pb ground state transition occurs

predominantly by a two-step mechanism. This is
equivalent to the statement that the transition am-
plitude is dominated by a region of configuration
space where the first-order Born approximation
provides a poor approximation to the exact wave
function. It is thus important to improve the ap-
proximation to the wave function before we calcu-
late the transition amplitude. Our main assumption
is that we get a useful improvement by including
components corresponding to the relative motion of

Pb and ' O in low-lying single-particle states.
This seems to be a reasonable assumption, and is
supported by the fact that our calculated one-plus-
two-step cross sections are fairly close in absolute
magnitude to measured values over an energy range
of 69 to 86 MeV (which spans the Coulomb bar-
rier). We emphasize that we do not imply that
first-order DWBA provides an inadequate approxi-
mation to the wave function everywhere in configu-
ration space. We believe it to be adequate in the re-
gion required for one-nucleon transfer, but not in
the region required for two-nucleon transfer.

An example of a simple system that exhibits a
similar one-step versus two-step behavior is provid-
ed by one-dimensional scattering in a double 5-
function potential:

a a
V(x)=VO 8 x ——+5 x+—

2 2

The amplitude of the reflected wave is easily shown
to be

(20b)

If 2p Vo/fink && 1 and ka is not too near
(m + I/2)ir (m =0,1,2, . . .), then r is approximate-
ly given by the first Born term (20a). If ka is near
(m + 1/2)m, (20a) can be smaller than the
sinka term in (20b). Higher orders of the Born ap-
proximation are reduced by additional powers of
2pVO/A k. Thus, whether or not ka is close to
(m+ I/2)ir, the two terms (20a) and (20b) should
provide a good approximation to r, and it is not
necessary to go beyond second order. Of course this
one-dimensional potential problem is much simpler
than the transfer reaction considered in this paper.
However, it does illustrate a situation in which both
the first and second Barn terms contribute, and in
which the second Born term dominates and pro-
vides a good approximation to the exact scattering
amplitude.

All the calculations in this paper have referred to
a particular two-neutron transfer reaction, over a
limited energy range. Clearly, we are not entitled to
infer the dominance of multistep processes for all
other multiparticle transfer reactions. However, we
believe that the qualitative discussion of Sec. II
strongly suggests that multistep processes will al-
ways be of importance in multiparticle transfer re-
actions, even if they are not dominant. Our calcula-
tion in the particular case studied here, and calcula-
tions by other workers in this field, appear to sup-
port this contention.

ACKNOWLEDGMENTS

2p Vp

ikfi 2pV
ikA

pVp
[1

—2ika~

kA

(19)

2
pVp

coska +i sinka
kA We are grateful to M. A. Franey for useful dis-

cussions throughout the course of this work, and to
J. S. Lilley for permission to refer to his unpub-
lished 86 MeV data. This work was supported in
part by the U.S.D.O.E. under Contract No.
DOE/DE-AC02-79ER-10364.



1520 B.F. BAYMAN AND JONGSHENG CHEN 26

'Present address: Institute of Nuclear Energy Research,
Lung- Tan, Taiwan.

N. K. Glendenning, Annu. Rev. Nucl. Sci. 13, 191
(1963);Phys. Rev, 103, B102 (1965).

R. M. Drisko and F. Rybicki, Phys. Rev. Lett. 16, 275
(1966).

3B. F. Bayman and N. M. Hintz, Phys. Rev. 172, 1113
(1968);

4B. F. Bayman, Phys. Rev. Lett. 25, 1768 (1970); Nucl.
Phys. A168, 1 (1971).

~B. F. Bayman and D. H. Feng, Nucl. Phys. A205, 513
{1973).

~B. F. Bayman, Phys. Rev. Lett. 32, 71 (1974).
7T. Tamura, T. Udagawa, and K. S. Low, Phys. Lett.

48B, 285 (1974).
8T. Takemasa, Phys. Rev. C 13, 2343 (1976).
A. J. Baltz and S. Kahana, Phys. Rev. Lett. 29, 1267

(1972).
M. A. Nagasajan, M. R. Strayer, and M. F. Werby,
Phys. Lett. 68B, 421 (1977).

~ 'M. Igarashi and K.-I. Kubo (unpublished).
N. B.deTakacsy, Phys. Rev. Lett. 31, 1001 (1973).
D. H. Feng, T. Udagawa, and T. Tamura, Nucl. Phys.

A274, 262 (1976).
N. Hashimoto and M. Kawai, Prog. Theor. Phys. Jpn.
59, 1245 (1978).

~~T. Takemasa and H. Yoshida, Nucl. Phys. A304, 229
(1978).
T. Kammuri, Z. Phys. A 287, 85 (1978).

7V. Managoli, D. Robson, and L. A. Charlton, Nucl.

Phys. A290, 128 (1977).
V. Gotz, M. Ichimura, R. A. Brogli, and A. Winther,

Phys. Rep. 16C, 115 (1975).
'~M. A. Franey, B. F. Bayman, J. S. Lilley, and W. R.

Phillips, Phys. Rev. Lett. 41, 837 (1978).
R. M. DeVries, G. R. Satchler, and J. G. Cramer, Phys.
Rev. Lett. 32, 1377 (1974).
M. A. Franey, J. S. Lilley, and W. R. Phillips, Nucl.

Phys. A324, 193 (1979).
J. S. Lilley (private communication).
W. W. True, Phys. Rev. 168, 1388 (1968).

~4T. Engeland and P. J. Ellis, Nucl. Phys. A144, 161

(1970).
~~P. D. Kunz, J. S. Vaagen, J. M. Bang, and B. S. Nilsson

{unpublished).


