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The nucleons taking part in heavy ion reaction are considered as a three-component
fluid. The first and second components correspond to the nucleons of the target and the
projectile, while the thermalized nucleons produced in the course of the collision belong to
the third component. Making use of the Boltzmann equation, hydrodynamical equations
are derived. An equation of state for anisotropic nuclear matter obtained from a field
theoretical model in mean field approximation is applied in a one dimensional version of
the three-component fluid model. The speed of thermalization is analyzed and compared
to the results of cascade and kinetic models.

NUCLEAR REACTIONS Relativistic heavy-ion reactions, hydro-
dynamic description.

I. INTRODUCTION

In recent years the hydrodynamical model was

applied successfully for the description of energetic
heavy ion collisions. Owing to the assumption of
immediate local equilibration, however, the collec-
tive flow arising from the high local pressure is
somewhat overestimated in the model, while the
conversion of kinetic energy into thermal excita-
tions is inhibited, and hence insufficient entropy is
produced. ' This entropy deficiency can be
remedied to some extent by including viscous pro-
cesses, ' but in the initial phase the deviations from
local equilibrium are not small as it is assumed in
viscous hydrodynamics. It was already pointed
out that the assumption of immediate local ther-
mal equilibration may cause these deficiencies in

the one-fiuid hydrodynamical model. The first at-

tempt to introduce a two fluid hydrodynamical

model was made by Nix and his colleagues. This
modification improved the agreement of the results

with experimental ones at high energies. However,

the two fluids maintained their identity during the
first part of the collision process, leaving no room
for real thermalization. The development of such a
thermalized matter is important unless the
nucleon-nucleon cross sections are extremely for-
ward peaked (above 5 GeV/nucleon), and therefore

the scattered particles cannot lose their distinguish-

ing longitudinal momenta in a few collisions. In

fact, collective scattering effects like critical fluc-
tuations may even at higher energies favor thermali-
zation.

In the hadron chemistry model' the development
of this third thermal component was taken into ac-
count, but collective effects like collective flow
evolving from the interaction and pressure were
neglected in the first nonthermalized stage of the
collision. In another similar approach, the ther-
malization and shock front formation was analyzed
in a one-dimensional many fluid model.

The process of thermal equilibration was studied

by McLerran, "
by Cugnon et al. in a cascade ap-

proach, and by Randrup, ' Pirner and

Schurmann, ' and Danielewicz' in spatially homo-

geneous kinetic models, where the initial momen-

tum distribution consisted of two identical dis-

placed Fermi spheres. In the latter two calculations
the time development of the whole momentum dis-

tribution was determined by solving the Uehling-
Uhlenbeck transport equations, and rapid thermali-
zation (t=4 8 fm/c) was —found especially at lower

beam energies. At higher energies the peaks around

the initial position of target and projectile momenta
maintained their position longer, and their ampli-
tude was slowly decreasing while a thermal back-
ground component was evolving.

In the above mentioned kinetic models' '" the
spatial distribution was not considered. In princi-
ple, the cascade models ' ' should be a reasonable
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framework to describe the nucleon distributions.
However, the neglections (e.g., long range interac-
tions, triple or multiple collisions, assumed
minimum of the nucleon free path) in the presently
existing cascade models, inhibit the approach to-
wards local equilibrium. Consequently, the collec-
tive processes are underestimated in these models.

A sophisticated multiple collision model was

developed recently by Malfliet, ' where the
Boltzmann transport equation is solved both in

space and momentum variables. The components
reaching different levels of thermalization were
treated separately. However, this model suffers also
from the problem of the kinetic theories that multi-

ple collisions and long range interactions cannot be
considered and so the collective effects are underes-

timated.
In the present work we try to incorporate both

equilibrium and nonequilibrium aspects into a uni-

fied model; (i) the development of a thermalized
matter component produced by the collisions, and
(ii) the collective hydrodynamical motion of the
thermalized and nonthermalized matter com-
ponents.

We start from kinetic theory, but derive an ap-

proach which can be generalized to include physical
properties of the real nuclear matter instead of
those of an ideal gas. Hence, we will not be limited
to the assumptions of the Boltzmann equation and
dense systems may also be studied. In Sec. IIA the
two- and more-fluid hydrodynamical approaches
are discussed and their connection to the transport
theory is shown. From the possible approaches a
simple version is selected in Sec. IIB. It describes
locally the gradual thermalization of the projectile
and target nucleons. For this purpose at least a
three-fluid hydrodynamical approach is necessary.
In Sec. III the source terms of the three-fluid model

are derived for an ideal nucleon gas, while in Sec.
IV the source terms obtained in a relativistic mean
field theory are discussed and extended to nonzero
temperatures, and viscous and heat conductive pro-
cesses. In Sec. V the results of a one dimensional
test calculation and their consequences are present-
ed.

port theory. Our model is based on this theory, but
later we may include other ingredients (quantum
and relativistic effects, long range interactions, etc.)

as it is usually done in the derivation of the Euler
and Navier-Stokes equations.

Let us suppose that the collision of two heavy
ions at time t can be characterized by the nucleon
distribution function in the p-space: f(~,~, t), nor-
malized to the density

n(~, t)= fd v f(~,~,t) .

The time development of this distribution function
is determined by the Boltzmann transport equation
(external and long range forces are neglected)

[8,+(~.V)]f(~,~, t) =C(~,~, t) .

%herever the operator 8, or V appears it acts on all
quantities on the right in the same term. The col-
lision term C(~,~, t) is defined as follows:

C=
~ f d v)d v)d v

X[f(, ', t)f(, ),t)w(~', ', ~~, ))

f(~,u, t)f—(w, c ~, t) W (c,c
~ ~

c,c
~ )] .

Here the transition rate of the nucleon-nucleon elas-
tic collisions is denoted by w(~, ~&

~

~', ~~). If we
multiply Eq. (1) with a quantity X(u) which is con-
served in the microscopic collisions (mass, momen-
tum, and kinetic energy), and calculate the local ex-
pectation value of the equation by integrating over
d3v, the right hand side (collision integral) of the
equation vanishes for any distribution function

f(~,~,t). The equations obtained this way will have
a simple structure. Setting the X(~) equal to m,
m ~, and m

~

r —~
~

/2, where

~(~, t) =(~)=1/n fd v uf(~, v, t)

is the average flow velocity, we get a set of equa-
tions equivalent to the hydrodynamical ones:

[8,+(V. )]p(,t)=O,

[a, +(V.-)](p(-,t)-)= —(V ~),

II. THE MULTICOMPONENT FLUID DYNAMICS

A. The equations of a multicomponent
nonthermalixed fluid

The simplest theory which describes the above
mentioned processes is the Boltzmann kinetic trans-

[8,+(V. )]E(,t)= —(V ~)—(A:P),

where p(~, t) is the total mass density, p(~, t) =mn,
e(~, t) is the energy density without the rest mass,

e(,t)= —m(
~

—
~

)/2,

y(~, t) is the heat flux (multiplied by the rest mass),
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y(~, t) =p((~ ~)
~

—~—~
~

)/2,
P'J(~, t) is the pressure tensor (superscripts are spa-
tial indices),

P'J(, t)=p((v' —u')(vj —u ))
—P((I II)o(I, II)) ~

and in the last equation the tensor A'J(~, t) contains
the derivatives of the collective flow velocity,

A' (J~, t) =(Bju'+B;u~)/2=[V ~],y

(V P) is a vector whose ith component is X/B~P'J
and

(A:P)=X;JA'JP'J .

Boltzmann) distribution fo, then Eqs. (3) reduce to
the Euler equations of the hydrodynamics. If the
distribution f is close to a local equilibrium distri-
bution the quantities P'J and y can be evaluated and
the Navier-Stokes equations are obtained.

When the system is far away from the thermal

equilibrium, in some cases, as it will be shown, it is
useful to decompose the distribution function of the
indistinguishable particles in the following way:

(4)

The type and number of components f; depend on
the specific physical problem to be discussed. On
the basis of the Boltzmann equation, a coupled set
of equations may be introduced as

These equations are valid for any distribution

f(~,~, t) If we. suppose that the momentum distri-
bution is a locally thermalized (Maxwell-

[i),+(~.V )]ft(~,~, t) =Ct(~, ~, t),

where the collision terms C; are defined by

(5)

C;= 2XJk Jd'vid'v'id'v'[fj(~, ~', t)fk(~, ~i, t)w;(~, ~i ~, i) &Jfj(~,~, t—)fk(~, ~i, t)w(~, ~i ~, i)] .

Here the partial transition rates w;(~', ~i
~

~,~i) give
the transition probability to the final state, charac-
terized by the velocities ~ and ~], under the condi-
tion that the nucleon of velocity ~ belongs to the
component f;(~,~, t) after the collision. Since the
particles are indistinguishable, the transition proba-
bility is independent of the initial components. If
the sum of the partial transition rates is equal to the
total one, i.e.,

Xtwi(II pIIi
i

IJ"III'i ) —w (CJ" III'i
i
IIIII'i)'

then the sum of the solutions of the coupled set of
equations (5) satisfies the original Boltzmann equa-
tion.

If one wants to solve the Boltzmann equation in
its full complexity then, of course, it is better to use
the single equation instead of the coupled set of
equations. If we want, however, to solve the prob-
lem only approximately, e.g., by the method of mo-
ments, then the decomposition of the distribution
function may be useful because in this way the
lowest order moments of the distribution function

f;, namely the density, the flow velocity, and the
energy density, may carry information about the
system which otherwise is contained only in the
higher order moments of the distribution function
f. On the other hand, by the decomposition of the
distribution function f we can introduce physically

plausible assumptions which cannot be formulated
at all if we use the original Boltzmann equation.

The partial transition rates are uniquely defined
only if the distribution functions f; do not overlap
with each other. In the heavy ion collisions, howev-

er, this is not the case, and therefore, the decompo-
sition of the total transition rate is arbitrary. It
should be noted, however, that the decomposition of
the distribution function f into components f; is
also completely arbitrary. The decomposition is de-

fined by the prescription of the partial transition
rates, by the initial conditions, and by the assumed

functional form of the component distributions f;.
This mathematical freedom gives us the possibility
of introducing the appropriate physical assump-

tions, reflecting the specific features of the physical

system studied.
Now we derive hydrodynamical equations for the

multicomponent fluid. Similar to the way Eq. (3) is

obtained' but starting from Eq. (5) we end up at
the following set of equations:

[B,+(V ~;)]n;= JC;d'v,

[Q, +(V a;)]n;a;= (V P;)/ +mJC;v—d v,

[8,+(V;)]e;= (V-tt; ) (A;:P;)— —

+ J Cm(~ —u;) /2d v,
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where the notations are defined as follows: the par-
tial particle number density

n;(~, t)= ff;(~,~,t)d v,

the flow velocity

the energy density

e;(~,t)=m((~ —u;) &;/2,

the pressure tensor

P;(~,t)=mn;((~ —a;) (~—a;)&;,

the heat flux

g;(~, t)=mn; &(~ ~;)
~

~——;
~

&;I2,

and finally the derivative tensor of the flow velocity

At(~~t)=[V ut( ~ )]sym.

In contrast to the case when the original
Boltzmann equation is used, the collision integrals
standing on the right hand side of Eqs. (8) do not
vanish. These collision integrals are responsible for
the mass, momentum, and energy transfer among
the components. These equations can be considered
as the generalization of the conventional hydro-
dynamics for a multicomponent fluid. The main
field of the application of this theory is the analysis
of nonequilibrium processes, where the characteris-
tic time of local equilibration and that of the collec-
tive flow are of the same order of magnitude.

In order to avoid misunderstanding it is necessary
to emphasize that the multicomponent fluid is

essentially different from the mixture of different
fluids where the particles are physically distinguish-
able (e.g., proton and neutron fluids). In this latter
case the particle transport between different fluids
is not possible, hence the hydrodynamical equations
describing such a system are somewhat simpler. '

The multicomponent fluid dynamics seems to pro-
vide an appropriate tool to follow the process of the
thermalization which is rather difficult in the
framework of the conventional two-fluid dynam-
ics"

A serious problem arises, however, in this
separated multicomponent fluid dynamical ap-
proach when we want to generalize the source terms

by including the long range interactions, ' ' viscous
and heat conducting processes. In this case the
source terms are not separable any more (see Sec.
IV). Nevertheless, in Sec. IIB we shall overcome
this difficulty.

A clear and simple separation of the Boltzmann
equation was introduced by Malfliet in the multiple
collision model. ' The distribution function was

separated into an infinite number of components.
A given component i contained the particles scat-
tered i times and so the transition probabilities w;
could be evaluated in a straightforward way. How-

ever, to handle this infinite set of separated
Boltzmann equations additional simplifying as-

sumptions had to be applied and so the spatial and
time variations of the system could be studied only
in a limited way.

In order to analyze the structure of Eqs. (8) let us

express the collision terms in the usual manner with
the help of the effective cross section of the elastic
scattering and the relative velocity'

C = fd u, dQXJk ~w —w)
~ [fj( ', t)fk(, ),t)o (Q)—5jfj(,~ t)fk(~, ),t)o'(Q)] (9)

If we assume that in the collision integrals the product of the cross section and the relative velocity can be re-
placed by a mean value defined as

ff;(~,~, t)fk(~, ~» t)cr(Q)
~

~—~(
~

d Q d u, d'u
(ov,.i &ik

=—

ff;(~,~, t)fk(~, ~»t)d ud v~

then the collision term can be written as

C;=X,k (o;v«~ &,k fd'u& fj(~,~', t)fk(~, ~I, t) 8;;(tru«~ &p, f—d uifj(~~~~t)fk(~~~» )

This approximation has the advantage that Eqs. (8) can be written in a simple and self-explanatory separated
form
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[Bt+(V tt;)]n;=Xzk[(o;v„1)jknjnk —5tj(cru„1 )jknjnk],

[t)t+(V tti )]nitti ~jk[(triurel )jknjnk(ttj+ttk )/2 —|1&(trvtei )jknjnkut ]—(V Pi.)/m
[8,+(V;)]e;=Xjk[(tr;u, d )jk(& nk+ekn )/2 —5; (ov„,i &,kn, E, ] (A—:P; ) (V—y; ) .

(12)

In this approximation, as it is seen from the second
and third equation of (12), the removal of a particle
from a given component is associated with the re-
moval of the average value of the momentum and

energy, thus keeping the momentum/particle and
energy/particle ratio of this component unchanged.
However, the momentum/particle and energy/
particle ratio of the component into which the par-
ticle is scattered will be changed.

B. Three-component fluid dynamics
for heavy ion reactions

[a, +(v )]p(,i)=0,
[t), +(V )](p(,r) )= (V P—),
[t)t+(V ~)]e(~,t) = (V.g—) (A:P—),
[Bt+(V ~;)]n;=fCd'u,

[B,+(V;)]n;;= (V Pi—)/m+ fC; d3v,

[8,+(V;)]e;= —(V.1t,; ) (A;:P;—)

+ fC;m(~ —~;) /2d v,2 3

(i =1,2)

(15)

Let us assume that the distribution can be physi-
cally decomposed into three components and all

three components can be described by an equilibrat-
ed distribution (Fig. 1). The parameters of the dis-

tributions are then n;, ~;, and T;:

On the basis of the physical process we want to dis-

cuss, we can use the following simplifying assump-

tions: Each nucleon-nucleon collision between par-

f(, &)=& =13f(,
It follows from Eq. (13) by definition that

n —~j = $ 3n ' and n ~—~j—(,3nj ~f

(13)

(14)

where n; and ~; are the partial density and mean
flow velocity of component i, respectively. When
we want to apply Eqs. (8) or Eqs. (12) to determine
the time dependence of these parameters a serious
problem arises.

We know that summing up over i in Eqs. (8) we
must obtain the conventional equations of hydro-
dynamics, Eqs. (3). But this is true only if the
quantities C;, I';, and y; are calculated by means of
distribution functions f; satisfying the Boltzmann
equations (5). However, the distributions f; are not
known and so we are forced to introduce some as-
sumptions for f; when we evaluate the quantities

C;, P;, and y;. Therefore, having summed up Eqs.
(8) obtained in this way the recovery of the hydro-
dynamical equations (3) is not ensured, in other
words, the general conservation laws might be
violated.

The only possibility of avoiding this problem is to
explicitly require Eq. (3) to be satisfied. In order to
get a nonoverdetermined set of equations we can
then omit from Eqs. (8) the set of equations describ-
ing one of the three components:

FIG. 1. Schematic plot of the time evolution of the
velocity distribution in the three-component fluid approx-
imation. The density is proportional to the density of the
contour lines.
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= —Xk~, Z'" (i =1,2) . (16)

Completing the hydrodynamical equation set for
the whole matter with the continuity equation for
the target and projectile components from the
separated approach (8) we thus obtain a fully deter-
mined set of equations:

[8,+(V ~)]n =0,
[8,+(V )](p )=—(V P),
[a, +(V )]~=—(V.+)—(&:P),

[8,+(V u)]n; = (h.~; V)n—;+n;(V. u)

—Xk~;Zk, (i =1,2), (17)

where A~;=~; —~ and p=nm. To solve this sys-
tem of equations we need the pressure tensor I'
the collision numbers Z&2, Z~3, Z23, the heat con-
duction vector y in the nonequilibrium matter, and

ticles belonging to different components, (ij )

=(1,2), (1,3), and (2,3), populates the third com-
ponent describing the thermalized particles, and so
we can assume that the projectile and target com-
ponents, i = 1,2, move with constant velocities,
u~ ——const, u2 ——const, and their momentum distri-
bution is not changing during the reaction
T& ——const, T2 ——const. These assumptions are the
local equivalents of the hadron chemistry model of
Montvay and Zimanyi' and are motivated by the
study of the time development of the nucleon
momentum distribution' in heavy ion reactions. It
was found in a model calculation that the momen-
tum distribution of the once scattered nucleon gen-
eration can be approximated by a thermal distribu-
tion if the projectile energy is relatively small

(Ez &0.6 GeV/nucleon), and so the initial target
and projectile momentum distributions are not dis-

joint spheres in momentum space. At higher ener-

gies the momentum distribution of the collided par-
ticles is elongated in the beam direction so that the
anisotropy of this component distribution has to be
taken into account.

According to the assumptions above, a collision
between different components does not populate fi
and f2. The flow velocity and the temperature are
fixed for the components 1,2 and the continuity
equation [first Eq. in (8)] is simpler because only
the loss term is present in the collision integral:

[Q, +(, V)]n;=. —Xk+; Jd vid vid v'

xf;(, ,t)fk(, ~, t)

X iv(c, c i i
c"',c i )/2

the relation between the energy density e and the
other parameters of the model (n;, T;, b,~;, i = 1,3).

Equations (17) are general conservation laws,
therefore more realistic source terms can also be
applied. The number of differential equations to be
solved in the one- and two-fluid model and in the
three-component fluid model is 5, 10, and 15,
respectively, while in the approach described above
this number is 7.

This approach is essentially different from the
two-fluid model elaborated in Los Alamos. Here
the thermalized matter component coexists with the
target and projectile components, and the particles
are allowed to be exchanged among the corn-
ponents.

III. SOURCE TERMS IN THE CASE
OF AN IDEAL BOLTZMANN

GAS MIXTURE

Equations (17) contain the source terms y, P",
and Zki. The evaluation of the first two quantities
is relatively simple if all of the components f; are
Maxwell-Boltzmann distributions:

f; =f; (~,~, t) = n;(m /2m T;)'i

Xexp[ —m(~ ~;) /2T;] . —

(18)

From the definition of the energy density:

E'=nm(
~

c —~
~

)/2

=0.5mX; ) 3(8 v ~~ —
~

f~(~,~, t) . (19)

Introducing local coordinate systems in each term,
k;=~—~;, the square of the velocity difference

can be written as

~

4;+b,~;
~

=U; +du; +2( k; h~t), (20)

where A~;=~; —~. Since f, is spherically .sym-
metric in coordinates +; the last term does not con-
tribute to the integral and so we obtain

@=X; i 3(en+mhu; n;/2)

=X; i n3;(3T~ +md, ;u)/2 .

Here, according to the ideal gas assumption, the
contribution of interactions to the energy density is
neglected. In Sec. IV it will be pointed out how this
and the following source terms may be modified in
the case of an interacting Fermi system.

For the calculation of the heat conduction we use
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the same velocity coordinates

0 5mX'=1, 3fd U(+'+~ ')
~

+'+~ '
~ fj

(22)

Let us expand the function sh (x) up to second or-
der (i.e., for small 5 parameters) and perform the in-
tegrations. We obtain

Z k =o„,n; nk 4+( T; Tk ) m n T [1+(5T/T) /2]
In the integral three nonvanishing terms remain: =o„,n;nk4v'T/m@[1+ (4T/T) /2], (30)
p=0 5m. X; ) 3fd U([h~;b u; +b~;U;

+2+((+; b~;)M, (23)

where T=(T;+Tk)/2, and hT=(T; Tk—). Simi-
larly for small mean velocity difference
D &V'2T/mm one gets

and so the heat conduction is
Zk o„,——n;nk4v'T/me [1+D m /3T] . (31)

p —X' —f 36cc'(n;m du; /2+ —,e;0)

=&-=i,3yi . (24)

The simple expression Z k(D) =c')/D +b,
where c =O.„,n;nk and

The definition of the pressure tensor P'" is

P =mX )3 U u —u u —u, 25

Zk =a, ,n;nk4v'T/mn . (27)

In the extreme limiting case when the thermal ve-
locities are negligible compared to the difference be-
tween the mean velocities, &2T/ m&D,

(9' =a;—ak) one obtains

ik +tot inkD (28)

If the two components have different temperatures
but D =0, the collision integral is

Zg, = cr, ,n;nk(m/2m') (T;Tk)

where

X fd3Ve

X fdu u e ~ ~ sh (5UV)/(5uV), (29)

F =(~;+~k)/2,

~=~i ~k ~

y =m (I/T(+ 1/TI, )/2,

and similar to the previous calculations we obtain:

P/"=X; j 3[p51"+n;mhu/hu; ]

=X; ) 3P~ (26)
2

wherep;= 3ETi ~

The evaluation of the collision integral Z;k leads
to integrals not expressible in analytic form. Some
limiting cases, however, can be written down. If the
parameters of the two components i,k are identical
the collision integral is given by':

b =(16T/mn. )[1+(b,T/T) /2]

y=X; ) 3k~;(n;mbu; /2+ , ez;), — (32)

@=X; ~ 3(n;mhu; /2+ET;),

with ~; being the average velocity of the partial dis-
tribution f;(~,~, t), k; is the relative velocity of
particles in f; with respect to ~;, i.e., 4; =~;—~;,
and h~; is the difference of the average velocities in
the rest system of the whole matter, b,u; ——~; —~.
Since we assumed Maxwell-Boltzmann component
distributions, the partial energy density of one com-
ponent is ez;. 3n; T;/2. T——he total energy density
contains these partial energy densities and the kinet-
ic energy arising from the partial flow velocities
b,u; in the rest frame of the whole matter,

IV. THE PRESSURE TENSOR AND THE
ENERGY DENSITY

A. Inclusion of realistic nuclear
matter properties

approximates relatively well the asymptotic
behavior (D~O, D~OD, ET~0) of the collision
integral in the case of two Boltzmann gases.

Summarizing the results in the case of a distribu-
tion f with three Maxwell-Boltzmann components,
Eq. (13), the source terms [right hand sides of Eqs.
(17)] contain the quantities

P J=X [p;5"J+n;m(b, u; b, /u)],

where

p; =m/3 f U;~f~d U;=n;T;,

and

5=m (1/T; —1/Tk)/2 .

In Ref. 20 the equation of state for anisotropic,
cold nuclear matter is studied in the framework of
Walecka's mean field theory. The energy density
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and the pressures are calculated for two simple
cases which may be relevant in the description of
heavy ion collisions: (i) the Fermi surface consists
of two, nonoverlapping, Lorentz elongated spheres,
and (ii) the Fermi surface is a reflection and axially
symmetric ellipsoid.

It should be noted that in both cases studied in
Ref. 20 the nondiagonal elements of the stress ten-
sor vanish because of the axial and reflection sym-

metries of the system. Furthermore, it is
worthwhile to emphasize that the pressure in the z
direction is considerably greater than in the perpen-
dicular directions, similar to the simple Boltzmann
gas approximation. Note also that the pressure
components in the perpendicular directions are also
affected by the anisotropy.

For the application in a three component fluid
dynamical model, the following approximate ex-

pressions are satisfactory, and reflect the basic
properties of the source terms obtained in the above
model

e=e, (n)+eT(n;, T;)+e;„t(n;,T;,hu; )

=~c(n)+ &res r

PJ'"=fp, (n)+p, (n, , T,.)]i"
+ mt(~ir Ti&~~i )+ vise

jk jk

k jk=p, bi +P,„,

(33)

where p, (n) =nBe, (n)/Bn e, (n) —(This. relation
can always be used if there is no phase transition in
the matter. ) The usual relations of equilibrium

thermodynamics connecting the whole pressure ten-

sor and energy density are not valid in our case. In
the present calculations the temperature dependence
of functions er and pT is approximated by the ther-
mal energy and thermal pressure of the ideal gas as
in Sec. III:

er =Xi eTi Xi 3ni Ti/2, ——
2Pr= 3 &T ~

(34)

According to the restrictions introduced in Sec. II8
for the components 1 and 2 the thermal energy van-

ishes eT~ ——eT2 ——0 because these components rep-
resent the cold target and projectile components.

In the calculation the heat conduction vanishes,
owing to the symmetry of the discussed problem.
So on the basis of Sec. III we use the following ex-
pression:

y=X; b,u; [5ETi/3+n;md, u; /2]+y, »d . (35)

In the following one dimensional test calculation

the interaction energy density e;„, and the interac-
tion term of the pressure tensor I",„, are calculated
as in Sec. III:

ei„t——X;n;mb, u; /2,

~int =2&lot

(36)

The viscous and heat conductive terms in Eqs. (33)
and (35), P„;„and y«„d, are given in Sec. IV B.

B. Inclusion of viscous and heat conductive processes
in a first order approximation

In the previous sections the source terms were
evaluated only in the zeroth order approximation'
for a three component fluid. In the first order ap-
proximation we can introduce two new physical
properties not discussed yet. By adding a small per-
turbation to the distribution f(~) we obtain the
conventional viscous and heat conductive terms
which are driving the system towards a spatial
equilibrium. We add these terms to the ones ob-
tained so far:

2

g«nd it+(+r/it) s

PJ„;„= 2gA—J (g —2g/3—)(V u)Pk ..
(37)

To 9(36/2) n (Pic)——/16mc (39)

and T is evaluated from the total thermal energy
density as T =2eT/3n. Since these calculations
were not yet verified experimentally for heavy ions

These modifications are not strictly derived from a
more fundamental theory, they follow only from
the assumed similarity between the one and three
fluid dynamics.

Here the viscous pressure tensor is just the stan-
dard Newtonian one involving the shear viscosity

ri(p, T) and the bulk viscosity g(p, T). Experimen-
tally, very little is known about these coefficients,
except for some information from low-energy col-
lective motion such as fission. ' In principle, one
might even question the validity of the Newtonian
form for the viscous stress tensor in Eq. (37). Cal-
culations for an ideal Fermi gas tend to show a
strong temperature and density dependence accord-
ing to Refs. 2 and 3

m(T+ Ttt)/. Str„t,

where To is the effective temperature of the cold
nucleon gas calculated from the average velocity of
the degenerate Fermi gas
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at high energies, it appears more reasonable to re-

gard g as a free parameter and carry out systematic
studies regarding its possible influence on the reac-
tion.

C. Inclusion of the Yukawa
and Coulomb potentials

[B,+(V.~}]n=0,
[8,+(V.u)](p~) = (V—.P) nV—V,

[8,+(V )]e„,= (V—~) (&—:P,„,),
[8,+(V.~)]n; = (Au—;.V)n; +n;(V.~)

—XJ~;Z~J, (i =1,2) .

(43)

Under the physical assumptions discussed above,
the set of equations governing the heavy-ion col-
lision are the classical equations of hydrodynamics,
formulated as conservation equations for mass,
momentum, and energy. In the presence of the long
range interactions described by interaction poten-
tials the momentum equation reads as

[B,+(V ~)](p~)= (V P} n—V V, — (40)

where the symbol V denotes the interaction poten-
tials that were not included in the equation of state
of nuclear matter because of their long-range prop-
erties. A detailed discussion of how this separation
of nucleon-nucleon interactions, into a short-range
part incorporated in the equation of state and a long
range part treated explicitly, can be justified is given
in Ref. 26. V is defined as a sum of a Yukawa and
a Coulomb contribution, V" and V . The Yukawa
potential is determined from

(V —a )V~(~)= 4mPn—(~) (41)

V V (~)= 4~(Ze/—A) n(~) . (42)

In relativistic calculations the means of introduc-
ing potentials is unclear. Therefore up to now no
relativistic calculations have incorporated potentials
and one has to be content with not being able to
describe droplet formation properly. In the Los
Alamos calculations, e.g., negative pressures were
cut off, because they led to the formation of drop-
lets with unphysical properties.

The equation for the internal energy density does
not contain the terms arising from this long range
interaction. Moreover, the compressional energy
density and the compressional pressure can be elim-
inated from the equation as in the one fluid
models. ' Thus the whole system of equations we
solve is the following:

with P= —280 MeVfm and a=2. 1 fm '. (These
values were adjusted to reproduce reasonable sur-
face properties for finite nuclei. } For the
Coulomb potential a constant charge-to-mass ratio
is assumed:

V. DISCUSSION OF THE MODEL
AND ITS CONSEQUENCES

A. Results of one dimensional calculations

The model described above is solved numerically
with a Eulerian method in one dimension. The
equation of state was that of an ideal Boltzmann
gas mixture with an additive compressional term
taken from Ref. 29. From the long range potentials
only the Yukawa potential was taken into account
and in the present calculation we neglected the tem-
perature dependence of the viscosity (g =20
MeV/fm c, (=0, ~=0.015 c/fm). The schedule of
the solution was as follows: From Eqs. (43) we ob-
tained n, n], n2, u, and e„, in each integration step.
Since the velocities of components 1 and 2 are fixed:
b,u I

——u
~
—u, b,u2 ——u2 —u, so from Eq. (14) n3 and

u3 can be obtained. Using the expression for the
energy density [Eqs. (33) and (34)] the temperature
T3 can be evaluated, as can the source terms [right
hand sides of Eqs. (43)] for the following step. The
details of the solution method are equivalent to the
ones of Ref. 3.

A symmetric system was analyzed corresponding
to a central (slab) heavy-ion collision of 200
MeV/nucleon projectile energy. The nucleon-
nucleon cross section determining the collision
number Z was varied and the penetration length of
components 1 and 2 was studied (Figs. 2—4). The
thermalized component developed rapidly for realis-
tic cross sections and the interpenetration of com-
ponents 1 and 2 was relatively small.

In Fig. 2 the results of a calculation with realistic
cross section o.=25 mb are shown. At the compres-
sion phase [Fig. 2(a)] the interpenetration of com-
ponents 1 and 3 is about 3 fm although the observ-
able width of the shock front is only 1.5 fm. The
velocity of the 3rd component in the shock front
drops down to zero faster than that of the whole
matter, because components 1 and 2 maintain their
original average velocities and their momentum is
balanced by the 3rd component. At the stage of
maximum compression [Fig. 2(b)] there remains
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FIG. 2. The density distributions of the different com-
ponents and their time development in a one dimensional

calculation describing a U + U collision at 200
MeV/nucleon bombarding energy. The nucleon-nucleon
cross section is o =25 mb. Full lines belong to the whole
matter density and velocity distributions, dashed lines to
the partial densities of components 1 and 2, the dashed-
dotted lines indicate the partial density and velocity of
the 3rd thermal component, and the dotted lines show its
temperature T3 in units of MeV. The three sets of fig-
ures (a), (b), and (c) belong to the indicated times. The
overlap of components 1 and 3 is =3 fm at the initial

phase.

only a very small fraction of the cold components,
while at late expansion stages [Fig. 2(c)] we already
have a fully thermalized matter which expands with
a velocity increasing linearly outwards.

In this model it is possible to follow the transi-
tion from the two independent interpenetrating
fluids towards the conventional one fluid descrip-
tion. If we increase the cross section to infinity
component 1 or 2 vanishes immediately in the pres-
ence of any other component and consequently we
have a sharp surface between the thermalized and

FIG. 3. The same as Fig. 2 with cr =60 mb.

cold components. Thus, to each space time point a
unique velocity, temperature, and density can be at-
tributed like in the one fluid case. This is obvious if
we consider Eqs. (17) or (43). In these equations the
second equation describes the transition from the
cold components to the thermalized one. In Fig. 3
the results of a calculation are shown with increased
cross section cr =60 mb. In the compression the in-
terpenetration is reduced to 2 fm and at the full
compression we already have no cold components.

On the other hand, if we assume that the cross
section goes to zero we reach the noninteracting
limit of the two-fluid model. Since we have seen
that the separated Eqs. (8) are mathematically
equivalent to Eqs. (17) we expect that the latter
equations also reproduce the two fluid properties.
For a perfect fluid this can be seen analytically but
a problem arises when we want to introduce gen-
eralizations (see Sec. IV) which reflect the proper-
ties of the realistic nuclear matter (potentials,
viscosity, heat conduction, compressional energy,
etc.). Since the separation of these processes into
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the kinetic transport theory. In Fig. 5 the time evo-
lution of the velocity distributions are plotted for a
central region of length M

hz/2f(~,t)
~ a, ——J f(z, ~, t) dz, (44)

where f(z, ~, t) is the distribution given by Eqs. (13)
and (18). The similarity suggests that although our
model simplifies the kinetic aspects, the basic
features of the evolution of momentum distribution
are reflected properly. The velocity distribution

--0.

T, II v/c

U U
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EZ= 2fm

(ZOO MeV/A) G=Z5mb

B,Z=lfm
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ohio

e+ +
I
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t=5/ fm/c

m] 50%
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FIG. 4. The same as Fig. 2 with 0 =2 mb.
t=5.6 fmlc

components is by no means trivial, their inclusion
in the separated version of the model [Eqs. (8) or
(12)] needs further considerations. To analyze the
decoupling of the components from each other a
calculation was performed using Eqs. (43) with a
strongly decreased cross section o =2 mb (Fig. 4).
Here components 1 and 2 survive the collision and
leave the system with a density and velocity close to
the initial ones. It is interesting to note that a siz-
able amount of the 3rd component remains in the
middle of the reaction zone and the cold matter
moving outwards drags some thermalized com-
ponent with itself. Hence, the nuclei interpenetrat-
ing each other obtain an observable thermal excita-
tion.

B. Evolution of the momentum distribution

The momentum distribution in the central region
changes rapidly in time and can be compared to the
calculations of Ref. 12 made in the framework of

520/

mlc

0.5 v/c 0.5
I

v/c

FIG. 5. Time development of the momentum distribu-
tion of the central region in the beam direction and
orthogonally to it. The speed of thermalization is similar
to the one obtained in the cascade and kinetic models.
The arrows indicate the velocity of the projectile/target
in c.m. and the given percent values show the degree of
the thermalization (n )/(3n) in the spatial region bz.
The local thermalization is somewhat stronger than in ki-
netic models because of the strong compression in the in-
teraction region; however, if we take longer spatial inter-
vals (M=4 fm or more) the average thermalization
speed decreases because of the gradual interpenetration.
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reaches an almost complete thermalization at the
stage of full compression in a central U+ U col-
lision at 200 MeV/nucleon energy [r =24 fm/c,
Fig. 2(b)]. Before this stage the degree of thermali-
zation (ratio of the 3rd component to the whole
matter) is different in different locations. Already
at an intermediate stage [t =13 fm/c, Fig. 2(a)] the
matter is thermalized to 90% in the middle but at
the same moment the matter in the compressed
zone ( —3 fm &z &3 fm) is thermalized to 50%
only. Thus, the process of thermalization is by no
means a minor effect during the collision.

Finally, in Fig. 6 we show the qualitative differ-
ence between the velocity distributions of the two-
fluid model and ours. While in the two-fiuid model
[Fig. 6(b)] the average velocities of the two fluids
approach each other owing to the drag terms in the
Euler equation, in our model [Fig. 6(a)] a third ther-
mal component develops and the resulting total
velocity distribution may approach a thermalized
one more smoothly.

C. Conclusions

At the end we answer qualitatively the question:
What are the observable physical consequences of
the explicit consideration of the thermalization pro-
cess in a fluid dynamical model?

By comparing the calculations with large and

(a)

/
/

/

/
/r

small cross sections we observe an important differ-
ence: In the small cross section case the maximum
compression and thermal excitation is essentially
decreased. This is the consequence of the fact that
in this case the existing cold components maintain
their kinetic energy and so the compressional energy
is smaller. The density increase is also smaller and
the momentum of the incoming cold matter is bal-
anced by the large interaction pressure p;„,=2@;„,.
However, the interaction pressure in the transverse
directions vanishes in the ideal gas approximation
and this means that all the compressional, thermal,
and interaction pressure components Eq. (33) are
smaller in transverse directions. Consequently the
presence of the cold matter components decreases
the momentum transfer into transverse directions.

This effect may weaken somewhat the "side-
splash" process and may change the deflection
function 8(b) of the "bounce-off" effect. The de-
fiection angle 8 will be slightly smaller especially at
large impact parameters where the possibility of in-

terpenetration is larger.
%e have seen, however, that in the examples

presented above (Fig. 2) the thermalization is nearly

complete. This result shows that the three-
component fluid model yields similar results to the
one fluid one in the case of central and nearly cen-
tral collisions in the some 100 MeV/nucleon bom-

barding energy region. Thus the strong hydro-
dynamical effects—the bounce off observed in the
sideward peaked angular p, d, and t cross sections, '

in two-proton correlation experiments with heavy
targets, ' and also in correlations between light
and heavy ejected fragments —which are caused
mainly by central collisions will not be essentially
changed in the three-component fluid dynamical
model.

In the three dimensional version of the model the
inclusive spectra are expected to be reproduced
better than in the one and two fluid models and it
should provide us with a reliable description of col-
lisions in the few GeV per nucleon energy region as
well.

-0.5
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