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Formulation of the zero-energy Faddeev-type scattering equations in configuration space
is discussed. Numerical solutions are obtained using spline techniques. Scattering lengths

are calculated for the s-wave NN interaction models of Malfliet and Tjon; comparison with

previously published results and Kohn variational estimates are made. Faddeev amplitudes

and Schrodinger wave functions are plotted. Significant features of the configuration space
solutions are identified.
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I. INTRODUCTION

Total binding energies and nucleon separation en-

ergies are two of the most precisely determined

quantities known in nuclear physics. But these, and
other less precisely measured bound-state properties
such as the root mean square (rms) radius, provide a
rather restricted set of data with which to test our
understanding of the complexities of the basic nu-

clear force. It is the scattering problem, where

cross sections as a function of energy, angular dis-

tributions, and polarization phenomena can be mea-

sured, which offers us the opportunity to explore
the accuracy of our knowledge of the nucleon-

nucleon strong interaction. The natural beginnings
of such a program lie in the "simple" three-nucleon

continuum problem. But a proper theoretical state-
ment of the quantum mechanical three-body prob-
lem eluded our grasp for many years, frustrating
researchers and generating misleading approxima-
tions as well as incorrect interpretation of data.

The motivation for Faddeev's revolutionary
work' on the t-matrix approach to the three-body
problem was the fact that the boundary conditions
in a Lippmann-Schwinger equation formulation of
this scattering problem are ill defined. Although
the bound-state boundary conditions permit one to
work directly with the Schrodinger equation for lo-
cal potential H- He calculations, * there are ad-
vantages in utilizing the "Faddeev" type formalisms
even for trinucleon bound-state studies. ' Howev-

er, for the continuum three-body local potential
problem one must make the Faddeev decomposition
(or its equivalent) of the scattering amplitude in or-

der to enforce the proper boundary conditions; the
Lippman-Schwinger equation does not yield a
unique solution. Part of the purpose in this paper is

to remove some of the mystique associated with the
term "Faddeev calculation" by the nonexpert. To
that end we address the zero-energy nd scattering
length problem as being the simplest to follow.

We choose to work in configuration space rather
than momentum space, because we wish to explore
the wave function of three-body continuum states in

terms of spatial coordinates. These are the more
familiar coordinates for discussing the nucleon-
nucleon scattering wave function and for which our
intuition is stronger. It is our purpose to provide
that same intuitive feeling for "exact" three-body

scattering wave functions. Prior to publishing de-

tailed studies and applications of the continuum
wave functions we report here on our numerical
methods and their convergence properties and com-

pare our scattering length results with those previ-

ously published, as well as with bounds obtained
from the Kohn variational procedure. We study
the nd scattering lengths for the (partial-wave) local
potential models of Malfliet and Tjon in which the
nucleon-nucleon interaction is nonzero only for the
s wave. We compare spin doublet and quartet
scattering lengths with the momentum space calcu-
lations of Tjon, the unitary pole approximation cal-
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culations of Harms and Newton, and the configu-
ration space calculations of Benayoun, Gignoux,
and Chauvin. The most informative comparisons
are with our Kohn variational results where identi-
cal potential parameters are used for each calcula-
tion.

In Sec. II of this paper we review the three-body
scattering equations for the specific case of three
pairwise interacting bosons in an attempt to make
the problem transparent. (The spin-isospin coupled
equations for the fermion problem are summarized
in the Appendix. ) In Sec. III we discuss the corre-
sponding Kohn variational procedure. In Sec. IV
we outline our numerical methods; in particular we
discuss our application of spline functions in the
context of orthogonal collocation. We provide a de-
tailed account of our numerical results in Sec. V. In
Sec. VI we present graphical representations of
wave functions and their components. We summa-
rize our conclusions in Sec. VII.

II. THREE-BODY EQUATIONS
IN CONFIGURATION SPACE

and

can be decomposed into three coupled Faddeev
equations

(iT+V(x ) Eio. =— V(x )—le+.ski (3)

where T is the kinetic energy operator and V(x;) is
the two-body potential representing the interaction
between particles j and k. For three identical parti-
cles the three Faddeev amplitudes have identical
functional forms, and it is only necessary to solve
one of the coupled equations.

For s-wave interactions only the l =0 partial
wave of l(ti is nonzero, where I is the relative orbital
angular momentum of particles 2 and 3. Using the
reduced wave function P (xi,yi ) defined by

(2)

for the three particles having coordinates r i, r2, and
r3. The Schrodinger equation

T+g V(x;) E+—=0

0(x1~yi ) x lyi P(xi lyi } ~ (4)
While the Faddeev equations for three pairwise

interacting bosons have the same form for bound
state and scattering problems, the boundary condi-
tions for these two problems are considerably dif-
ferent. ' ' The bound-state wave function asymp-
totically approaches zero for large values of any
two-particle separation. This boundary condition is
straightforward to implement. 3'" Although the
bound-state problem is numerically difficult there is
little question about the validity of the boundary
conditions. For the continuum problem the wave
function is nonzero in the asymptotic region, ' '
and the solution of the Faddeev equations is conse-
quently more sensitive to proper implementation of
the boundary conditions. In this section we first re-
view the Faddeev equations for three bosons, and
then we discuss the appropriate zero-energy boun-

dary conditions. The corresponding equations for
particles with spin are summarized in the Appen-
d1X.

Following Ref. 3 we decompose the solution of
the Schrodinger equation, 4, in terms of the non-

physical auxilliary function, P, which is the Fad-
deev amplitude:

q'=4( i yi)+4( 2y2)+8 3 y3)

where we have used the Jacobi coordinates

the Faddeev equation can be rewritten in the form

8 3 8
2

—U(xi)+K p(xi,yi)4 ()y12

1x2= (xi —4xiyip+4yi )

x3 ——x2( —P),
y2= ( xi +3xiyip+yi )

(6a)

(6b)

(6c)

(6d)

where p is the cosine of the angle between xi and

y& ~

Since Eq. (5} is an elliptic partial differential
equation, the boundary conditions must be specified
on a closed surface. For the reduced wave function
the boundary conditions along the x1 axis and the
yi axis are the same as for the bound state problem,

P(D,yi ) =P(xi,0)=0 .

It is the boundary condition for the asymptotic re-
gion (xi —+00 or yi~ao) which complicates the

& 1y1=U(xi) f dp P(x2,y2}, (5)
~+2

where K =mE/fi, U(xi)=mV(x, )/A, and m is
the nucleon mass. Using Eq. (2) one can easily veri-

fy that
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continuum problem. For the scattering of one par-
ticle from a bound cluster of the remaining two par-
ticles above the threshold energy for breakup of the
bound two-body cluster, the boundary conditions
are difficult to write in closed form, and one must
use approximations to the exact boundary condi-
tions. ' For energies below the threshold for break-

up the problem is considerably simpler, and such is
the case which we consider; we show that one can
define boundary conditions which are exact in the
same sense as the bound state boundary condition.
For the scattering length problem the incident parti-
cle has zero energy and the total energy of the sys-
tem is just the two-body binding energy

8= F—d ———(Ac) /m .

Using Green's function techniques, it can be shown

that for this case

P(x, ,y, ) ~ (yi —a)ud(x i ),

where ud(xi) is the two-body bound-state reduced
wave function and a is the scattering length. This
form is clearly consistent with the two-body nature
of the process and is obtained from the integral
equation for P(x i,y i ):

4 00 00

$(xi,yi ) =y iud(xi ) —3 dy iy & dx iud(xi )ud(x i )
0 0

l t

xU(xi) f dp' ' '
P(x2,y,')

X 23'2

+((b(xi yi) .

Here y& is the lesser of yi and yi, and pb, is the
virtual three-body breakup part of the wave func-

tion which must vanish for large separations of the

interacting particles. For x~ greater than the range
of U(xi ) the virtual breakup term has the form'

4 00 00

a = —, f dyiyi f dxiud(xi)U(xi)
0 0

& i3'i
X p ~+2

(12)

Pb,(x i,yi ) =2 (8)e "~IP'~

where we have introduced the variables p and 0 de-

fined by

X I
——P COSO,

v3
psln8 .

2

Since (l)b, is exponentially decreasing for large values

of p, we can assume that it is zero in the asymptotic
region. In this sense the boundary conditions are

the same as for the bound state problem, but now

we have the additional condition given in Eq. (8).
The implementation of this additional boundary

condition is discussed in Sec. IV. For large values

of p these boundary conditions are exact for all

values of 8; thus, if the matching radius is large
enough no errors will be introduced into the wave

function by the boundary conditions. From Eq. (9)
one obtains the integral expression for the scattering
length:

Thus, given the numerical solution to Eq. (5), one

can extract the scattering length either by looking at
the asymptotic form of P(xi,yi) or by evaluating

the integral in Eq. (12). For our calculations we

have used both techniques, and we find that the two

values are consistent with one another. A third

method for determining the scattering length in-

volves use of the Kohn variational principle. This
will be discussed in the next section.

III. THE KOHN VARIATIONAL PRINCIPLE

The Kohn variational principle has been derived

for the three particle scattering problem by several

authors. In this section we briefly outline the
derivation of the scattering length result using the
notation of the previous section. The Schrodinger
equation for three particles with energy —Ed can be
written in the form
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( —5+U+a )4=0, (13)

where 6 is —m/fg times the kinetic energy opera-
tor and U=U(xi)+U(x2)+U(x3) is m/fP times
the sum of the pairwise interactions. First, consider
the matrix element

I=(% (( —b, +U+a')
( 0) .

By varying 4 we obtain

5I=(5% ~( —~+U+~') ~%)

+(% ((—5+U+ir') ~M)

=(0 ~( —5+U+x') )M),

(14)

5$; —+ 0,
Zf~ oo

where we have used the fact that 4 is the exact
solution of the Schrodinger equation. Integrating

by parts, noting that everything but boundary terms
vanish, and using the boundary conditions

—+ 0,
Z- ao

deuteron wave function is accurately known for a
given potential and need not be varied. For systems
where there is no bound state, methods similar to
those used in the bound-state problem lead to the
bound I&0; thus a &a follows from Eq. (21). The
quartet (three-fermion) system is an example; the
Kohn estimate is an upper bound with respect to
the value extracted from the asymptotic part of the
wave function. For three-fermion doublet scatter-
ing the usefulness of the Kohn estimate as an upper
bound depends upon the overlap of the continuum
wave function with the bound-state wave functions
of the same Hamiltonian, just as one finds in mak-
ing variational estimates of excited state energies of
a bound system. ' The overlap is zero, of course,
for exact wave functions but not for (approximate)
numerically calculated ones.

IV. NUMERICAL METHODS

and

(y; —a)ug(x;)

&(3'r'

—5auq(x;)

Xgg

one can show that

5I =—45a .

Therefore, we have

5[I+ —,aj =0 .

(17)

(19)

In order to numerically evaluate the solution of
the Faddeev equations, we make the usual change
of variables to the p-8 coordinates defined in Eq.
(11). Following Ref. 3 we express the solution of
the differential equation in terms of bicubic splines
on a rectangular grid in these p-8 coordinates.
From the asymptotic form of the reduced wave
function given in Eq (8) on. e can see that for large
values of p and values of 8 near ir/2 the solution
will have the form

1

( , v 3p sin—8 a)u~(p —cos8) .

Now, let I be the matrix element evaluated using
the approximate wave function qi with a scattering
length a, and let I be the matrix element evaluated
using the true wave function having scattering
length a. Then we have the following second-order
relationship:

5[I+ —,a]=(I I)+—,(a —a )+0(M' )—. (20)

Thus, using the fact that Eqs. (13) and (14) imply
I=0, we obtain

This function varies rapidly with 8 because of the
structure of the two-body bound-state wave func-
tion. This rapid variation with 8 for large values of
p requires a rather fine 8 grid for 8 near n/2. The
numerical calculation is greatly facilitated if this
variation due to the two-body bound state wave
function is removed from the equations. Our pre-
liminary approach to the problem was similar to
that of Ref. 9, but it was found to be not sufficient-
ly stable. Therefore, we define the smoother func-
tion E(x„y, ) by

4
a a+ 9I . (21)

Wxi,yi)=[yi —+(xi yi)Iud(xi) . (22)

This expression provides a variational estimate of
the scattering length, which is accurate to second
order. We have assumed in this derivation that the

The differential equation for E(xi,yi ) is then given
by
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B2F 3 B2F, BF
ud(x i) +— +2u~(xi ) —U(xi ) dp, F(xq,y2)ud(xq)

4 Bg» Bx» yz

&»3'»= —U(xi) f dp [ygud(x2)], (23)
~+2

where ud(x, ) is the first derivative of ud(xi ). Since u~(0) =0, the function F has a nonzero value at xi ——0.
The appropriate boundary condition can be obtained from Eq. (23) evaluated at x, =0. Rewriting this equa-
tion in terms of the p-8 variables we obtain

ug(pcos8) i + + 2 2 +2ug(pcos8) cos8
BF 1 BF 1 BF, BF sin0 BF
Bp p Bp p Bg Bp p B0

g+ g+—U(pcos8) f d8'F(p, 8')ud(pcos8') = —2U(pcos8) f d8'psin8'ud(pcos8'),
3 s 8

(24)

where the limits of integration 8+ and 8 are defined in Ref. 3.
For large values of yi the function F(xi,y i ) approaches a constant value, which is the scattering length a.

Therefore, for large values of p we impose the boundary condition along p =p,„
BF

(25)

Using this boundary condition together with

F(p, 0)=0, (26)

and the boundary condition for F (p, ir/2) which follows from Eq. (23), we can obtain a unique solution to the
elliptic integrodifferential equation. The boundary condition defined in Eq. (25) is clearly correct for large
values of y» but one may question its validity for large values of xi and small values of yi. To check the ac-
curacy of the solution obtained using the boundary condition in Eq. (25), we have used Eq. (9) to determine an
improved boundary condition as follows. Using the integral expression in Eq. (9) one finds for large values of
p (where Pb, can be neglected) that

aF aF v 3 . aF=cos0 + sin0

2 . . . , »»3'»
sin8 dye dx iud(x'i )U(xi ) dp, , [yz —F(xi y2)]ud(x2)

3 i') 0 X2y2
(27)

For large values of yi this reduces to Eq. (25). Us-
ing the solution F obtained from Eq. (24) with the
boundary condition defined by Eq. (25), we obtain
an improved boundary condition by iteration using
Eq. (27). This iterative process can be repeated un-
til a consistent solution F is obtained; i.e., subse-
quent iteration produces no change in a. In practice
it was found that iterating the boundary condition
produced no significant improvement in the wave
function. The errors produced by the approximate
boundary condition defined in Eq. (25) tend to
"heal" quickly because the wave function is ex-
ponentially decaying in that region.

For the actual numerical calculation we express
the function F(p, 8) as a bicubic spline on a rec-
tangular grid in the p-0 coordinates. We take ad-

I

vantage of the fact that the knots for the splines do
not have to be equally spaced. We scale in the 0
variable such that (8„+i

—8„)=(8„—8„ i )Ss,
where S~ is the scale factor. In the p variable we
take advantage of the slow variation of F(p, 8) for
larger values of p by scaling as for 0 inside a radius

pb, and using a uniform distribution of splines be-
tween pb, and p,„. A discussion of the treatment
of the analogous problem for particles with spin can
be found in the Appendix.

V. NUMERICAL RESULTS

We study in detail the stability, accuracy, and
convergence of our configuration space solution of
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TABLE I. Potential parameters for the Malfliet-Tjon models.

Model

I
II

III
IV
V

(MeV fm)

513.968
52.490

626.885
65.120

570.316

|Ma
(fm-')

1.550
0.809
1.550
0.633
1.550

(MeV fm)

1438.720
0

1438.720
0

1438.4812

pz
(fm ')

3.110

3.110

3.110

82
(MeV)

2.23
2.23
0.35

the zero-energy scattering length problem utilizing
the s-wave potential model forms of Malfliet and

Tjon. These partial-pave-local two-body potentials
are sums of Yukawa forms exhibiting a long-range
attraction and (in most cases) a short-range repul-
sion

V(r)=(Vse —Vze " )ir . (28)

We emphasize that these potentials act only in the
l =0 two-body partial waves; that is, they may be
considered to have s-wave projection operators asso-

ciated with them. Thus, the zero-energy "nd"
scattering wave functions have only L =0 partial
waves. Correspondingly, the continuum wave func-

tions for the fermion problem are specified by
the intrinsic spins of the states (S= —, doublet and

3S=—, quartet), since J=S. For the model prob-

lems in which we use an average spin-singlet, spin-

triplet potential the fermion doublet solution and
the boson solution are identical.

The parameters defining the specific potential
models studied are given in Table I. They differ
slightly from those which one might infer from
Ref. 6, as has been noted previously. ' Our
parameter values were chosen to reproduce the
physical two-body binding energies quoted in Ref.
6; we have used fi /m =41.47 MeVfm throughout
this work.

Because the MT III (spin-triplet) potential pro-
vides the most realistic description of the deuteron
properties, we consider this model in greatest detail.
It should provide the most realistic test of our accu-
racy and convergence in a simple one-channel cal-
culation. To this end we list in Table II the mesh
parameter values for a selection of the test cases
which we explored. The corresponding boson (or
doublet) and quartet scattering lengths are compiled

TABLE II. Mesh parameters used in the study of the accuracy and convergence of the
scattering length calculations for the MT III potential model.

Case
No.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
1'6

17
18
19
20

20
16
16
16
16
16
12
12
12
12
10
12
12
16
16
16
16
16
16
16

NE

10
10
8
6'
4
3
8
8
8

10
10
12
8

10
10
10
10
10
10
10

Pbr

10.0
10.0
10.0
10.0
10.0
10.0
10.0
8.0

15.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

Sp

1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.2
1.4
1.3
1.3
1.3
1.3
1.3

Pmax

70.0
70.0
58.0
46.0
34.0
28.0
70.0
70.0
70.0
70.0
70.0
70.0
58.0
70.0
70.0
70.0
70.0
70.0
70.0
70.0

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
18
16
14
20
20

1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.25
1.50
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TABLE III. Doublet {boson) and quartet scattering lengths a2 and a4 along with their

Kohn variational estimates for the MT III potential mode1 of Table I.

Case
No.

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

26.033
26.030
26.028
26.026
25.999
26.022
26.037
26.001
25.989
26.014
25.987
26.000
26.012
26.040
26.012
26.037
26.104
26.721
26.045
26.048

K

26.033
26.033
26.033
26.031
26.003
26.024
26.037
26.038
26.035
26.035
26.036
26.034
26.035
26.033
26.035
26.037
26.034
25.971
26.034
26.036

a4

6.4412
6.4411
6.4381
6.4189
6.2843
6.0500
6.4413
6.4400
6.4413
6.4411
6.4410
6.4405
6.4381
6.4412
6.4411
6.4340
6.3839
6.0587
6.4402
6.4414

a~4

6.4416
6.4416
6.4392
6.4197
6.2847
6.2506
6.4416
6.4416
6.4416
6.4416
6.4416
6.4416
6.4392
6.4416
6.4416
6.4416
6.4417
6.4483
6.4418
6.4416

in Table III. We provide both the value extracted
from the asymptotic wave function and the Kohn
variational estimate (superscript K) based upon that
wave function. The boson or doublet scattering
length a2 is some four times larger than the quartet
scattering length a&. It is also the scattering length
of the spin-isospin channel in which the two-body
potentials support a bound state. Therefore, we
direct our comments concerning the accuracy and
convergence primarily to the a2 results.

As was true in our study of the bound state, the
sensitivity of the solution to the p-grid parameters
proved to be the more complex. Convergence with
respect to the cutoff radius p,„ is obtained by
about 45 fm. (A somewhat larger value is required
for a4.) Solutions with 0.1% accuracy can be ob-
tained with smaller values of p,„, but the oscilla-
tion of aq and a2 imply that the intrinsic accuracy
is less than the raw numbers might indicate. (In
particular, the apparent 0.01 uncertainty in the a2
values for p,„=28 fm is misleading. ) A value for
the parameter pb, lying somewhere between 10.0
and 12.0 fm appears to be optimal; again 0.1% ac-
curacy can be achieved with a wider range of values

(e.g., 8.0 to 15.0 fm). We find that at least 10 to 12
points inside pb, are required to provide a reasonable
description of the interior part of the solution. A
scale factor Sz lying between 1.2 and 1.4 provides

reasonable results, with S&——1.3 providing the best

spacing for the nonuniform distribution of p points

in the interior region. As was the case for the
bound state, we anticipate that more points will be

required in the interior region near the origin when

using more repulsive potentials such as the Reid-
soft-core model. ' In the exterior region where the
wave function is relatively smooth, a uniform spac-

ing between p points of as large as 6—7 fm is feasi-

ble. Sensitivity of the solution to the 8 grid is simi-

lar to that found previously for the bound state

problem: More points are required than in the p
grid; at least 18 0-grid points were needed to pro-

duce an accurate az value. As discussed above, we

find it necessary to concentrate the points in the re-

gion where the deuteron bound state function is im-

portant, even though we have factored that function

Pd out of the equation we solve. A scale factor Ss
of between 1.25 and 1.5 gives reasonable results.

Our best estimates of a2 and a4 for the MT III
potentia1 model are 26.03+0.01 fm and
6.442+0.005 fm, respectively. The agreement be-

tween the values extracted from the asymptotic part
of the wave function (quoted in Table III) and those
obtained from the integral over the entire wave

function (26.034 fm for case 1) were normally excel-
lent. Disagreement between the scattering length
values obtained from the two methods proved to be
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a reliable indicator that neither value would be con-
firmed by the Kohn variational estimates using that
same wave function. (For example, the integral re-
sults for case 18 were 28.151 and 6.6055.) We note
here that, as is the case for the bound state prob-
lem, ' the Faddeev solution for the scattering length
need not lie above the variational bound provided
by the Kohn result. Nevertheless, as one would an-
ticipate from a variational procedure that even wave
functions which do not provide a good extracted
value of the scattering length do yield reasonable
Kohn estimates. Our value of the boson scattering
length az cannot be compared with results from the
literature because none were found. However, quot-
ed values for a4 are 6.35 fm by Tjon, 6.47 fm by
Harms and Newton, and 6.4 fm by Benayoun, Gig-
noux, and Chauvin. One cannot be certain that the
two-body potentials used in each of these calcula-
tions were identical, and agreement between our
best estimate of az and these values is probably
satisfactory. Therefore, comparison of the scatter-
ing length values extracted from our wave function
and the Kohn variational estimates is probably the
more suitable indication of the precision of our
solution.

The MTV potential model is not a realistic
description of the physics of either the spin-singlet
or the spin-triplet nucleon-nucleon interaction, al-
though it is a reasonable average potential for sim-

ple, model three-body bound-state calculations.
However, its weak two-body binding of 0.35 MeV
provides an interesting test of the accuracy of our
method when the two-body bound-state wave func-
tion has a very large spatial extent. For this model
we estimate values of a& ——34.9+0.2 fm and
a4 ——14.1+0.5 fm. As was the case for the MT III
calculations, the quartet scattering length proved to
be more sensitive to p,„than the doublet. We used
values of p,„as large as 100.0 fm in an effort to

obtain an accurate a& solution; a4 was still slowly
increasing.

The MT IV model (no repulsion) has been studied
previously in the case of the quartet scattering
length. Values of 6.45 and 6.47 fm were obtained in
Refs. 7 and 8, respectively. Using the potential
parameters quoted in Table II, we obtain an esti-
mate of a4 ——6.53+0.01 fm. Again, differences be-
tween our value and those previously obtained may
be due to the use of slightly different potential
parameters.

We now turn to the more interesting problem of
estimating the doublet scattering length az when the
model admits spin dependence of the two-body
forces, producing a coupled-channel set of equa-
tions to be solved. (See the Appendix. ) Because of
the practical limitations imposed by computer
memory, the meshes with which we could work had
to be reduced from those utilized in the one-channel
studies; however, we have seen above that reason-
able one-channel solutions can be achieved with
fewer than 20 p points. Sample results for the
MT I-III model are shown in Table IV. Our best es-
timate, which does not necessarily correspond to
any one set of parameters shown in Table IV, is
aq ——0.70+0.01 fm. The Kohn variational results
indicate that our scattering 1ength values deter-
mined from the asymptotic part of the scattering
wave function (az) and from the integral over the
entire wave function (af) are quite accurate. The
uncertainties in our solutions are rather well under-
stood. For comparison we quote the results of
Tjon who obtained 0.9 fm, the results of Harms
and Newton who obtained 0.92 fm, and the results
of Benayoun, Gignoux, and Chauvin who obtained
0.62 fm. Again, we point out that differences may
be due in part to the use of slightly different param-
eter( for the MT I-III potentials.

The corresponding calculation for the MTII-IV

12
8

10.0
1.3

70.0
20

1.3
0.689
0.701
0.686

10
10
10.0
1.3

58.0
20

1.3
0.698
0.702
0.695

10
4

10.0
1.3

34.0
20

1.3
0.782
0.788
0.774

TABLE IV. Sample doublet scattering length results for the MT I-III model obtained for typical mesh parameters; a &

is the Kohn estimate and a& is the value calculated using the integral over the entire wave function.

12 10 10 10
XE 8 10 8 6
Pbr 10.0 10.0 10.0 10.0
Sp 1.3 1.3 1.3 1.3
p,„70.0 70.0 58.0 46.0
Eg 20 20 20 20
Sg 14 1.3 1.3 1.3
Qg 0.693 0.695 0.696 0.704
Qg 0.701 0.701 0.702 0.711
Q~ 0.691 0.693 0.694 0.708
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FIG. 1. Faddeev amplitude component I' for the
MT III potential model quartet solution.

model yields a value of a2 ———5.6+0.1 fm. This is
to be compared with —5.3 fm from Ref. 7 and
—1.11 ffm from Ref. 8. Clearly, repulsion in the
two-body interactions is important in treatin d b-
et scattering, where the Pauli principle is not the

dominant factor.

VI. FADDEEV AMPLITUDE
AND SCHRODINGER WAVE FUNCTION

COMPARISONS

An intuitive feeling for the wave function of the
continuum system is required if one is. to achieve a
true understanding of the nd scattering problem. A
knowledge of the structure of this wave function is
also required if one is to ascertain why certain cal-
culational approaches succeed while other pro-
cedures flounder in difficulty. For these reasons we
present here a brief graphical study of the wave
functions generated using the MTI-III potential
model. The appropriate wave functions are defined
in the Appendix. We depict for the first time in

CO ( f(fl

FIG. 3. Quartet Schrodinger wave function com-
ponent U3 at fixed angle 8=0' for the MTIII potential
model.

V4
e po

three dimensions the configuration space charac-
teristics of these continuum functions and point out
the important features.

For s-wave potentials, which we consider here,
the Faddeev amplitudes are functions of only the
two variables x ~ and y ~, whereas the full
Schrodinger solution depends upon all three vari-
ables x&, y~, and 0, the angle between x~ and yy1 ~

(We used p =cos8 as the convenient variable in Sec.
II.) The 8e 8 dependence of the Schrodinger wave
function (ql for the quartet or u, ui, and U2 com-

variables in f2 and g&, as is true for the bound-state
problem. Furthermore, although the Faddeev am-
plitudes f(xi,yi) generated from the s-wave two-
body potentials of our model contain only I =0 re-
lative orbital angular momentum, the total wave
unction contains all partial waves, just as f2 and

3 do.
The MT I-III potentials exhibit short range repul-

0.20-

0.ia-

O. i0-

0.05-

0.00-

-p.2

FIG. 2. Faddeev amplitude i(& for the MT III poten-
tial model quartet solution.

FIG. 4. Quartet Schrodinger wave function com-
ponent u4 at fixed angle 8=0' for the MTIII potential
model.
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-0.5-

o.ol

FIG. 5. Faddeev amplitude component E, for the
MT I-III potential model doublet solution.

FIG. 7. Faddeev amplitude tt, for the MTI-III po-
tential model doublet solution.

sion. Even so, the Pauli principle dominates the
quartet scattering length problem to such an extent
that the resulting wave function shows few of the
interesting characteristics of the doublet scattering
problem. We therefore limit our consideration of
the zero-energy quartet continuum functions to
Figs. 1 —4. For convenience we use x=—x~ and
y—:yi in what follows. We plot as a function of x
and y, holding 8 fixed.

In Fig. 1 we see F(x,y) as defined in Eq. (22). By
removing the ud(x) dependence from l(ti, we have
reduced the numerical problem to one of generating
a considerably smoother function. [Note that
F(x,y)~aq asymptotically with y; we have not
plotted this function out to the asymptotic region. ]
The simplification can be appreciated by comparing
F with the Faddeev amplitude l(t t (see Fig. 2) which
does contain the deuteron structure. In Figs. 3 and
4 we see the Schrodinger wave function components
ui and u4 corresponding to 8=0'. At 0' the rear-
rangement channel contribution along y=x/2 is
prominent; the node there (x2 ——0) and along x=0

arises from the short-range repulsive nature of the
interaction. (At 90' only the incident channel plays
a significant role, and uq

—=0.) The absence of signi-
ficant structure in F means that reasonable approxi-
mations to the quartet continuum function can be
made if the deuteron is properly included.

The doublet functions are more complex. In
Figs. 5 and 6 we plot the F, and F, functions, where
lower case t and s refer to triplet and singlet, respec-
tively. Because the Pauli principle does not prohibit
the close proximity of all three particles for this
spin-isospin channel, the short-range repulsive na-
ture of the two-body forces leads to a node in the
simplified amplitude F, from which Pq(x) has be
factored. The Faddeev amplitudes l(t, and f, are
shown in Figs. 7 and 8; the closed channel feature
of f, is very apparent in Fig. 8 where P, approaches
zero asymptotically in all directions. It is the siz-
able difference between g, and g, which accounts
for the large mixed-symmetry component'of the full
Schrodinger wave function in the continuum prob-
lem. In Fig. 9 we depict the Faddeev amplitude

I.O

).0

0.5
LLti)

0.0.

FIG. 6. Faddeev amplitude component I', for the
MT I-III potential model doublet solution.

FIG. 8. Faddeev amplitude f, for the M'rl-111 po-
tential model doublet solution.
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II
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0.5 x -0.5-

0.0.

FIG. 9. Faddeev amplitude combination f~ for the
MT I-III potential model doublet solution.

FIG. 11. Faddeev amplitude combination P for the
MT I-III potential model doublet solution.

combination g used to construct the spatially sym-
metric wave function component u shown in Fig.
10. This g is very similar to the corresponding
bound state function (see Ref. 4) except for the neg-

ative deuteron tail for y & 4 fm. Short range repul-

sion leads to the node at small x; the peak results

from the strong attraction of the MTI-III poten-

tials for interparticle separations of about 1.0 fm.
We remind the reader that, as in the case of the
bound state, f need not be small along x =0 for
potential models exhibiting strong short range

repulsion; it is only the amplitude combination

forming u(x,y} which must be small there. The
rearrangement channel contribution along y~/2
and the approximate zero along that line are prom-
inent features in Fig. 10. The peaks near

(x,y) =(2.0,0.0} fm and (1.0,1.5} fm correspond to
the collinear configurations which maximize the
number of interparticle separations of approximate-

ly 1 fm. The continuum wave function and the
ground-state wave function must be orthogonal;
thus we find the sign change in u between the origin

and the asymptotic region. In Fig. 11 we plot the
U

gt
combination of Faddeev amplitudes needed to

construct the u& and u2 Schrodinger wave function
components shown in Figs. 12 and 13 for 8=0'.
The incident and rearrangement channel structures
are quite prominent. We reemphasize that u~ and

u2 are not small compared to u. However, the
peaks corresponding to strong attraction for config-
urations maximizing the interparticle separations of
1 fm are suppressed in u

&
and U2 compared to those

in u. Finally, in Figs. 14 and 15 we plot u and U&

for 8=90' to illustrate that the rearrangement
channel effects disappear. (A similar simplification
of the wave function structure away from 8 =0' oc-
curs for the bound state; see Ref. 4.) For 8=90',
u2 =—0.

VII. SUMMARY

We have shown that our computational pro-
cedure is sufficiently precise to permit us to gen-
erate useful nd continuum wave functions for appli-
cation to the study of such interesting reactions as

V)

2.0- -0.4

5,

x I.o*

0.5-
-0.I-

D
FIG. 10. Doublet Schrodinger wave function corn-

ponent tc for the MT I-III potential model at fixed angle
8=0'.

FIG. 12. Doublet Schrodinger wave function com-

ponent ul for the MTI-III potential model at fixed an-

gle 8=0'.
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OJ

O. I
~

e=o
-p4-

-0 5-

x -P2-

-0 I-

Vi 8 900

FIG. 13. Doublet Schrodinger wave function com-

ponent U2 for the MT I-III potential model at fixed angle
8 =0'.

nd~ Hy. Our scattering length results for the
Malfliet-Tjon models (with parameters defined in

Table I) are in reasonable agreement with previously
published results, where they exist. However, corn-

paring our scattering lengths extracted from the
configuration space continuum wave functions with
Kohn variational estimates provides a much better
picture of the accuracy. We find using the most
physically realistic of the Malfliet-Tjon models
(MTI-III) that the calculated doublet and quartet
scattering lengths are a2 ——0.70+0.01 fm and

a4 ——6.442+0.005 fm. Thus, the results are in very
reasonable agreement with the experimental values'

of 0.65+0.04 fm and 6.35+0.02 fm considering
that there is no tensor force in the model and that
the fits to the two-nucleon phase shifts are not that
precise.

We have also studied graphically the Faddeev
amplitudes and full Schrodinger wave functions for
the zero-energy continuum problem. We have iden-
tified the important nodes and peaks due to short-

e=go

2.0.

l.5.

x IO-

0.5-

0.0'

FIG. 14. Doublet Schrodinger wave function com-
ponent u for the MTI-III potential model at 'fixed angle
8=90 .

FIG. 15. Doublet Schrodinger wave function com-
ponent u~ for the MTI-III potential model at fixed an-

gle 0=90'.

range repulsion and strong attraction in the two-
body forces as well as the prominent features due to
the deuteron structure in the incident and rear-
rangement channels, the Pauli principle in the quar-
tet state, and the orthogonality (with the ground
state) requirement in the doublet state. In particu-
lar, we have illustrated the importance of removing
the known structure of the deuteron wave function
from the asyinptotic region, which eases consider-
ably the difficulty of numerically modeling the
three-body wave functions there. Our illustration of
the complexities of the exact solution should help
provide an understanding of why simple approxi-
mations to the continuum problem have failed.

Note added in proof. It has come to our attention
that Alt and Bakker' have also calculated UPA es-
timates of a2 and a4. Their results are in essential
agreement with those of Ref. 8.
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APPENDIX: FERMION EQUATIONS

For the spin-dependent, partial-wave-local poten-
tial models of Malfiiet and Tjon, the wave function
in the doublet case has a singlet and a triplet com-
ponent. Defining P, as the reduced amplitude for
the singlet component and P, as the reduced ampli-
tude for the triplet component, one obtains the cou-
pled channel equations:
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(Ala)

(A lb)

«—P, —U, (xt) tttb, + dp, [—,P, (x2,yg) ——,Pt(xg, y2)]4 gy
2

r

3 At+— —v P, —U, (xt) tI},+ dIJ, [—~ tIts(x2~y2)+ ~ At(x2~y2)]4''
where U, and U, are m/R times the singlet and triplet components of the two-body interaction. For large
values ofyt we have

(('t, (x t,yt }~0,
(A2)

Following the procedure described in Sec. II for the boson case, we define

ft(xl yt ) =[yt —~t(» y t )]ud(x1 ) ~

Along p=p, „we have the boundary conditions

F, =O,

(A3)

(A4)
8F, =0.
Bp

In the case of quartet scattering one has only a triplet component, and the single equation describing the
continuum wave function is

BtI} 3 BtI} t ' xtyt
2+—

2
tr P —U—,(xt) (('t ——, dp, ((}(xz,y2) =0,

Bxt' 4 By,
' ' ' -t x2y,

(A5)

where for large values of y t

Q~(yt —a)ug(xt } .

Thus we write

P(xt,yt)=[yt F(xt,yt )]ud(—xt)

(A6)

(A7)

tt (xt yl )+w(x2 y2)+w(x3 y3 }

1 I- [W(x2,y»+W(x3, y3}v6

—2t)r (xt,yt)], (Al 1)

and solve for F(xt,yt) in the same manner as for
the boson case.

In the case of the coupled-channel problem, the
relation between the Faddeev amplitude solutions
above and the Schrodinger wave function is not as
trivial as for the single-channel problem. The am-
plitudes g, = ttt, /(x ty t ) and g, = ,tI}(/x ty)tean be
combined as

(A8)

and

(f, +g, ) (A9)

These amplitudes become the basis states for con-
struction of the spatial functions u (completely
symmetric) and v, and vz (mixed symmetric):

v2 ~ [W(x3 y3) W(x2 y2)l .
&2

The full Schrodinger wave function is then

P=u$0+v2$1 —V1$2 ~

(A12)

(A13)

where $0 is the fully antisymmetric spin-isospin
function and ((('tt, tI}2) are the spin-isospin functions
exhibiting mixed symmetry under the permutation
transformation operations. These spin-isospin wave
functions should not be confused with the reduced
radial wave functions we introduced earlier. (See
Schiff' for a more complete discussion of the spin
and isospin functions of three spin- —,, isospin- —,

particles. )

For the quartet system the Schrodinger wave
function is simpler, being constructed from the sin-
gle Faddeev amplitude 1(t:
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0 =—U3'g)+U4'g2 .

Where the wave function components Us and v4

are defined by
1

U3 [4(X2 3 2)+$(X3,3 3)—2$(X1,3'i)],

v3
U4=

2 lW&33'3) —4(&232)].

The isospin functions rli and F12 are those of
Schiff, ' and we have suppressed the obvious quar-
tet spin functions.
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