
PHYSICAL REVIEW C VOLUME 26, NUMBER 3 SEPTEMBER 1982

Gamovr-Teller strength at high excitations
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A perturbative calculation is reported for the mixing of Gamow-Teller strength with two-

particle two-hole configurations at high excitation energies. We find that roughly 50% of the
Gamow-Teller strength is shifted into the region of 10—45 MeV excitation for the nucleus Zr.
This would explain a substantial part of the continuum background seen in the 200 MeV (p, n )
reaction.

NUCLEAR STRUCTURE Zr, Gamow-Teller strength function,

E,„10—45 MeV, theory.

The recent elucidation of the giant Gamow-Teller
state in heavy nuclei by the (p, n) reactions presents
a paradox. There is a we11-defined peak whose ener-
getics is reproduced by the Tamm-Dancoff approxi-
mation (TDA) shell model theory, ' but the strength
is apparently less than half of the predicted value, ~ 3

Part of the suppression can be ascribed to the I-
isobar admixtures in the nuclear wave functions, 4 6

but part is undoubtedly due to conventional nuclear
mixing. 6' For example in the case of 4'Sc, Towner
and Khanna found that more strength was depleted
by ordinary nuclear configuration mixing than by the
6 amplitudes in the wave functions.

In this article, we will examine in some detail the
distribution of the strength that is lost to the
Gamow-Teller peak due to configuration mixing.
Our motivation is the presence of excitation strength
in the (p, n ) reaction at 0', for excitation energies
ranging up to —50 MeV above the Gamow-Teller
peak. ' We anticipate that much of this excitation
strength is due to Gamow-Teller strength for the fol-
lowing reasons. The main other possibilities are mul-
tistep excitation, and excitation by operators with or-
bital dependence, e.g. , [YL,(r)or ]J Multistep r.eac-
tion cross sections characteristically rise with increas-
ing excitation energy, due to the greater number of
intermediate states possible for higher energy losses.
However, the (p, n ) reaction cross section falls with

energy loss up to excitation energies beyond 50 MeV.
This is clearly seen in the data of Gaarde et al. , '
which we reproduce in Fig. 1. Furthermore, explicit
calculation of multistep reaction cross sections indi-
cates that single step should dominate at forward an-
gles when the excitation energy is less than half the
beam energy. Concerning the possibility of single-
step excitation with L W 0, we note that distorted-
wave impulse approximation (DWIA) calculations of
angular distributions predict that the 200 MeV (p, n )
cross section increases with angle for all multipoles
but L = 0. The experimental angular distribution in

th

C:

ho
O

Xl

el

5—

0

(p, n)

Ep= POO MeV
i88T~ 8 Oo

II2 S
IAS

208pb

124S

5— 4OCa SDZy

0 ~ ~ s ~

140 160 180 200 140 IGQ 180 200
E„(MeV)

FIG. 1. Differential cross section for the (p, n ) reaction at
200 MeV and 0' scattering angle, from Gaarde et al. (Ref.
3). Note the long tail at excitation energies above the
Gamow-Teller peak, which is present only in the nuclei with

neutron excesses.

the continuum region is flat near 0', indicating that
L W 0 cannot dominate the 0' cross section. A
model calculation of the continuum cross section
which assumed no Gamow-Teller strength in this re-
gion, failed to reproduce the 0' continuum cross sec-
tion by a factor of 3, while agreeing at larger angles. 'o

In contrast to the (p, n ) results, the model fit the an-

gular distribution of the (p,p') reaction quite weil,
down to the lowest angles measured. More micro-
scopic calculations of the continuum region have
been made by Osterfeld, "who also finds that L W 0
multipoles are insufficient to explain the 0' cross sec-
tion. The angular distribution between 0' and 10'
can be well fit as a sum of L = 0, }and 2 mul-

tipoles. " According to the fit, roughly half of the 0'
cross section for ~~zr(p, n ) at 30 MeV excitation en-

ergy is due to L = 0.
Our calculation of the Gamow-Teller strength in

the continuum will be based on second-order pertur-
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bation theory, using the best model of the nuclear in-
teraction at our disposal. At the most naive level, we
anticipate the outcome of the calculation by the
second-order perturbation effects on the single-
particle wave functions. We know that the single-
particle probability is reduced by about 25% by corre-
lations, and so we could expect a 50% reduction of
Gamow-Teller strength from the graphs shown in
Figs. 2(a) and 2(b). This strength would be shifted
to the continuum region extending up to —200
MeV, with the tensor correlations responsible for the
highest energy components.

The actual shift in strength may differ substantially
from the predictions of this argument for the follow-
ing reason. There are other graphs which contribute
in the same order in the interaction to the strength
function, one of which is shown in Fig. 2(c). These
ground state correlation graphs are coherent with the
graphs of Figs. 2(a) and 2(b) and therefore all must
be calculated together. Whether the ground state
correlations interfere constructively or destructively
with the final state correlations depends on the na-
ture of the excitation operator and the residual in-
teraction. For scalar excitations, the effect of the
ground state correlations is to suppress the transfer
of strength to higher energies, i.e., the strength dis-
tribution tends to be unaffected by the presence of
correlations. This may by illustrated schematically
with a one-particle model, in which the operator
transfers a large amount of energy compared to the
momentum transferred. Then the perturbation am-
plitude of the matrix element to a high energy state
involves the sum

&p'l~lp") &p" Io lp)
E —E„+E,

P P

X
&p'I& lp"'& &p"'l~lp&

III E III +EP
P P

where lp) is the initial state, lp') the final state, 0 is
the excitation operator, and E is the energy
transferred by the operator. The energy of the final
state is E,=E+EP. The condition of low momen-

P
turn transfer by the operators requires that p" =p
and p"' =p'. Using this to replace the denominators

&a)

FIG. 2. Perturbative graphs to calculate the strength func-
tion for an operator at high excitation energies. Graphs (a)
and (b) represent final state interactions of the particle and
hole. Graph (c) is an example of ground state correlation
amplitudes interfering with a final state interaction.

E —E „+EP =E and E —EP =+E, we see that
P P

the denominators are equal and opposite. Thus the
amplitude is proportional to the commutator of the
potential and the excitation operator.

&p'1[v, e]lp)
E (2)

Operators that are spin- and isospin-scalars commute
with the potential, and thus the high energy strength
is small. However, the Gamow-Teller operator o.v
does not commute with the nuclear interaction, par-
ticularly the tensor interaction. We thus do not ex-
pect as much of a cancellation between final state and
ground state correlation amplitudes; it is even possi-
ble that they add coherently.

We study the nucleus Zr, with the following
Hamiltonian. The single-particle wave functions are
eigenstates of a Woods-Saxon potential, in which the
continuum has been discretized by demanding that
the wave functions vanish at r = 12 fm. This causes
some unphysical structure in the continuum function,
so only the average predicted strength will have signi-
ficance. The residual interaction was chosen with S-
wave components given by the Reid soft-core effec-
tive interaction of Ref. 13. This interaction is based
on a Yukawa fit to the Brueckner Gmatrix, with a
long-range part identical to a one-pion-exchange po-
tential (OPEP). We neglect the odd partial waves
and express the interaction in momentum space as

v, (q) =
m„

t

2 2m~ ma—o~ aqua~ rq ~ ~ +(—424+066o~. oq+2. 17rt ran+1.41ot oqr~ rp)q2+m„q2+ m, 2

2

+ (3.33 —0.53o ( o, —1.69'& r~ —1.11oi r,~, r, )
mb

q +mb
(2)

where f=0.97, m, = 2.5 fm ', and mb =4 fm '. We take the tensor interaction to have the same form, fit to the
Reid soft-core G-matrix elements of Ref. 13. Unlike the central interaction, the tensor interaction can be well
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fit with a two-term Yukawa. The fit is insensitive
to the range of the short-range term, and we have
taken

12

Vr(q) = — (3trt qo. 2 q —at o.2q )f
m~ 3

TABLE I. Contributions to Gamow-Teller strength in

the region 10—45 MeV excitation in Zr, P(E) dE, with
10

P (E) defined in Eq. (4). The partial sums need not add to
the total because of possible coherence of amplitudes.

1 089
m 2+q2 m 2+q2 (3)

JP Graphs (a) + (b) Graphs (c) + (d) Total

Both direct and exchange matrix elements of the in-
teraction must be included to reproduce the G-matrix
elements. The matrix elements between shell model
states are computed in momentum space, using the
formulas of Ref. 14. [The equation following (Al)
in Ref. 14, for a, , should include a phase

(—1)" ' "'.]
The strength function can be formally written as

I/m times the imaginary part of the response func-
tion, which allows one to see that the only graphs
contributing to the strength function at E = e~ + e,
—eh —&, can be expressed as the square of the sum

h

of the four amplitues shown in Fig. 3. We included
in the calculation all of the 2p-2h states that can be
excited in Figs. 3(a) and 3(b), and only computed
Figs. 3(c) and 3(d) for these states. There are
roughly 20000 states that need to be considered in

the 10—45 MeV excitation energy range. In Table I
the total strength for this region is tabulated, broken
down by type of interaction and graph. We see that
the central and tensor interactions are roughly of
equal importance, and that they add incoherently to
the strength. We also see that the separated ground
state correlation contribution is somewhat smaller
than the final states correlation contribution, and
these tend to also add incoherently.

The distribution of strength with excitation energy
is shown in Fig. 4. The strength function P(E) is
defined with a normalization of 1, i.e.,

Tensor
Central
Total

0.13
0.25
0.38

0.06
0.15
0.20

0.20
0.36
0.56

P = ' =0.016/MeV .
35

This would make a significant background in the
(p, n ) reaction. According to Fig. 7 of Ref. 3, the 0'
cross section for the 200 MeV (p, n ) reaction should
have a value of

GT

dQ 0.
= (5 mb/sr)(i Io.r

I f )'=150 mb/sr

The abscissa in Fig. 4 shows excitation energy
with respect to the ground state in 9 Nb. The
Gamow-Teller peak, which is well reproduced by
TDA theory, would lie just off the figure on the left.
However, our perturbative calculation does not in-
clude the collective energy shift, and so we would un-
derestimate the strength in the region around 10
MeV excitation. If the calculated strength function
were smoothed out to compensate for spreading
widths and the discretized single-particle spectrum,
the strength would decrease from P =0.025/MeV at
E = 10 MeV to P =—0.011/MeV at E = 45 MeV,
with an average value

P(E) =
X&iIar If )'B(E—E;()
f

$ &t I ~r I f )'
f

(4)

for Zr. This is the full Gamow-Teller strength, as-
suming no 5 mixing, etc. The Q mismatch at 30
MeV excitation energy reduces this cross section by a
factor 0.60. Our calculation then predicts that the

h p h p O. l

P(E)
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FIG. 3. Four types of amplitude included in the actual
calculation. (a) should of course also include the graph with

h and h' interchanged.

FIG. 4. Calculated strength distribution P(E) for the
Gamow-Teller operator in Zr. Energies are measured with

respect to the ground state of Nb.



1326 BRIEF REPORTS 26

cross section in the upper continuum region will be

GT

dO dE dO o.
=P (E ) = (0.011)(0.6) (150)

=1.0 mb/srMeV . (6)

The experimental cross section at 30 MeV excitation
is 2.8 mb/sr MeV. Thus the configuration mixing is
strong enough to account for a substantial part of the
background.

It is difficult to be more quantitative in our con-
clusion. Since the function P (E) depends quadrati-
cally on the interaction, it is very sensitive to the as-
sumed interaction. The G-matrix interactions are
pretty well determined; newer potentials such as the
Paris potential yield virtually identical G matrices. "
But the G-matrix theory itself is not completely reli-

able, in view of the well-known problems of satura-
tion of nuclear matter. Also, we neglected 6 mixing,
and higher order interaction effects. Some of these

effects, such as the renormalization of the strength in
the Gamow-Teller state, would tend to reduce the
mixing into the continuum, but other effects such as
the coupling to collective vibrations would give an in-
creased mixing.

The function P (E) is expected to drop off at
higher excitation energies, because the off-diagonal
matrix elements of the central force decrease rapidly.
Unfortunately, computer limitations restricted the
present calculation to 45 MeV excitation. It would be
interesting to extend the calculations to higher excita-
tions with a simpler model, to see if the overall shape
of the energy spectrum is reproduced. Finally, it
would also be interesting to study the strength distri-
bution for other operators, for example, the mass
quadrupole operator, where the coherences might be
different.
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