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One-loop diagrams in nucleon-nucleon scattering
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Within the framework of the Blankenbeckler-Sugar equations the effects of one-loop

corrections to the driving force are studied in the two-nucleon system. In particular, contri-

butions from the direct and crossed box two-pion exchange diagrams are calculated. An

analysis is made at the one-loop level for both pseudoscalar and pseudovector pion-nucleon

coupling using a geometric unitarization. In a model with one boson exchanges it is shown

that the agreement between the Bethe-Salpeter and the quasipotential results does not im-

prove in all partial waves when the one-loop contributions are included. Various qualita-

tive fits to the experimental data are presented for such a model.

NUCLEAR REACTIONS NN system, quasipotential equations com-

pared with the Bethe-Salpeter equations. Method to calculate one-loop

contributions. Comparison of pseudovector and pseudoscalar pion-

nucleon coupling at the one-loop level.

I. INTRODUCTION

In the search for approximations to the Bethe-
Salpeter equation (BSE) one is led to consider quasi-
potential equations (QPE}, which have mathemati-

cally a more simple structure. In a previous paper'
we gave a brief summary of this approach, and ex-

amined the effects of correction terms for the case
of the Gross approximation. 2 In this paper we ex-
tend our studies to the case of the Blankenbeckler-
Sugar (BbS} approximation, where it is possible, in

contrast to the Gross approximation, to include the
contributions of the crossed-box diagrams without
essential difficulties.

Historically the pion-nucleon coupling is assumed
to be of the pseudoscalar (PS) type,

pv ~ . p,~ NN gpvf=rsiu&4 (1.2)

necessitates the intraduction of a cutoff in momen-

tum space. However, since the basic underlying

theory may be in terms of mare fundamental fields,
one might consider these pion-nucleon couplings as
phenomenological representations of an effective in-

PS
~eNN gPSPYS+0 0

The main reason for this choice is the fact that a
theory with this type of coupling is renormalizable.
The other choice,

teraction thereby making the argument of renormal-

izability less essential. Analysis of pion electropro-
duction and photoproduction experiments3 as well

as calculations of the nucleon-nucleon phaseshifts
with the BSE (Ref. 4) indicate that pseudovector

(PV) coupling, Eq. (1.2), might be preferred above

PS coupling. Some aspects of this problem are con-

sidered here within the QPE approach using the

BbS equation.
In particular, the effects of the two-pion-

exchange (TPE) processes are discussed for both PV
and PS pion-nucleon coupling. These TPE contri-
butions play an important role in the description of
the nuclear force at intermediate distances. In stud-

ies of the BSE with one-boson exchange (OBE} it
was found that the negative-energy contributions
in a PS theory lead to extremely strong effects in

the nucleon-nucleon interaction especially in the
lower partial waves. Possible cancellations of these
contributions by the crossed TPE diagram are ex-

amined here in detail. In general we find that this

compensation does not take place in all partial
waves.

The organization of the paper is as follows. In
Sec. II we briefly introduce the BbS approximation
for particles with spin. Our treatment differs

slightly from previous calculations ' in the sense

that we also allow for negative-energy spin com-

ponents in the intermediate states. To study the
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TPE effects we need to compute one-loop diagrams.
In Sec. III we describe a way to evaluate the direct
and the crossed-box diagrams for nucleon-nucleon
scattering. The effects of the TPE processes are
discussed in Sec. IV at the one-loop level using
geometric unitarization. We find that the box dia-

gram contributions are badly approximated in the
quasipotential approach, as are the negative-energy
intermediate states. The latter result is confirmed
in Sec. V where the BbS equation is compared to
the BSE, with and without negative-energy states.
Section VI is devoted to a description of a number
of qualitative fits of the BbS phaseshifts to the ex-

perimental data with the corrections from the direct
and crossed box contributions included. In the last
section we make some concluding remarks and we

note some essential difficulties in calculating the
I

electromagnetic properties of the two-nucleon sys-
tern within the BbS approach.

II. THE 81S APPROXIMATION

The form of the BbS equation is taken to be
slightly different from the one usually used. The
procedure followed by Partovi and Lomon' is to
truncate the Bethe-Salpeter equation by neglecting
the negative-energy states and to approximate the
positive-energy BS propagator by a quasipotential
propagator. In our approach it is not necessary to
drop the negative-energy states. We write the BS
propagator for two spin —, particles as the product
of the propagator for two scalar particles and a
two-particle spinor operator:

P(()
(1)

2
+p —m

P(2) —p —m(2)
(2)

—+p —m +isP
2

P 2

2
——p —m +is (2.1)

Here P is the total and p the relative momentum of the two nucleons with equal mass m. The scalar
propagator is then replaced by a dispersion integral

'2e

2n.i I, , f(s',s)5'+' —+p —m 5'+'ds P'
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—P

l

(2.2)

where 5'+' means that only the positive energy root
of the argument is to be included. In Eq. (2.2),
S=P =4E and P'=v's'IsP. To reproduce the
two-particle unitarity condition the otherwise arbi-

trary function f must be unity when s' equals s.
Following Ref. 6 we make the special choice

2v s'
f(s',s)= ~s'+ s

(2.3)

in5(pp)

(E+Ez) (E~ E ie)——(2.4)

where A+ is defined in terms of the helicity spinors
defined in Ref. 7:

A+ =XU~ U)

As a result we get for the BbS propagator for parti-
cles with spin

(&)

g (pp,p) = (E+E~ )A++(E E~)A—
(2)

X (E+Ep)A++(E Eq)A—

(2.5)

Introducing the energy-spin states +, —,e, and
o, we find that the propagator is diagonal in this
representation:

1
g++(po p) =in'5(po)

Ep —E —ie '

g (pp, p) =in5(po)
(E, +E)' (2.6)

gee(PO~P) =goo(PO~P)

1= —i~5(po)

and all other elements are zero.
The effect of the BbS approximation is that all

states that are odd in the relative energy are elim-
inated. For J@0 we are left with six channels in
the case of the coupled triplet states and with four
channels in the case of the singlet and coupled trip-
let states:
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coupled triplet: (J—1)z, (J+1)z, (J—1)J, (J+1}J,'Jz, JJ,
uncoupled triplet: Jq+, JJ, (J—1)q, (J+1)g,

singlet: 'JJ+ 'JJ 3(J—1)q (J+1)q .

(2.7)

For J=0 the states with L =J—1 or with S =1
and L =J are absent, so that we have

coupled triplet: Po+, Po, So,
singlet: 'So, 'So, Po .

(2 &)

As in Ref. 1 we use the term two-channel approx-
imation when we ignore the channels containing
negative-energy states. The case with all channels
included will generically be called the six-channel
calculation. The solution of the resulting equations
is obtained in the same way as described in Sec. II
of Ref. 1.

1
X 2 2(k +ui+u2+u3) —m4

The scalar four-point function

DO= —i kD

(3.1)

(3.2)

I

in Ref. 9. For convenience we repeat here the essen-
tial steps of this treatment. Consider a four-point
function with external momenta u;, internal masses

m;, and a loop-momentum k, as defined in Fig. 1.
The product of the propagators of the internal par-
ticles is abbreviated as

1 1 1

k —mi (k+vi) —m2 (k+ui+u2) ™3

III. EVALUATION OF THE
TWO-BOSON-EXCHANGE DIAGRAM

In the analysis of the two-boson-exchange effects
it is necessary to evaluate the matrix elements of the
direct and the crossed box diagrams between partial
wave states. In this section the procedure is
described and a simple example is treated in detail.
The method is based on the treatment of general
four-point functions at the one-loop level described

l

D2„„= i Id4k —k„k D

=01 pD11+U2,pD 12+U3,pD13, (3.3)

is a I.orentz-invariant function of the external mo-
menta and the internal masses (which are assumed
to have an infinitesimal negative imaginary part}.
The higher moments of the four-point function can
also be written in terms of scalar form factors, for
example, we can write the first and the second mo-
ment as

Dl„= i Id —kk„D

=ui „vi „D21+u2„uz ~22+u3„v3 „D23+ u», u2 ~ D24+ ui „,u3 „D25

+ v2 p, u3 y D26 —go~27, (3.4)

where I a„,b„)=a„b„+a„b„Inour work. we do
not need the higher moments. The numerical

values of the form factors D 11,D 12,. . . can be ob-

tained from the program FORMF written by Velt-

man.
We now turn to the evaluation of the box dia-

grams used in our calculation. As an example of
our procedure we will work out explicitly the ex-

pressions for the crossed box of pions, whereby the
pion-nucleon interaction is given by the PS cou-

pling.
The momenta are chosen as shown in Fig. 2. The

contribution of this diagram is

V4

k )( m)

V

FIG. 1. Definition of the external momenta, the
internal masses, and the loop momentum of the one-

loop four point function.
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(1)X= i—a Jd k y5(k+Qi+m)y5
The expression for the crossed box is now written in
terms of DO, D 1, and D 2:

(2)
X y,(k+P2+m)y, D, (3.5) X=AD 0+8"D1p+C""D2p„. (3.10)

1

(k+Q, )'—m' ' (3.6}

The factor a contains the coupling parameters, the
factors from the Feynman rules, and the isospin

operators

1 gpsa=
4~' 4~

'2
(1) (1) (2) (2)

l l (3.7)

The isospin operators contribute a factor of —3 in

an isospin zero state and a factor of 5 in an isospin
one state, which can be found immediately from the
fact that

(1) (1) (2) (2) 4 I 2 3 (3.&)c l l J

where I is the total isospin operator.
The connection between the crossed box con-

sidered here and the general four-point function of
Fig. 1 is given by the following substitution

Ui =P2~ U2 = Q2~ Us =Pl, V4 =—Q I,
(3.9)

yg1 ——P, m2 ——Nl, ttl3 =P, Ptl4=Nl .

where D is the product of the scalar parts of the
pion and the nucleon propagators

1 I 1

k —p (k+Pq) —m (k+P2 Q2)2——p2

PUi-'. (p)= m+y'(Po+&, ) Ui-'. (p ),
where

p =(po, p ) and Eq Mm + p
2——. (3.13)

The upper index + labels the positive and
negative-energy solutions. With (3.12) we can
rewrite any box diagram encountered in our calcula-
tions in terms of the sixteen effective operators:

The operators A, 8, and C are found by comparison
with (3.5):

A =a(gi —m)'"(Pq —m )' ',
Bq ——aye"(P2 —m )' '+a(gi —m}'"yq ', (3.11)

(1) (2)Cp„——aye y„

After substitution of (3.3) and (3.4) into (3.10) we

obtain an expression in terms of the scalar form
factors multiplied by operators which depend only
on the external momenta. The operators multiply-

ing the form factors are listed in the first column of
Table I.

Next we evaluate, in the center of mass frame,
the matrix elements of the box diagram between
two-particle helicity states defined in Appendix B
of Ref. 7. The two-particle states are direct prod-
ucts of one-particle helicity spinors Ui- which satis-

fy the (off-mass-shell) Dirac equation

0 = 1(1)1(2)

0 y(1)yP(2)

09 y5 y5
(1) (2)

(1) (2)013=y5 05y5

0 (1)1(2)
2 yp

06=yp' 0, ,
(1)

010 yO 09 ~

(1)

(1) vp(2)
014=0'~y0

03——1 yp
(1) (2)

07——05y()
(2)

(2)
11 9yp

(1)
015 yp 014 ~

(1) (2)
04—yp yp

08 ——yp' Ogyp
(1) (2)

(1) (2)
012—yp 09yp

(2)
016=014yp

(3.14)

X=gca0„, (3.15)

Parity conservation requires that y5" always com-
bines with y5 '. The operators are linearly indepen-

deiit, but they do not form an orthogonal basis,
since 014 contains Oj and 08. Applying the above

procedure to the operators listed in the second
column of Table I we readily find that only the first
five operators in (3.14) are needed for the simple ex-

ample considered here. The explicit results are
given in the third column of Table I. With the
above reduction Eq. (3.10) assumes the form

I

Q2, ),2, P2 P2, X2, P2

FIG. 2. The crossed box with external momenta P
and Q, hehcities A., and energy-spin p. The pion mass is

p and m is the nucleon mass.
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TABLE I. The operators and effective operators corresponding to the various form factors of the crossed box diagram
for pions with PS coupling. We-use the notation:

E; =(V s I2)+p() p(—Ep, Ef =(V s l2)+qo p)E—q,
E"=(Vs I2) po —pi&—p ~ Ef =(Vs I2) qo —piE—q

Here p; =+1 is the energy spin index of particle i, as indicated in Fig 2.

Form
factor

DO

D11
D12
D13
D21
D22
D23
D24

D26

D27

Operator/a

(g, — )")v,— )"'

~(("(~, m)")+-(y( m)("~-((i)

y (1)yj(2)
2 2

y(()y(&)
gy(1)p (2)

1 2
p() )y(2)+ g(()p(&)

y(1)y (2)+gy(1))y(2)

(()p(2)

Effective operator/a

E(1)E(2)Pf i 4

m0—(+m (V s Ef'")0—, mEf —'03+(V s Ef"')E( '0—
4

—05

where the coefficients c„are functions of the exter-
nal momenta, the masses, and the energy spina of
the initial and final states. Using the results in
Table I we have

c( ——m [—D21 —D22 —D23

+E(("Ef '[D 24 D26]—
+v sE;"'[D23 D25]—
+V sE(' '[D 1 1 D12+D21—D24—

—D25+D26]

(3.16)

2D 24+ 2D 25 —2D 26],

cz mEf" [D 11——D12—D 13——D 22+D 24—D 26]

+mE "[ D21 —D23+D2—4+2D25 —D26]

+mV s [D21+D22—2D24 —D25+D26],

C3 =mEf '[ —D 22+D 24 —D 26]

+mE '[ D 1 1+D12+D—13—D21 —D23

+v s Ef"[D13+D26]

+V sEf' '[D22 D24]—
+s [D25 D26], —

c5 ———D27 .

The partial-wave decomposition '" can be done
term by term. In the center-of-mass frame we in-

troduce total and relative momenta

+D24+2D25 —D26]

+mv s [D23 D25+D26], —

c4 E'Ef '[DO+D —1—1+D 12—D 13+D24 —D26]

+E(' 'E("'f D 11+D13—D21——D23+2D25]

+Ef 'Ef"[ D12—D22]—

P PPi= —+p
2

' 2

P P
Qi= —+q, Qz= ——q

I' =(V s,O),

so that a general term in Eq. (3.15) reads

(3.17)

c (Vs po qo P q Pipip(pz)(q Pipz~i~i I o. I P'P(P2~1~2) (3.18)
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where p is the energy-spin index and A, the helicity. It is clear from (3.18) that in the Clebsch-Gordan algebra

only the matrix elements of the operators introduced in (3.14) are needed since it involves only summations

over the helicity index. Only one step, the integration over 8&q, cannot be done analytically since the scalar
form factors calculated by FORMF still depend on this angle.

We define

' 1/2 ' 1/2
2L'+1 2L +1

0„(J;L 'S'p', LSp;p, q, 8)= +

XXCo 'Co'"d' (8) Q C,"'",'. 'Ci, ", 'i,'i(q, 8, 0; p'A, &A& ~0„~p,0,0;pA, p },
A. A,

1 2

k]A g

(3.19)

where p labels the four combinations of pi and p2. The partial-wave matrix element corresponding to the term
(3.19) is then given by

pq Jd cos8c„(v s,po, qo,p, q, 8;p', p)0„(J;L'S'p', LSp;p, q, 8) . (3.20)

The matrix elements (3.19) are evaluated with the
algebraic program SCHOONSCHIP, for the three
different types of channels: singlet, uncoupled and

coupled triplet, and arbitrary J. They are then com-
bined into a FORTRAN subroutine which evaluates,

given the coefficients c„, the partial wave matrix
elements (3.20).

In practice the coefficients c„are also evaluated

with SCHOONSCHIP, exactly as described in the ex-

ample, since for the more complicated cases of
pseudovector pion-nucleon coupling and of vector
exchange it is very elaborate to calculate them by
hand. The SCHOONSCHIP code performs the algebra

by moving the P terms to their corresponding spi-

nors, inserts the Dirac equation, and reduces the
remaining operators to the standard form. A great
advantage of the algebraic program is that the algo-
rithm is the same for the crossed and the direct box,
so once the algorithm is tested for the direct box it
also works correctly for the crossed box of which
we can only check some on-shell values given in the
literature. ' Some extra complications encoun-
tered in the evaluation of the box diagrams for
more general couplings are discussed in the Appen-
dix. There we also give a discussion of the tests
performed on the code.

In the remaining part of this section we discuss
some symmetry properties of the kernel for the case
of the BbS equation which reduce the number of
coefficients c„. In general one has to calculate 16
coefficients for each operator 0„, but owing to the
symmetry in po and qo this number reduces to 10

for the BbS kernel. The partial-wave states intro-
duced in Ref. 8 for the BSE are divided in states
which are even in the relative energy po and in
states which are odd. In the BbS equation the rela-
tive energy is set equal to zero, which means that
certain matrix elements of the kernel will vanish.
For example, in the singlet NN channels we find

(3.21)

From this we deduce

('Jg+ ~E
~

(J+1)g}=V2('JJ+~E
~

(J+1)J+ } .

(3.22)

Here e and o label the even and odd combinations of
the p-spin states (+—) and ( —+}. Working out
all the combinations for every channel one can show
that one only needs the coefficients c„ for (p&,pz)
equals (+,+ ), ( —,—), or (+,—), in the initial
and final state and with (+ —) in the final and

( —+ }in the initial state.

IV. CONSIDERATIONS AT THE
ONE-LOOP LEVEL

Studies of the two-nucleon system with the
BSE ' have indicated that the experimental phase
shift parameters can better be described by a pseu-
dovector theory for the pion-nucleon interaction
than by a pseudoscalar theory due to the strong
coupling between positive and negative-energy
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FIG. 3. The tree (a), the direct box (b), and the
crossed box diagram (c)~

states in the latter case. The possibility of a
suppression of the negative-energy states by the
crossed two-pion exchange contribution has some-
times been suggested. ' In this section we study this
question in the one-loop approximation using a
geometric unitarization of the nucleon-nucleon am-

plitude. In particular, the earlier calculations of
Wortman' and Haracz et al. ' for PS coupling are
extended to the case of PV coupling.

The calculation is not complete, because we
neglect the vertex and self-energy corrections. The
diagrams considered here are shown in Fig. 3. The
reason for not incorporating the vertex and self-

energy corrections is that their contributions are ex-
pected to be small. Wortman found their effects for
PS coupling "in the worst case for high energy and
low partial waves" to be about 10% of the other
fourth order amplitudes. ' %e do not expect that
these conclusions will be changed drastically for the
case of PV coupling.

The calculation is similar to Wortman's, we only
use a different method to evaluate the amplitudes,
i.e., as described in the previous section. Our calcu-
lations for PS coupling agree with those of Refs. 15
and 16 except for the lower partial waves. The
differences are to be attributed to the high accuracy
of our calculation of the box diagrams and to the
omission of vertex correction and self-energy dia-

grams. The results are shown in Fig. 4. To get an
idea of the relative importance of the crossed and
the direct box we separately plotted the phaseshifts
obtainrxl from the tree diagram, the tree plus the
direct-box diagram, and from all three diagrams in

Fig. 3 both for PV and for PS coupling. The tree
diagrams give the same result for PV and PS cou-

pling, in view of the equivalence theorem.
In general the one-pion-exchange (OPE) diagram

is not a good approximation, not even for the F3
and F4 partial waves. Adding the TPE box dia-
grams we find a much stronger effect in the PS case
than in the PV case. We find, as was already ob-
served by %ortman, that the box diagrams bring
the OPE results closer to the data. It is certainly

not so that the crossed box always gives a much
smaller contribution than the direct box. In some
partial waves, e.g. , P2, e2, 'D2, 'F3 (for PV), F3,
and F4, the crossed-box contribution is larger than
the one from the direct box.

For comparison the phase shifts have also been
calculated, at the tree level, including all OBE dia-

grams, using the same coupling parameters as in the
BSE given in Ref. 7. Together with the pion-box
contributions they indicate that the PV coupling is
preferred above the PS coupling in such a calcula-
tion. The large effects for PS coupling are due to
the relatively strong coupling of positive and
negative-energy states, as was also found in Refs. 1

and 4.
It has been conjectured by Muller and

Glockle' ' that the BbS equation with a OBE ker-
nel effectively sums all higher order diagrams and is
in that respect superior to the BSE with the same
kernel. The conjecture is based on model calcula-
tions with scalar particles. In our case, where the
spin aspects have been incorporated in their full
complexity, we do not find, at the one-loop level,

any indication that the suggestion is valid.
In Tables II and III we compare the BbS and

Gross approximation to the TPE direct-box dia-

gram, for external on-mass-shell particles, with the
exact value and also with the sum of the direct and
crossed box diagrams. We find that neither of the
approximations effectively sums the direct and the
crossed box. They both represent a rather bad ap-
proximation to the direct box, and also significant
differences exist between themselves, especially in
the (J—1)J waves and in the singlet channels.
Furthermore, from Table II we see that for PV cou-

pling the crossed box dominates the direct box in
the singlet and in the isospin 1 triplet channels, ex-
cept in the (7+1)J waves. For PS coupling the
situation is less clear; in general, the crossed box
gives a contribution of the same order as the direct
box and is negligible only in the Dj channel.
Moreover we see, as is to be expected, that the
negative-energy states give a small contribution for
PV coupling. They do not improve the approxima-
tion to the direct box. This is more strongly the
case for PS coupling where we find that the in-

clusion of the negative-energy states increases the
discrepancy between the exact and the approximat-
ed value. %e therefore conclude that the negative-

energy states are not correctly simulated by these
quasipotential approximations. The same is found
in Sec. V where we compare the solutions of the
BbS equation to those of the BS equation.
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Table V. We consider two different situations. In
the first case we use the BbS equation with all
relevant intermediate states, as described in Sec. II.
This will be called the six-channel calculation, al-
though for J+0 and uncoupled channels we have
four and for J=O we have only three intermediate
states. In the second case we neglect the nonphysi-
cal channels in the intermediate states, i.e., we only

V. EFFECTS OF TWO-BOSON-EXCHANGE
PROCESSES IN THE BbS EQUATION

%ithin the OBE approach one may examine how
the solutions of the BbS equation compare with
those of the BSE. The specific model adopted here
is that of Refs. 4 and 6 with the BS coupling
parameters for the OBE driving force given in

FIG. 4. The phase shifts calculated by geometric unitarization from the OPE ( ), the OBE (0), OPE plus TPE
direct box for PS coupling (——), PV coupling (————), the OPE plus TPE direct and crossed box for PS coupling

( .), and for the PV coupling ( —~ —). The data are the single energy fit of Ref. 19 () and Ref. 20 ( ).
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TABLE II. Comparison of the on-mass-shell TPE box diagrams in different approximations at 200 MeV for PV
coupling. The first two columns give the OPE and OBE Born terms. For the OBE we use the BS parameters given in
Table V. The next four columns give the direct box in BbS or Gross approximation with and without negative-energy
states. The last two columns contain the exact values of the direct and the direct plus crossed boxes.

OPE OBE 2 ch BbS 6 ch BbS 2 ch Gross 4 ch Gross D box D+X box

Si
'Si —DI

3D

Po
ip
3p
3p

3 3P2 —F2
F

lD

D
D3

3 3D3 —63
36
1F

F3
3F

F4 —H4
H4
1G

3Q

—7.47 X 10
—5.61X10-'
—3.51x 10-'
—7.47x 10-'

7.47 X 10
—4.55 x 10-'
—3.81x 10-'

7.02x 10-'
8.68x 10-'
3.48 x 10
3.61x 10
4 23X10

—7.45 x 10-'
—1.21X 10-'
—3.95 X 10
—6.45 x 10
—5.97X 10

1.02 X 10-'
2.04x 10-'
5.68x 10-'
1.26X 10
8.54X 10-'

—1.18
—2.22 x 10
—1.94x10-'
—1.71
—2.97X 10
—2.73x 1O-'
—5.59x 10-'

2.07x10-'
6.32X10 2

2.40X10-'
1.01x 10
4.13x 10
1.64X 10

—1.14X 10-'
—3.56X 10
—6.59X10-'
—5.47x 10-'

2.18X10 '
2.01x 10
5.80X 10
1.53x10-'
8.68X10 '

4.90
2.01 x 10-'

—S.08 X 10-'
8.14X 10
3.22x 10-'
1.19x 10-'
6.39x10-'
8.57 x10-'
5.20X10-'

—8.13x 10
5.41X10-4
9.94X 10
1.20X 10
8.44X10-'

—1.32 x 10
1.34X10-'
2.01 x 10
2.79X10-'
1.99x 10-'

—3.32x10 4

5.61X10-'
4.09x 10-'

4.69
1.90x

—5.11x
7.83 x
3.11x
1.09x
6.07x
8.62x
5.07 X

—8.16x
4.0S x
9.56x
1.26x
8.31x

—1.32 x
1.17x
1.96x
2.76x
1.97x

—3.33x
5.32x
4.03x

8.38
10 ' 2.31X10
10 ' —5.09X10
10 ' 1.23
10-' 3.43 x 10-'
10-' 4.04X10-'
lp —2 7 76X 1p-2
10-' 1.55 X10-'
10 5.95 x 10
10 —8.25 x 10
10-4 2.69X10-'
10 1.10X 10
10 ' 2.07X10
10 9.68 x 10
10-' —1.34X 10-'
10-' 2.64X 10-'
10 2.12X 10
10 4.02 x 10
10 2.27 x 10
10-' —3.37x 10-
10-' 6.66X10-'
10-' 4.24X10-'

8.38
2.30X 10-'

—5.14X 10
1.22
3.24X 10
4.58 x 10
7.76X10-'
1.55 x 10
5.91X10-'

—8.30X 10
3.53X10-'
1.12X 10
2.07X10 '

9.61X10-'
—1.35x 10-'

3.49x 10-'
2.16X10
4.02X 10
2.54X 10

—3.39x10
7.58 X 10
4.28X10-'

3.19
2.98x

—6.17X
4.99x
2.03x
2.77x
3.54x
5.78x
2.45x

—1.02x
—1 99x

6.18x
8.57X
4.29x

—1.72x
2.57X
1.26X
1.92x
1.OSx

—4.34X
2.32 X
2.54X

2.40
1P-2 6 77x 1P

—2

10-' —6.13x 10-'
10 ' 1.41
10-' 1.19X 10-'
1P-2 8 37X ]0—2

10 2.02 x 10
10 1.32x 10
10 —5.92X 10
1O-' —1.12X 1O-'
10 2.75x 10
10-' 5.07X10-'
10-' 7.74x10-'
10 5.19X 10
10 —1.71 x 10
10 ' —2.83X10 '
10-' 4.42 X 10-'
10 4.51 X 10
10 —2.17X 10
1O-' —4.61 x 1O-'
10 1.19x 10
10-' 2.12X10-'

TABLE III. The TPE diagrams as in Table II for PS coupling. The first two columns
have been omitted because they are identical for PS and PV coupling.

2 ch BbS 6 ch BbS 2 ch Gross 4 ch Gross D box D+X box

'Si
Si —Dl

3D

Po
ip
3p
3p

3 3P2 —F2
F

'D
3D

D3
3D 3G

3Q

1F
3F

F4 —H4
H4
1G

36

2.92
2.14X10-'

—4.37x 10
6.00X10-'
3.55 X10-'
2.18X10-'
7.41 x 10
5.81 x 10
5.31 x 10

—6.90X 10
2.58 X 10
1.15x 10
9.19x 10
8.53 x 10-'

—1.11x 10
1.60X10-'
2.28 x 10-'
2.13x 10-'
2.01 x 10

—2.78 x 10-4
6.78 X 10
4.53 x 10

—4.10x 10
2.63 x 10-'

—5.96X10-'
2.67 X 10
2.67 X 10

—7.82X 10
—2.49 X10-'
—8.09 X 10

5.92x10 '
-1.05 X10-'
—1.53x 10-'
—2.92X10 '
—1.65 X 10-'

9.24X 10
—1.92x 10-'
—2.72X10 '
—9.47 X10-'
—4.91x10-'

2.14X 1O-'
—5.38x 10
—7.29x10 "
—2.69 X 10

3.93
2.65 x 10

—4.37x 10-'
7.52 X 10
3.74X 10
7.13x 10-'
7.45 X10-'
8.10X 10
6.27x 10-'

—6.99X10-'
3.33x 10-'
1.17X10 '

1.2S x 10
9.90X 10-'

—1.13X10 2

1.49 X 10-'
2.35x 10
2.78X10-'
2.29 X 10

—2.82x 10
6.52X10 '
4.69x10-'

—6.28
3.42X10 '

—7.44X 10
—3.29X10 '

1.88 X 10
—1.93
—1.44X 10
—1.26X10-'

7.24x 10-
—1.39x 10-'
—3.74x 10-'
—2.13x 10-'
—1.95 x 10

1.10X10-'
—2.65 x 10
—6.51x 10
—4.91x10-'
—4.35x 10-'

2.47 X 10
—7.54x 10-'
—1.69 X 10-'
—1.09x 10-'

8.79
8.65X10 '

—4.70X 10-'
1.16
3.05 x 10-'
6.66X10-'
1.11x 10
1.38x 10
3.09X 10-'

—6.83x 10
1.32X10 '
1.88 x 10-'
2.18X 10
5.01x 10-'

—9.62 X 10-'
2.85 x 10
4.47x 10-'
5.31x10-'
1.18x 10-'

—2.03x 10
8.45 X 10-'
1.00x 10-'

6.54
1.43 X 10

—4.80x 10-'
4.31
1.S8x 10
3.91x 10-'
4.35 X 10
5.33x 10

—8.40X 10-'
1.42 X 10
9.73x 1O-'
1.50X 10-'
1.72 X 10-'
6.14X 10-'

—1.12X 10
1.71x 10-'
2.01x 10-'
2.32 X 10-'

—2.67 X 10
6.33X 10-4
5.71x 10-'
7.51x 10-'
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consider those channels which exist on the (positive)
mass shell. We call this the two-channel calcula-
tion. Unitarity is not affected by this approxima-
tion.

The results of the two calculations are shown in

Fig. 5. The nonphysical channels are repulsive in
all partial waves. They only give a significant con-
tribution in the lower partial waves. The reason
that their effect is small is due to the use of PV
pion-nucleon coupling. In general we find that the
six-channel calculation gives a better approximation
to the BS phase shifts, although the improvement is
often marginal. Only in the 'P& partial wave the
disagreement with the BS results is greater by a
small amount. A more detailed comparison of the
negative-energy contributions calculated from the
BSE with those from the BbS equation, given in

Table IV, reveals that the latter in general overesti-
mates the negative-energy states, especially in the
lower partial waves. In the 'So channel even the
sign of the contribution is not correct, but also in

the P& and D2 partial waves we find relatively

large deviations. The reason that the six-channel
BbS equation seems to be a better approximation to
the BSE is mainly due to the fact that the effects of
the BbS approximation and of overestimating the
negative-energy contributions tend to cancel each
other. Since the effects of the negative-energy
states are small, for PV coupling, it is tempting to
incorporate them perturbatively into the kernel of

the QPE. This can be done by requiring that the
one-loop diagrams are reproduced appropriately by
the QPE.

The box diagrams are included as described in
Sec. II of Ref. 1. The kernel W of the BbS equation

0=~—~gBbsk

is approximated by

+OBE+++D DBbs '

(5.1)

(5 2)

When KzzE denotes the OBE kernel, I represents
the crossed box diagrams of two-boson exchanges,
and D —Dat,s is the direct-box correction

ADOBE(SBS gBbs )ADOBE (5.3)

We first study the TPE contributions, which have
the longest range. The agreement with the BSE is
hardly improved by including the correction of the
two-pion direct box into the driving force, as can be
seen from Table IV. Only the 'So, P2, and D3
phase shifts are significantly improved, although
this could just be accidental since the effects of oth-
er mesons, like the co, are also significant. A re-
markable point is that this correction leads to a dis-
tinctly lower D~ phase shift as can also be seen in
Fig. 5. In relation to this it is interesting to note
that the co contributions and the TPE crossed box
have a negligible influence on this partial wave.
The rather large effect of the TPE contribution in

TABLE IV. Comparison of the solution of the BS equation and the BbS equation at 200
MeV for PV coupling and BS parameters (Table V}. The first four columns show the effects
of the BbS approximation and the negative-energy states. The last four columns give the ef-
fects of the pion and omega box diagrams, in the two-channel approximation.

BS
8 ch

BbS
2 ch

BbS
6 ch

BbS BbS BbS BbS
2 ch 2 ch 2 ch 2 ch
m-D m'+o) —D m —D +X @+co—D +X

'So 5.80 7.90
Si 17.70 17.29
D l

—20,05 —20.08
el 0.323 0.287
I'0 1-09 —3 21
P

&

—14.42 —14.83
I'

l
—20.66 —21.36

I'2 13.68 12.66
I'2 0.97 0.96
e2 —2.69 —2.68

'D2 6.19 6.01
'D, 25.95 24.38
D3 4.67 4.63

10.73
28.21

—17.42
—1.64

1.83
—18.08
—19.98

14.42
1.07

—2.73
6.43

29.11
6.38

5.03
25.56

—17.65
—1.51
—2.48

—18.55
—22.31

12.81
1.05

—2.70
6.11

26.46
6.26

8.66
10.88

—23.47
4.16

—0.96
—18.66
—20.69

12.11
0.99

—2.70
6.39

25.64
4.08

—8.99
19.53

—24.07
2.17
0.18

—14.31
—23.41

9.65
0.94

—3.14
5.94

26.54
4.20

31.09
0.65

—23.88
7.06

—4.34
—22.27
—16.63

17.23
1.00

—1.94
8.29

24.73
3.47

16.97
22.93

—23.98
2.49

—5.52
—23.12
—21.61

13.56
0.94

—2.47
7.92

25.23
3.57
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the lower partial waves is due to the fact that the
centrifugal barriers in these waves are low so that
the short distance behavior is expected to be impor-
tant. In particular, the co-exchange contribution
should play an important role in that region. The
inversion of the S waves, caused by the TPE crossed
box, is remedied by taking the co into account, as
can be seen from Table IV. In Fig. 5 the effect of
the m. +co direct box is shown. This correction and
all the following box contributions are calculated in
the two-channel approximation. The influence of
the ~+co crossed box is rather strong in the 'So,
Po P~~ P2, e2, 'D2, and 'D3 channels, but even in

the I' waves it is not negligible at higher energies.
An important effect of the crossed box is the reduc-
tion of the 'So —Si splitting caused by the direct
box correction. Furthermore, the extra repulsion in
the 'P~ and D3, and the attraction in the Pz and
'D2 can improve the OBE results. As was already
inferred from the one-loop calculation there is in
general no cancellation between the direct-box
correction and the crossed box.

VI. FITS TO THE EXPERIMENTAL DATA

TABLE V. The coupling parameters for the various
fits discussed in Sec. VI. For comparison we also give
the BS parameters of Ref. 7. In all fits we have kept

g /4~=14. 2, gq /4m=0. 33, and g 2/4m. =3.09.

Fit

8
C
D

BS

2
ge
4a

7.34
7.30
7.00
5.99
8.16
7.30

2
gN

4m.

11.0
12.0
10.5
10.0
12.0
11.0

V2
gp
4m

0.43
0.30
0.30
0.43
0.43
0.43

gp

gp

6.8
6.0
5.5
4.8
4.8
6.0

1.5
1.9
1.9
1.9
1.5
1.9

The inclusion of the TPE terms in the kernel of
the BbS equation has the effect that the nucleon-
nucleon phase shifts do not agree well any longer
with the experimental ones. In the search for a new

flt, starting from the results presented in Sec. V, we
have neglected the S waves since they are affected
strongly by the TPE terms and they are very sensi-
tive to any short-range state-dependent force. A
reasonable flt is found by changing g,„ /4' from 11
to 12 and by lowering gz /4ir from 0.43 to 0.30. It
turns out to be rather difficult to reduce the attrac-

tion in the P& and to lower the ez without spoiling
the other partial waves. The new coupling parame-
ters are listed under fit 8 in Table V, where we also
give the parameters for the fit of the two-channel
BbS equation with the OBE kernel obtained in Ref.
6 for comparison, as fit 'A. The resulting phase
shifts are plotted in Fig. 6; The introduction of the
co contributions in the box diagrams solves the
problems for the P& and ez, and in fact we obtain a
qualitatively very nice fit when we neglect the S
waves. The parameters for this fit are listed as fit C
in Table V. In Sec. V we already observed that the
inclusion of the co meson in the box diagrams of the
driving force greatly improves the S waves. In par-
ticular, the inversion of the 'So and S& caused by
the TPE terms is largely canceled. The same hap-
pens'when we go from fit B to fit C. For example,
fit 8 gives, at 100 MeV, 17.8' for the Si and 45.9'
for the 'So phase shift. These values are 48.6' and
35.3', respectively, for fit C, which makes it feasible
to obtain a fit including the S waves. To obtain the
correct splitting of the 'So and Si waves we have
to lower gz/gz from 6.0 to 4.8. The value of
g, /4' is obtained, as in Ref. 1, by fitting the bind-

ing energy of the deuteron. The resulting fit D is
clearly somewhat too attractive in the S waves, and
much too repulsive in the P2 and 'D2 channels.
This can be cured by lowering the cutoff mass to
1.5. This is done in fit E, the other parameters are
given in Table V. The fit in the Po and 'Pi chan-
nels is now slightly worse but the P2, 'D2 and the S
waves are greatly improved. Also the e2 comes up
too fast in this fit.

VII. CONCLUDING REMARKS

We have investigated the possibility of including
the contributions of the direct and crossed box dia-

grams for nucleon-nucleon scattering within a
quasipotential approach. These contributions are
expected to play an important role in the nuclear
force at intermediate distances. One particular way
to account for the TPE diagrams is to calculate the
one-loop corrections to the driving force in the
QPE. However, in so doing we find that it is neces-

sary to weaken in some way the short distance ef-
fects of these diagrams. This is done by including,
in addition, the exchange of the co mesons in the
box diagrams. As a result a reasonable fit in all
partial waves can be obtained.

An interesting conjecture has been made by
Muller and Glockle, ' that the BbS equation with
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one boson exchanges effectively sums all higher or-
der diagrams. Although this conjucture has been
verified for s waves in the case of scalar particles,
no support for it has been found here. Owing to the
complication of spin and isospin the cancellation
between the one loop contributions does not take
place in all channels. Furthermore, the possibility
that the effects of negative energy states could ap-
propriately be accounted for by introducing correc-
tion terms to the interaction in a quasipotential ap-
proach has been studied. Direct comparison of the
results of both the BbS and Gross equations with
the BS results indicates that in neither of them are
the negative-state contributions represented well in
this way.

Using the fits of the nucleon-nucleon phaseshifts
obtained in Sec. VI, we may determine the deuteron
wave function for such a model. However, in con-
trast to the Gross approach there are some concep-
tual problems with the definition of the deuteron
current in the BbS model, as has been described in
Ref. 21. There it is argued that the deuteron
current cannot have the form of the impulse ap-
proximation, since it is then impossible to satisfy
the BbS condition simultaneously for the final and
the initial state. A further complication is that ow-

ing to the energy dependence of the driving force
(when the box diagrams are included) it is necessary
to introduce additional terms in the current opera-
tor. Clearly, it would be of interest to give a con-
sistent treatment of both the two-nucleon system

I

and its electromagnetic properties in such a quasi-
potential approach.
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APPENDIX

~=gpvfr„l's&4 d"0 . (Al)

The nominator of the integrand in Eq. (3.5) then
reads

In the actual evaluation of the box diagrams
along the lines described in Sec. III some additional
complications are encountered. The nominator of
the expression (3.5) will contain higher powers of
the loop momentum. This will force us either to
use higher moments of the four-point function or to
cancel these powers against factors in the denomi-
nator. We choose to cancel the powers of k against
the nucleon propagators, leaving us with moments
of the three- and two-point functions, which are ex-
panded in terms of scalar form factors completely
analogous ".o the four-point function. This pro-
cedure can be illustrated by looking at the same dia-
gram as in Fig. 2, but now we take a pseudovector
pion-nucleon coupling

[ IY s(I +el +mr)s(I +el ~1)] [(I +~2 Q2)rs(I +~2+m)l sI ] (A2)

which can be written, after some straightforward algebra, as

[S, '(Pi —k+m) —(gi+m)(k+gi —m)(j'i+m)]'"[S2 '(g2 —k+m) —(@2+m)(E2—k —m)(F2+m)]' '.
(A3)

S~ and S2 are the scalar parts of the propagators for nucleon one and two, respectively;

1 1
Si ——

2
and S2 ——

(k+Qi) —m (k+P2) m— (A4)

The expression for the box diagram will now also contain the moments of the two- and three-point functions
in Fig. 7.

A second complication is the use of strong form factors at the meson-nucleon vertices. They are, following
the conventions of Ref. 6, of the monopole form

AF(k) =
k —A

where k is the momentum of the meson. For every meson line we thus have a factor
2

(AS)

1 A

k —p k —A

A 1 1 1 1

A —p (k —A) A —p k —A k p—(A6)
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+0(~') . (A7)

Here we gain an order e in accuracy by shifting the
two terms symmetrically with respect to A. In
practice this gain is limited by the accuracy of the
form factors by FQRMF, which is generally 10 to 12
digits. Only in certain situations, far from the mass
shell, the program returns values with significantly
less precision. Another source of inaccuracies is
that k —A in Eq. (A7) can become much larger
than unity. We then expand effectively in

e/k —A, which means that there is a large cancel-
lation of significant digits in (A7). Since we also
have to calculate form factors containing two qua-
dratic propagators we will loose all accuracy in this

This decomposition shows that we also have to
know the form factors with quadratic meson propa-
gators. Since these form factors are not provided

by FORMF we calculate them numerically by taking
the derivative with respect to the mass

r

1 1 1 1

(k —A ) 2e k2 A2 e k Ai+E

way. The optimal value of e in such cases depends
on the external momenta p and q and on their rela-

tive angle 8. In the program which calculates the
box diagram e is taken to be a function of p and q.
The p-q plane is divided in regions with a fixed
value of e which is obtained from a stability
analysis. It is found to be unnecessary to make e a
function of 8.

We now turn to the description of the tests of the
numerical code. The partial wave routines were

tested by evaluating the OBE matrix elements in
this inefficient way and comparing them to the
values obtained from the BS program of Fleischer
and Tjon.

Since FORMF also calculates the imaginary part
of the diagrams we can check the imaginary part of
the direct box, in the elastic region, since this can be
calculated easily from the Born terms:

Im[D BOX(p',po, n';p, po, n)]

g G (p',po, n', q, O, m }
m

&& G (q, O, m;p po, n }, (A8)

where G is the Born term, q=+(sl4) —m is the

on shell momentum, and n indicates the partial
wave channel.

Furthermore, we have compared the values of the
direct box calculated by our program to the ones
from the BS program. Finally, we reproduce the
(on-shell) values of the various partial-wave matrix
elements of the crossed box given in Refs. 4 and 13.
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