
PHYSICAL REVIEW C VOLUME 26, NUMBER 3 SEPTEMBER 1982
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The potential energy V is taken as the unperturbed Hamiltonian and the kinetic energy E
is used as the perturbation. As E is a semipositive definite operator, one may use standard
Pade approximants to reconstruct the Brillouin-Wigner functional. It is shown that, while
the bare projector (E—V) ' is plagued in the complex E plane by the cut which results for
the continuous spectrum of V, one may nonetheless solve the Brillouin-Wigner equation in
a limit from the complex plane to the real axis. The theory is illustrated by a numerical ex-

ample.

NUCLEAR STRUCTURE Brillouin-Wigner perturbation theory,
strong coupling, Pade approximants.

I. INTRODUCTION

The Brillouin-Wigner (BW) theory is usually in-
troduced as follows. Let Hp, AH~, and H
:—Hp +AH ] be the unperturbed Hamiltonian, the
perturbation, and the total Hamiltonian, respective-
ly. One assumes that Hp has a square integrable
ground state Cp, with eigenvalue ep ~0, and that for
all real negative values of E one can easily calculate
the propagator Q(E —Hp) ', where Q—:1

—
I
C p) ( C p I

. If 4 is a square integrable eigenstate
of H and E is the corresponding eigenvalue, the BW
theory then relies on the two equations

and

4 =Op+ AH, %
E—Hp

E ep F(E), — —— (1 2)

where

F(E)

(1.3)

In practice one calculates an approximation of F(E)
by a perturbation expansion of Eq. (1.3) with

respect to kH~ and then solves for E with this ap-
proximation the implicit Eq. (1.2).

The situation where H, is a semipositive definite
operator has been analyzed in some detail, ' for it
can be shown that diagonal Pade approximants
(DPA) FM(E) of F(E) with respect to the positive
coupling constant A, generate, when inserted in Eq.
(1.2), a monotonic sequence of lower bounds to the
exact eigenvalues of H. The purpose of this paper
is to investigate whether the kinetic energy K,
which is the most natural positive operator one may
think of in this problem, can be used as H&.

Besides the benefits expected from the positivity
of Ht a second motivation of this work is also obvi-
ous. The coupling A, is nothing but the square of
Planck's constant A, and the theory would then pro-
vide interesting semiclassical approximations. Ac-
tually, it has already been shown that the introduc-
tion of DPA in the BW theory provides convergent
algorithms with respect to A', while direct expan-
sions of energies with respect to A' are known3 to be
asymptotic rather than convergent.

Two serious difficulties arise at once, however,
when one takes as Hp the nuclear interaction V,
which will be assumed to be a local potential in the
following. [Local potentials are in order so that
(E—V) ' can be easily calculated. ] The first diffi-
culty is that V has a continuous spectrum so that
4 p the ground state, is a 5 function at the bottom
of V. Hence 4p is not square integrable and the
projector Q is ill defined. The second difficulty
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stems from the fact that F., although it is looked for
as a discrete eigenvalue of H, lies in the continuum
of V; see Fig. 1. Hence (E V—) ' is singular. Be-
cause of these two difficulties, one loses Eq. (1.1).

Section II of this paper shows how a minor modi-
fication of V generates a square integrable 4p. Sec-
tion III then shows how Eq. (1.1) can be reinstated,
provided E is made complex, and how Eq. (1.2) can
be solved. Then Sec. IV introduces the DPA to
I" (E) and Sec. IV contains a numerical application.
Section VI contains a discussion and a conclusion.

II. HOW TO PEEL OFF DISCRETE STATES
FROM CONTINUUM

Shape of V Energy p lane of V

Energy plane of H0 Energy plane of H

Let x=—(xi. . .xz) be the set of nucleon coordi-
nates for the A-nucleon system and V(x) be the in-
ternucleon total interaction. It is now assumed that
V has a nondegenerate minimum V &0 at some

point x. Now let X(x) be any square integrable
wave function. For obvious physical reasons, how-

ever, it is desirable that X be a wave packet localized

around x. From now on the unperturbed Hamil-
tonian will be taken as

(2.1)

with p a positive constant.
There now exists a square integrable eigenstate

4p of Hp. Indeed if

with

[V(x)—ep]4p(x) =@X(x)v,

v= I dxX*(x)@p(x),

(2.2)

(2.3)

then, provided that eo Q V~, the wave function

ep(x) =pv X(X)
V(x) —ep

(2 4)

is square integrable since the denominator does not
vanish either at finite distance or at infinity (again
see Fig. 1). The normalization v is not found by in-
serting Eq. (2.3) into Eq. (2.4),

v=pv dx IX(x)
I

z

V(x)—ep
(2.5)

for Eq. (2.2) is homogeneous. Rather, Eq. (2.5) is
an equation for ep. Indeed let I(ep) be that integral
which appears in the right hand side (rhs) of Eq.
(2.5). It is trivial that I(ep) increases monotonically
from 0 to + ao when ep increases from —ao to V .
Hence l(ep) crosses the value 1/p once and only
once. That value ep(iM) for which I(&p) =p ' is also
obviously a decreasing function of p. This is con-
firmed by inspection of Eq. (2.1), where the modifi-
cation brought to V is obviously attractive. The
ground state Cp must then sink when the coefficient

p increases.
If it were necessary to peel off several bound

states rather than one, it is trivial to show that the
rhs of Eq. (2.1) could be modified by an operator

g;p; I X; ) &X;
I

of rank larger than one. It is also
trivial to show that, whatever the modification of
finite rank, the spectrum of Hp and that of V retain
the same continuum.

These mathematical properties are left as an exer-
cise to the reader and, for practical purposes, the
calculation of the Green s function is rather investi-
gated now. In the complex E plane the equation

v
X

v Eo o
X I

(&—Hp) Ig)=
I y) (2 6)

where P is given and square integrable and g is un-
known, generates a square integrable g except, of
course, when E is in the spectrum of Ho. Away
from these singularities, the solution of Eq. (2.6)
proceeds from

FIG. 1. Spectra of V, Ho, and H. The continuum of
V and Ho is usually at least twofold degenerate.

[E V(x)]g(x)=P(x) ——pX(x)v,

where now

(2.7)
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v= x x x

From Eq. (2.7) one obtains

P(x)—pX(x)v
E V—(x)

(2.8)

(2.9)

Hi=E+p lX)(X l,
a positive and Hermitian operator.

III. BRILLOUIN-WIGNER EQUATION
IN THE COMPLEX PLANE

(2.15)

hence from Eq. (2.8}

J'(E)
1+pJ(E) '

with

f d
X' ( x )X( x )

E V(x)—

(2.10)

(2.11)

In the usual derivation of the BW theory, Eqs.
(1.2) and (1.3) are consequences of Eq. (1.1}. One

starts from E as an eigenvalue of H and then con-
tinues along the real axis. In the present situation

where (E—Hp) is singular, however, it is suitable

to give to E a nonzero imaginary part, disregard Eq.
(1.1), and define from the outset F(E) from Eq.
(1.3). Then E(E) reads

and

J&(E) f d~ X*(x )p( x )

E V(x)—
(2.12)

z(E)=(e, lXHi le&, (3.1)

provided 4' is defined, as a function of complex E,
by

The number v is finite, for E+@0 where

J(eo)= —p ', and also E is given an imaginary

part if ReE in the spectrum of V. A trivial inspec-
tion of Eq. (2.9) then shows that g is square integr-

able.
As a result which will be needed in Sec. V, the

matrix element (P l
(E—Ho) '

l P ) can then be cal-
culated easily as

(P l g) J„(E) J'(E&X &$)J'(E&P*&X)

I+pJ(E)

(2.13}

&+ &H, 4&) . (3.2)

The spectrum of Ho+A, QH, Q being real defines 4
as a square integrable vector as long as ImE+0 and

H, &Idio is square integrable. A suitable choice of X,
which is a parameter function of the theory, can en-

sure that H i @0be square integrable like 40.
From Eq. (3.2) &P obeys

(E Hp —A,Hi )0—A,(PHiP H—iP PHi —)0—
=(E ep A,PHi+—A,H—i )40,

where

J»(E) f d~ P ( x )P( x )

E V(x)— (2.14)
(E H)P =[E —eo F(E)]4—0 .— (3.4)

(3.3)

where P=
I
@0)(@0

l
From Eq. (3.2) one knows

that P%=C&0, hence Eq. (3.3) boils down to

To summarize this Section it has been shown that
the modification of V, Fq. (2.1), provides two re-

sults, (i) a square integrable bound state 40 and (ii)

an easily calculable Green's function. Accordingly
in the following the perturbation will be

Let E„be a discrete, isolated eigenvalue of H and
let E approach E„, the vanishing difference
dE=E —E„always retaining an imaginary part.
From Eq. (3.4) and a spectral decomposition of H
one finds

(col&p)=[E EOF(E)] — + y + f de
1(@01q'. & I' 1(~Did' & I'

I (@01 p, & I'
E—E E—e

(3.5)

where one recognizes components on the discrete
eigenstate 4„,the other discrete eigenstates 4, and
the continuum eigenstates %'„respectively. Let hE
be the distance between E„and the nearest eigen-
value E or e. The sum of the last two terms of

I

Eq. (3.5) can be easily bounded

1 —lq„)(q„l 1 —l(c, lq„) l'
E H' g—E—

I
dE

(3.6)
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hence

E eo—F—(E)
llm

~E-o dE
~
(@,

~
y„) ~'

(3.7)

where one has taken advantage of the normalization
condition (40

~

'0) = 1 contained in Eq. (3.2).
Hence the quantity [E—eo —F(E)] vanishes when E
approaches E„. This result, Eq. (3.7), is of course
valid only if (40

~
0'„)+0,an obvious condition for

a perturbation expansion of (p„ from @o.
This result, Eq. (3.7), is a justification ab initio of

the BW equation (1.2). It shows that F(E) can be
calculated with nonzero imaginary parts of E,
which allows a perturbation expansion of Eq. (1.3)

00

F(E(= g E'p kH( (.H) PFp) .E—Hp

(3.8)

they can be conveniently approximated along com-
plex paths.

Further generalizations of the BW equation are
possible, because, obviously, F(E")=F*(E). Hence
one could consider

E eo —F(E——*),
E—eo——ReF(E),

E ep —aF(E——) + (1 a)F(—E*),

(3.9)

(3.10)

(3.1 1)

or

[F(E)](E[F(EE)]
1 —(E

with a an arbitrary constant, and any further com-
binations of F and F' which become equivalent to F
when E tends towards the real axis. All these equa-
tions are equivalent, but they lend to different ap-
proximations as will be seen in Sec. IV.

The real solutions of Eq. (1.2) can then be ap-
proached from either the upper or the lower energy

plane, and one need not use directly the unperturbed

propagator (E—Hp) ' on its singularity cut.
To summarize this section, it has been shown

that the BW equation can be interpreted in the corn-

plex plane, where the individua1 terms of the pertur-
bation expansion of F(E) are regular. Although the
desired solutions E„of the BW equation are real,

IV. PADE APPROXIMANTS TO I' (E)

As an expansion in powers of the coupling con-
stant A, , the formula, Eq. (3.8), is well known ' to
generate convenient Pade approximants. Of special
interest are the diagonal ones (DPA), [N/N]. For
Eq. (3.8) also reads

F(E)=g a Za'" Xa'" a'" a'" aP P 1 1 E H 1 1 P (4.1)

where the positivity of H~ allows the definition of its unique, positive, and Hermitian square root H, . Then,
the expansion, Eq. (4.1), sums into

F(E)=(Op l.HI ( —%HI H',
E—Hp

' —1

H', "e, , (4.2)

and appears like a diagonal matrix element of the
resolvent of the operator

~1/2 Q ~1/2
E—Hp

(4.3)

The [N/N] Pade approximant Fz(E) of F(E) with
respect to A, then turns out to be the exact resol-
vent * matrix element of the projected operator
P ~ =—HzP H~, where Hz is the projector on the
subspace spanned by the vectors H

&

1/2

A H
~ 4p, . . .,A 'H'~ 4p. Again a suitable

choice of g, hence of 4p, can ensure that H
& 4p be

in the Hilbert space. If A is a bounded operator,
then all vectors A ~H

~ 4p would also be square in-
tegrable. Alternately, one would have to further re-

I

strict the choice of 4p through g so that all these
vectors remain in the Hilbert space when p ~ oo.

This raises the question of the convergence of
H~ towards the identity when N —+oo and, more
iinportant, the question of the convergence of
Fz(E) towards F(E). It is known that this conver-
gence occurs when I' is a Stieltjes function. In par-
ticular, convergence is established when E is real
and smaller than V . A generalization might also
be possible when E is real and lies in the discrete
spectrum region of QHQ. Convergence can only be
conjectured when E is complex, on the basis of the
following argument.

Let the kinetic energy be regularized into a posi-
tive bounded range operator as, for instance,
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Kv =exp( r—lx )K exp( —qx ), (4 4) B,=(@~
i H,„i@ ), (4.7)

where the parameter g can be taken as small a posi-
tive constant as wanted. This modifies H, Hi, and

into H&, H&&, and 4 &, respectively. It is obvi-
ous that this modification yields operator inequali-
ties such as Kv &K, Hv &H, and H&„&H~. It is
also obvious that there is at least a certain amount
of weak convergence of the regularized operators
towards their original values when g —+0. More im-

portant, it can be felt that the ground state energy
Eo of Hv, for instance, converges as a monotoni-
cally increasing lower bound towards the ground
state energy Ep of H. As a matter of fact,

0 &Eo Ep„&—(Qo„~ (H H„)
~

Q—o„), (4.5)'

from the Rayleigh-Ritz principle applied to H and
the normalized ground state fo„of Hv. Except
under pathological conditions, the rhs of inequality
(4.5) should vanish when rl~0. Indeed, as long as
bound states are concerned, the regularization, Eq.
(4.4), occurs only at long distances, where only de-

caying tails are involved. It seems therefore legiti-
mate to apply the theory of Secs. II and III to the
search for Eo„, for now 4

&
is a bounded operator.

Indeed H&v
——Kv+p

~
X)(X

~

is bounded, as a sum
of bounded operators. The square root H Iv is also
bounded. Then A „, a product of three bounded
operators, is also bounded. The resolvent
(1—E% v)

' then has a radius of convergence. This
is a very favorable feature for the convergence of
the DPA.

The regularization can even be sufficient to turn
the symmetric (but not Hermitian) operator P v
into a Hilbert-Schmidt operator. For this, the cri-
terion

+TrE~ E~ & oo"E*—H,

Bz=&@olHiv Hiv
~

~'o& ~"E—Hp
(4.8)

for only the tail of 4p is concerned by rl. A slight
influence of rl is possible in the next term

B3=~Co
I Hiv H&„H&v I@o~

A,BiFi(E)=
1 2

(4.10)

and it will be noticed that F
&

as a function of E has
a cut on the real axis starting from E= V~. Indeed
if E is on that cut and one adds or subtracts an in-
finitesimal imaginary part dE, then Bz has a cut

B,=(e, iH, g +i~5(E Ho) H—i ~4o~E—Hp

(4.1 1)

where H is the principal part symbol. Except for
8~, a constant, all expansion terms have cuts gen-
erated by (E—Hp) '. Hence all the higher DPA,
Fz(E), will also have cuts. The point is, F(E) has
no cut in this region of the E plane and shows only
poles at the discrete eigenvalues of QHQ, as seen
from Eq. (1.3). It can be concluded that conver-
gence of Fz(E) towards F(E) when N~oo can be
checked by the disappearance of the discontinuity
of F~ across the cut.

Since Fi is complex on the real axis, the approxi-
mate BW equation

(4.9)

if the propagators (E Hp)—' are sufficiently non-
local to carry the short range part of H~„@p into
the tail region. Only Bi and B2 are needed, howev-

er, in the practical example contained in Sec. V,
where only the [1/1] Pade approximant is con-
sidered.

This first DPA reads

(4.6) E ep F)(E)——— (4.12)

only demands that the last term in the rhs be finite.
This is compatible with the finite range induced in

Kv by the regularizing factors exp( —gx ) and any
other suitable cutoff in coordinate and momentum

space, for instance.
In practice, the regularization is of little impor-

tance for low orders of the perturbation expansion
such as

E—ep ——ReF t (E), (4.13)

for one may rather use the Pade approximant to Eq.
(3.10). Indeed

yields, as expected, complex approximations E„i to
the real eigenvalues E„There is no po. int in artifi-
cially forcing the approximations to be real, from
an equation such as
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ReF(E)=KB, +A, ReBi+A, ReB3+ .

(4.14)
E= 4p H+H H 4p (5.5)

hence the DPA of order 1 to Eq. (3.10) for E real

Bi —A, &@p
I
Hi &' Hi

I
4p&

p

(4.15}

It can be stressed that Eq. (4.15) is more natural
than, and differs from, Eq. (4.13). It will also be
noticed that, while Eq. (3.10} removes from B2 the
5(E—Hp} term, it leaves part of such 5 terms (even

powers) in Bi, B4, etc. Hence the DPA of higher
order than 1 to Eq. (3.10) depend on more than just
9'/(E Ho). —

To summarize this section, there are convenient
Pade approximants F~(E) to F(E) which can be ob-
tained from the perturbation expansion of F with

respect to H~. Convergence is not proved, but like-

ly is N~ao. These DPA show cut singularities,
but nevertheless permit systematic approximations
to the BW equation.

(5.6)

It is convenient to define

Iy&—=Hlc, &

(3
I
»+

I
0&)=2

I
@o&+

I
@i&

2
(5.7)

hence Eq. (5.5) becomes

(5.g)

with roots Ep ——1 and E~ ——3 as expected.
In order to generate the DPA, Fi(E), one first

finds the Born term

and it is trivial to show that QHQ has the same
spectrum 5, 7, . . . and eigenvectors

I
2&,

I
3&, . . .

as H, except for the first two eigenvalues, namely (i)
0 for 4p and (ii) 2 for the linear combination
orthogonal to 4p

V. A NUMERICAL EXAMPLE Bi = &~'o II~
I
C'o&+p &@o

I
&& &~'o

I
(I'—eo)

I
@o&

(I»+ Io&),
2

(5.1)

where
I
0& and

I
1& are the first two eigenstates of

H. The parameter state 7 is adjusted to 4p as
X=(V—ep)4p hence

One of the simplest cases one may think of is the
one-dimensional harmonic oscillator, with V=x,
K= —(d /dx ), and thus spectrum 1, 3, 5, 7, . . . .
The ground state 4p of Hp is now selected as

2 —ep

Then the term Bz also reads

B2 &e lHoH——
I
eo&E—Hp

=&Pl(~ —Ho} 'l0& —
~

and one takes advantage of Eq. (2.13) to obtain

(5.9)

X(x)= (x —e )n. ' 2
J' 4B=J"—
up+ J E—ep

(5.10)

xX(1+2'/ x)exp
2

(5.2) where it is noticed that the wave functions are real,
which simplifies J'. It is convenient here to define

and op &0 is left arbitrary for the time being. One
takes p according to the condition

x&
D = dx -exp( —x ),E —x' (5.11)

p '= &&
I

C'o& = &@o I
(I'—eo}

I
@o&=1—eo

(5.3)

hence

(5.4)

which obviously vanishes if p is odd and to notice
that

x
P(x) =n ' 2 i/2(1+21/2. 3x)exp

2

(5.12)

This identifies 4p as the eigenstate of Hp at eigen-
value ep. The BW equation also reads

From the choice of 4p, 7, and according to Eqs.
(2.11)—(2.13),J, J', and J"become
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J= &eo
~
(V E—+E e—o)(E—V) (V E—+E—6o)

~ eo)=2' —E—1+(E—eo) &eo
~

(E—V)
~
eo)

=2' —E—1+(E—eo) ir ' 2 '(Dp+2D2),

'=&& o( (V E—+E eo—)(E y—) 'i -(())=—2+(E—eo)&co ~ (E V)—'
~(())

= —2+(E—eo)m' ' 2 '(Do+6D2),

~"=&41«—I') 'l(())=~ '"2 '(D +18D )

(5.13)

(5.14)

(5.15)

g1/2 .

2m exp t t+im (5.16)

where the + sign is the opposite of that of ImE. It
can be checked numerically that a brute force in-

tegration of Eq. (5.11) coincides with Eq. (5.16)
with a 10 accuracy if a 1000-point Simian
method is used, as long as ImE»10 . A few
values of Do are listed in Table I. Then one finds

D2 ——EDo —vm . (5.17)

Numerical results show that ImFi(E)(0 when
ImE &0. Hence Eq. (4.12) has no solution. It may
be replaced, however, by

E'=ep+Ft(E), (5.18)

in connection with Eq. (3.9). Alternately, an inves-

tigation of Eq. (4.15) and of the less justified Eq.
(4.13) is in order. The results of these two equations
(4.15) (upper curve in the figure) and (4.13) (lower
curve) are displayed in Fig. 2. Both equations yield
the same approximate root Ep~ -=2.65, and it can be
checked numerically that this result is not sensitive
to the value of ep, which was varied from —0.2 to
—0.8 in this example. It is interesting to note that
Eq. (5.18) has a root in the complex plane,

. Eoi =2 55+0 3.5i, the .real part of which is in quali-
tative agreement with Ep~. It must be noticed, how-

ever, that one might have expected a better approxi-

A straightforward, but slightly tedious argument
shows that

Do E'~ ex——p( E)—

I

mation to the ground state energy Ep ——1 and that
the highly singular nature of the perturbation
theory investigated in the present work may have
led Ep~ and Ep~ to approximate the next eigenvalue

E~ ——3 rather than Ep. The question can be solved
if one either finds another set of approximate roots
Eii, Eii, or from the use of the next Pade approxi-
mant I'2 and its results Ep2 Ep2. The numerical ac-
curacy of the present example does not provide this
information, however.

A preliminary conclusion provided by the numer-

ical example is therefore that the various approxi-
mations deduced from the DPA to the BW equa-
tion are coherent, but that the expected conver-

gence, if it exists, is rather slow.

VI. DISCUSSION AND CONCLUSION

There are two main parts in the present work.
The first part, Secs. II and III, establishes that the

I I 1
1

I t I 1
1

~ ~ I ~
1

I

TABLE I. Numerical values of Do(E). Imaginary
parts are listed below the real parts.

ImE ReE 0.6 0.9 1.2 1.5 1.8

10-' 2.42 2.02 1.71 1.45
—2.23 —1.35 —0.86 —0.57

1.25
—0.39

0
0

0.05 2.21 1.92 1.64 1.41 1.22
—2.29 —1.40 —0.91 —0.61 —0.42

E
FIG. 2. Solutions of E=@0+[ReF(E)]i (upper curve)

and E=eo+ReE~(E) (lower curve).
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BW equation (i) can be written and (ii) can be
solved, even though the bound state energies of H
lie in the continuum of Ho. This generalization is
achieved by the creation of a normalizable eigen-
state of Ho and by a detour in the complex energy
plane. The second part, Secs. IV and V, shows how
the positivity of the kinetic energy operator and of
the resulting perturbation Hi allows, at least for-
mally, a reconstruction of the BW functional F(E)
by Pade approximants. It was found, however, that
this reconstruction could fail to converge rapidly
and a further investigation of this reconstruction is
needed.

The theory contains a parameter function X and
thus thrix: directions are available for an investiga-
tion. Firstly, one may look at whether a variational
principle is possible, namely whether the B% roots,
or a related functional, are stationary with respect
to an optimal choice of X. Secondly, one should
consider higher rank Fade approximants, at least
numerically, in order to test the convergence of the
DPA reconstruction of F(E). It is known that Pade
approximants show variational properties with
respect to trial functions, and a connection with an

optimal choice of X may also be in order. Thirdly,
if it turns out that the DPA reconstruction fails to
converge fast enough, one should attempt to replace
~X) (X

~
by an operator of rank higher than 1,

which introduces a parameter subspace in the
theory. The outlook for generalizations thus ap-
pears to be reasonably wide.

As regards its applicability to the many-body

problem, rather than just one particle on one axis,
the theory seems to suggest the following line of ap-
proach. Because of translation and rotation invari-

ance, the many-body nuclear potential V(x) has a
degenerate minimum V and the physical ground
state %0 is also degenerate. But nothing prevents
the addition to the physical Hamiltonian of a de-

formed harmonic oscillator potential

A

VD= g +co 2x, ', a=1,2,3,
i=1 a

which removes the translation and rotation degen-
eracies and thus makes V unique. The total center
of mass is then factorized into a deformed Gaussian
wave packet, the energy of which is known and can
be taken into account at the end.

Then the theory demands multidimensional ma-
trix elements of (E V—VD) ', with E—complex,
which allows Monte Carlo methods without too
much of a loss of accuracy.

It is clear, however, that a suitable algorithm

must first be found for the reconstruction of E(E),
prior to the consideration of the many-body prob-
lem. This question is under investigation presently.
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APPENDIX

V( x )= V12( x 12)812+ V23( x23)S23

+ V3i ( x3i )S3i, (A3)

The purpose of this appendix is to show that, al-
though the nuclear potential looks complicated, the
calculations demanded by the theory are straight-
forward. Three problems arise, namely (i) to find
explicitly the ground state of Ho, then (ii) to give an
explicit representation of the Green's function
Q(E —Ho) ', and (iii) to discuss the influence of
the uncertainties which still plague the knowledge
of the nuclear interaction.

As a preliminary remark it must be noted that
the only calculations which are needed in order to
obtain Pade approximants are matrix elements of
the form

Bp ——(40 i Hi [(E—Ho) 'QHi p'i 40) . (Al)

Furthermore, it is clear that the multiplication of
any wave function by QHi is a trivial operation,
provided this multiplication is numerically carried
on with care. Hence the only nontrivial problem of
the formalism is to obtain a numerically convenient
representation of (E—Ho)

For that purpose, as it will now be shown, there
is no need to calculate the eigenstates of Ho if for
any given, square integrable

~ P ), the equation

(A2)

can be directly solved for
~
g). Indeed, consider for

instance the three-body problem for the sake of de-
finiteness, with the potential
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where, in an obvious notation, x,j refers to the rela-
tive coordinate of the nucleon pair (ij ) and S~~ is
any relevant "discrete degree of freedom" operator
such as the product of spins S; SJ and/or isospins
T;.TJ. Then an expansion of ~g) and ~P) into
spin and/or isospin channels ~0'&o2os) converts
Eq. (A2) into the finite set of coupled equations

{Oicrioi
~

(E—Hp)
~

o'icrio'ig'. ..(x)
I I I

F1+2+3

(A4)

Each spin-isospin label 0; takes a finite number of
values (2 or 4 for nucleons). With the condensed
notation o = (a io 2cr3} each matrix dement
{0

~

(E —Hp) ~a') is a straightforward matrix ele-
ment, in spin-isospin space only, of (E V—
—p,

~
X) (X

~
) and thus becomes of the form

5~ [E—V (x)]—8' (x)—p ~X ){X ~

~

Hence Eq. (A4) reads

=pX (x)v, (A6)

with again v={X
~
4p). For each value of x let

% ~ (x) be the matrix elements of the inverse of the
matrix

9' ~(x)=[V (x)—ep]5 +W (x) .

(A7)

eigenstates of Hp. As discussed earlier, only the
ground state 4p is actually necessary for the theory
and it has been seen in Sec. V after Eq. (5.1) that 4p
can be chosen arbitrarily, provided 7 is then select-
ed as X=(V—ep)4p. This allows us to take for 4p
an optimized approximation, such as the Hartree-
Fock ground state of H, for instance, in order to
fasten the convergence of the theory.

If X were chosen arbitrarily, one could obtain 4p
numerically in the following way. Again expanding
X and 4p in "spin-isospin channels, " one finds for
the Schrodinger equation of Ho..

[V ( X ) —6p] 4'p ( X )+ g W ( X )4p ( X )

[E V~(x)]g~—(x)—g IV~~ (x)g (x)
t7

=P (x)+pX (x){X
~ g) . (A5)

One obviously finds

C&p (x)=@vga (x)X (x) (AS)

For each value of v= {X
~
g), and each value of x,

Eq. (A5) is a set of linear equations for g~(x), to be
solved by standard algorithms. Actually, the left-
hand side of Eq. (A5) does not depend on v and this
equation needs only to be solved twice, once with

P (x) and once with X (x) as right-hand sides,
respectively. The value of v can then be adjusted
trivially, in the same way as it was with Eq. (2.10).

To summarize this argument, the complications
brought by spin and isospin dependence of an other-
wise local nuclear interaction do not prevent the
Green's function (E Hp) ' to b—oil down to nu-
merical inversion of finite matrices. This takes care
of problem (ii) listed at the beginning of the Appen-
d1x.

As far as problem (iii) is concerned, it is trivial to
realize from Eq. (A5), and the very definition of the
Green's function 1/(E —Hp ), that the potential is in
the denominator of numerical operations. The re-
gions where V suffers some uncertainty are usually
regions where V is quite large. It thus makes little
difference whether the wave function is a little more
or a little less cut by V in these regions, as long as
only low orders of the perturbation expansion are
concerned.

There remains problem (i), the understanding of

and the eigenvalue eo is provided by the condition

v=jMv f dx QX~(x)A~ ~(x)X~(x) . (A9)

+8'~~(x)y' (x)=r(x)y'(x) . (A10)

The wave functions are now expanded in this repre-
sentation, for instance

X(x)= QX,(x) gy'(x)
~

a) . (Al 1)

The potential is then locally diagonalized and the
Schrodinger equation for Ho reads

[r(x }+op—e]4 (x)=@X,(x)v, (A12)

where the eigencomponents 4, of an eigenstate at
energy e are completely decoupled. There is at least
one point xo and one eigenchannel ~o for which
e —ep=&p(xp) hence

Of academic interest are the other eigenstates of
Ho, which actually belong to a continuum. It is
here convenient to use an eigenchannel representa-
tion, namely, for each value of x one diagonalizes
the (Hermitian) matrix 5' ( x),
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4,,(x)= 5(x —xp) pvX, (x)4,(x)=
r( X ) +6p 'E—'

(A14)

+ pvg, (x)
rp( x )+Ep e— (A13)

in that eigenchannel. In other, "closed" channels,
one finds

and a whole zoology of continuum eigenstates can
be developed with a transposition to coordinate rep-
resentation of the methods traditional in momen-
tum representation for the coupled-channel Lipp-
man-Schwinger equation.
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