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A possible excitation scheme of particle-hole states in NQZ nuclei is worked out within

the isospin formalism. Particle-hole states with a definite isospin are decomposed into 1p-

1h (particle-hole), 2p-2h, and 3p-3h states. This decomposition enables us to relate transi-

tion strengths from the ground state to the excited states and those in the adjacent nuclei.

The same thing is done for 6 isobar-hole states. Using these results, we obtain the relations

among the quenching strengths of magnetic transitions in NQZ nuclei. In particular, we

apply these relations to the M1 states around " Ca and Zr and compare the results with

experimental data obtained by (p, n), (p,p'), and (e,e') experiments on. Ca and Zr.

[NUCLEAR STRUCTURE Isospins, b, isobar polarization. ]

I. INTRODUCTION

Recent developments in measuring high energy
neutrons have resulted in clean and systematic data
on the magnetic properties of nuclei. ' These
(p, n) data together with (e,e') (Ref. 4) and (p,p')
(Refs. 5 and 6) data seem to suggest that magnetic
transition strengths are considerably quenched. The
quenching strength I —8 (MA, ),„z/8 (MA, ),h is mass
and spin dependent and goes up to -0.5.

Stimulated by this finding, several authors em-
phasized the importance of the b, isobar degree of
freedom as the quenching mechanism. ' This is
because there are no restrictions on the 6 isobar
states being excited by the magnetic A, pole (MA, )

operators, whereas the nuclear states which have
magnetic strengths in the long wavelength limit are
blocked due to the Pauli effect. It was demonstrat-
ed also that this mechanism provides the desired
mass and spin dependence. ' Further contributions
should be, however, expected from the more corn-
plete description of the nuclear wave functions'
and possibly mesonic currents. '

Most of the calculations for the 6 isobar-hole
mechanism were carried out in the isospin formal-
ism either in nuclear matter or in light nuclei with
N =Z. A few cases were reported for NQZ nuclei
where protons and neutrons were treated explicit-
ly."' The many body Hamiltonian suggests, how-
ever, that the isospin should be a good quantum

number even in heavy nuclei with NQZ In fa.ct,
Bohr and Mottelson demonstrated that the isospin
impurities in ground states are as little as 0.3% or
even less. ' Therefore, in this paper we would like
to develop a formalism where the isospin is treated
as a good quantum number for NQZ nuclei. By
doing so, we would like to find relationships among
the polarization strengths to different isospin states
with the same spatial configurations in the low ly-
ing excitation spectra.

Of special interest in this regard are the Ml
states found by (p, n), '

(p,p'), ' and (e,e') (Ref. 4)
reactions on Ca and Zr. In a naive shell model
where j& states f7/2 in Ca and g9/2 in Zr are
completely occupied by neutrons, we expect one M 1

state in the double magic nuclei and three M 1 states
in the neighboring odd-odd nuclei with one proton
more and one neutron less. Experiments identify
those states with possible fragmentation of the M I
strength into more complicated configurations. '
The M1 strengths are provided with reasonable ac-
curacy. We shall therefore calculate those transi-
tion strengths within the isospin formalism and
compare the results with experiment.

We organize this paper as follows: In Secs. II
and III, we discuss the level scheme for the
nucleon-hole excitations and 6 isobar-hole states.
Then, in Sec. IV, these results are combined to pro-
vide the polarization strengths to the low-lying
nucleon-hole excited states due to the 5 isobar-hole
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intermediate excitations. In Sec. V, we compare the
calculated results with experiment on Ca and Zr
obtained by (p, n), (p,p'), and (e,e') reactions. We
will summarize our results i.i Sec. VI.

II. CLASSIFICATION
OF PARTICLE-HOLE STATES

The classification of particle-hole states accord-
ing to isospin in the NQZ nuclear system lias been
worked out by several authors. ' Among them
the work by Soga" -is most elegant, in which
particle-hole creation operators with good isospin
are introduced. Unfortunately, he did not work out
many examples and cases met in the recent (p, n) ex-

periments, where there seems to be a little confusion
on the transition strengths among different isospin
states. Others are also not satisfactory in this

respect. Therefore in this section, we would like
to write explicitly wave functions for all possible
isospin states around a double magic nucleus in
such a way that these wave functions can be used
for the later discussions.

We start with the ground state of a double magic
nucleus, which has Z protons and X neutrons. De-
fining t,

~ p ) =——,
~ p ), t,

~

n ) = —,
~

n ), the total

isospin of the ground state is T =Tz
= —,(N Z}:To. N—ow —we would like to make a
particle-hole excitation from the ground state. We
have three cases to treat separately: (i) particle-hole
excitations from an occupied shell by both protons
and neutrons to an open shell [Fig. 1(a)]; (ii) from a
valence shell to an open shell [Fig. 1(b)] or from an

occupied shell to a valence shell [Fig. 1(c)]; (iii)
from a valence shell to a valence shell [Fig. 1(d)].
We shall construct particle-hole states with good
isospin for each case.

open

valence

0 occupied

00 (d} VV

X
I&

0 X
L
T

0

Here
~

Tq T, —m, ) denote the core state for
T,—m, =Tp and its isobaric analog states for
T, m—,+Tv. In the v=1 case, we have several
states. For example, [c c]ii

~
TOTp —1) corre-

sponds to a 2 particle-2 hole state and
[c c]ii

~
TpTp —2) coiYesponds to a 3 particle-3

hole state as shown in Figs. 1(e) and 1(f), respective-
ly. We may therefore write particle-hole states with
good isospin as

3

Ioo;rTT, &= X a'(T") I' np nh, —T, &.
n=1

(2.2)

Here i stands for different cases. We list the coeffi-
cients a for all the possible isospins in Table I. The
~=0 case provides a simple 1 particle-1 hole state
with T =Tg =Tp.

(ii) Valence~open or occupied~valence (ov).
The particle-hole excitation does not carry a defi-
nite isospin due to the lack of protons in the valence
shell (v ~o) or of neutron space in the valence shell

(o~v). However, we know that the particle-hole

(i) Occupied~open (oo) Since .we are not in-

terested in a specific spin state, we do not write the
total spin and parity explicitly for any particle-hole
states. The particle-hole excitation is generated by a
particle-hole creation operator c~c. In this case, the
particle-hole excitation carries a definite isospin
~=1 or 0. In order to achieve a good isospin as a
whole, this particle-hole excitation has to further
couple with the core isospin resulting in a definite T
Sp1Q:

~
oo;&TTz ) = g (rm, TO Tz rn,

~
TTz)—

OV

0

0

(e) c'c T~ To-1)

(c} OV

0
iX — 0

c'c T~ To-2)

X[c c] ~lTpT —m )
(2.1}

FIG. 1. The excitation modes for the three

categories, oo, ov, and vv. The bottom figures demon-

strate examples of the 2 particle-2 hole and 3 particle-3
hole excitations.



1258 HIROSHI TOKI 26

TABLE I. The expansion coefficients a;(T,n) in Eq. (2.2) for nucleon particle-hole states with good isospin T in each
case i= 1, 2, and 3 for oo, ov, and vv, respectively. Tp denotes the T, of the double magic nucleus; Tp ———(X—Z).

a(T, 1) a(T, 2) a(T, 3)

Tp+ 1

Tp+1
TQ

Tp+1
Tp

Tp —1

Tp+1
Tp

Tp

Tp —1

Tp —1

Tp —1

1

V'1/( To+ 1)
—O'Tp /( Tp+ 1)

V 1/(2Tp+ 1 )( Tp+ 1 )

—V'1/(Tp+1)
V (2To —1)/(2To+ 1)

i=1 (occupied —+ open)

V'Tp/( Tp+ 1)
V'1/( Tp+ 1)
V'4To /(2To+ 1)(To+ 1)
—( To —1)/V'To( To+ 1)
—V (2Tp —1)/Tp(2Tp+ 1 )

V (2To 1)To—/(2 To+ 1)(To+ 1)

V (2Tp —1)/Tp( Tp+ 1)

+ 1 /Tp(2Tp+ 1)

i =2 (Valence —+ open or occupied ~ valence)

Tp

Tp

Tp —1

Tp —1

Tp

Tp —1

Tp 1

Tp —1

1

V'1/2Tp

V (2To —1)/2To
V (2Tp —1)/2Tp
V'1/2Tp

i =3 (Valence ~ valence)

~

ov'T Tp ) =(c c) p ~
TpTp )5rr (2.3)

where the bracket just means a particle-hole
creation operator with a definite r, but not a defi-

I

state has to have T=To, since the operation of the
raising operator T+ on this particle-hole states does
not provide a new state. Hence,

nite ~. The T, =To —1 state can be obtained by the
isospin lowering T operation on this state (2.3).
Since the number of ways to shift the neutron into
the open proton orbit (U~o) or the proton hole into
the occupied neutron orbit (o~u) is 1 and for the
valence neutrons is 2TO —1, we get with a proper
normalization

' 1/2
1 2Tp —1

~ov'Tp Tp —1)= (c c) 1I TOTo )+ (c c)o~ ToTo 1&—
V'2Tp 2Tp

(2A)

The T=TO —1 state should be orthogonal to this
state.

(iii) Valence~ualence (uu). We have only a
T=T, =TO —1 state;

Ivv To 1To—1)=(c—c) t I
ToTo~ . (2.5)

0 =O&(r, o )7+Op(r, o ) . (2.6)

The exchange term in hadron scattering cannot
strictly be written in this manner. However, we

may use the pseudopotential prescription' and in-
clude this effect into O~ and Op in Eq. (2.6). The
one body operator (2.6) can only connect the ground

All the possible isospin states are tabulated in Table
I.

Now we would like to relate the transition proba-
bilities to those states caused by, e.g., (p,p'), (p, n),
(n,p), (e,e'), . . . , etc., reactions. Generally, the
transition operations associated with these reactions
may be written as

state to the 1p-1h components of the wave func-
tions. This is true also for the exchange process, al-
though one cannot write the corresponding operator
as in (2.6). Therefore the transition probabilities are
proportional to the square of the lp-lh amplitudes.
In each case we can relate the transition probabili-
ties as shown in Fig. 2, where the strong transitions
are indicated by solid lines for ~=1 and by dashed
lines for v =0 excitations.

One may notice a rule from Fig. 2. For nuclei
with NQZ, in particular N&&Z, the transition
from the ground state occurs strongly to T=T,
states in all cases. This rule may seem strange at
first glance. Why does the ~ operator not favor
T =T,+1 states? The answer is given by the way

1
vectors couple. When Tp ———,(N —Z) ~~0, the ad-
dition of a vector (rr, )=(10) (this vector is sup-
posed to be for the transition operator) to the
(TpTp) vector for the ground state results in a vec-
tor whose length hardly changes from the original
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Particle-hole excitation scheme
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FIG. 2. The particle-hole excitation scheme with

good isospin. The same T spin states with different T,
are arranged at the same height and the isospin is denot-
ed beside the right most state. The main configuration
of each state for large To is depicted beside each state.
The excitation strengths from the ground state, To(O+),
are given above each state, where the strengths are nor-
malized to 1 for the largest isospi. n state in each case.
The states most strongly excited among the same T,
states in each case are indicated by arrows; the solid
lines for the isovector excitation, the dashed lines for the
isoscalar excitation.

III. CLASSIFICATION OF h,

ISOBAR-HOLE STATES

In recent years, it has become more and more ap-
parent that the 6 isobar excitation plays an irnpor-
tant role in quenching the magnetic transition
strengths in nuclei in the long wavelength limit.
In order to establish the relations among the
quenching strength for different T spin states, we

vector (ToTo). Hence, the resultant states should
be mostly T=To states. If a vector (rr, )=(1—1)
is added, the resultant vector should be mainly the
T =T =Tp —1 state. As Tp decreases, the length
of the resultant vector starts to differ from that of
the Tp vector; hence the ~ operator starts to excite
T =To+1 states, and finally at To =0, the addition
of the (10) vector only results in a T =v =1 state.

would like to construct the 6 isobar-hole states with
the isospins treated explicitly as has been done for
particle-hole states.

In the 6 isobar-hole case, we have two cases:
isobar-hole excitations from an occupied orbit to a
b, isobar state and from a valence orbit to a b, isobar
state.

(i) Occupied~A isobar state (b,o) A. s in the oo
case, the isobar-hole excitation carries a definite
isospin; in this case ~=1 or 2. Of particular in-
terest for us is the r= 1 case. Hence, we have

~

ho;7 =1TT, & = y (lm, ToT, —m,
~ TTg)

X[~'cl,~ I
T,T, —m, &.

(3.1)

Since the same Clebsch-Gordan coefficients appear
as for the oo case, the weighting factors are the
same as those discussed there.

(ii) Valence~6 isobar state (»). This case
differs from the nucleon particle-hole case, because

3 1

ta —, inste——ad of t = —, for nucleons. This fact al-

lows us to construct T =Tp+1 states as

~
»;To+ I To+ I &=(a c)~ i ~

ToTo&

(3 2)

although the 6 isobar-hole excitation does not cou-

ple to a definite isospin. All the other states with

T, =Tp and Tp —1 are constructed by two pro-
cedures: the T operation and orthogonalization.
When T is operated, we should note that 6 has
the isospin —,; i.e., t

~

—,m, &
=~3, 2, ~3, and 0 for

3 1 1 3
m, = —,, —,, ——,, and ——,, respectively. The results

are tabulated in Table II.
Considering a one body operator, which causes 5

isobar-hole excitations, one can construct a similar
excitation scheme for these 6 isobar-hole states, as
shown in Fig. 3. Although the excitation energies
are large, E„- coa2. 3 mthis direct feeding of
the b, isobar-hole states from the ground state has
been shown to have an important role on the mag-
netic transition strengths in the low lying spectrum
due to the availability of many 6 isobar-hole con-
figurations and the strong coupling strength which
connects the two configurations. "

IV. 5 ISOBAR INDUCED
POLARIZATION

The 6 isobar degree of freedom is important
when magnetic transitions take place in the low ly-
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TABLE II. The expansion coefficients a;(T,n) in Eq. (2.2) for 6 isobar-hole states with good isospin T in each

category i =4 and 5.

a(T, 1)

Tp+1 Tp+1 1

Tp+ 1 Tp V 1/(Tp+ 1)

To To V' T—o /( To+ 1)

Tp+ 1 Tp —1 V 1/(2Tp+ 1)(Tp+ 1 )

Tp Tp —1 —V 1/(Tp+ 1)

Tp —1 Tp —1 V (2Tp —1)/(2Tp+ 1)

a(T, 2)

i =4 (occupied —+5 isobar)

V'Tp/(Tp+1)
V'1/( Tp+ 1)

V To/(2To+1)(To+ 1)
—( To —1)/O'To( Tp+ 1)
—V (2To —1)/To(2To+1)

i =5 (valence ~h isobar)

a(T, 3)

V (2Tp —1)Tp/{2Tp+1)(To+1)
V(2To —1)/To( To+1)
V'1/To(2To+ 1)

Tp+1 Tp+1 1

Tp+ 1 Tp V 3/2( Tp+ 1) V {2To—1)/2{To+1)
Tp Tp —V (2Tp —1)/2( Tp+ 1) V 3/2(Tp+ 1)

Tp+ 1 Tp —1 V 3/(2Tp+ 1)(Tp+ 1) V 3(2To —1)/{2To+1)(To+1) V(2To —1)(To—1)/(2To+1)(To+1)
Tp Tp —1 —V (2Tp —1)/Tp(Tp+ 1) —(Tp —2)/V Tp(Tp+ 1) 1/3{Tp —1)/Tp( Tp+ 1)

To 1To 1—V'(2T—o
—1)(To—1)/To(2To+1) —V'4(To —1)/To(2To+1) V'3/To(2To+1)

ing spectrum. The spin-isospin dependent part of
the magnetic operators causes excitation of the b,

isobar-hole state and then the spin-isospin depen-
dent interaction brings them back to the low lying
states. This "nucleonic" polarization phenomenon
is sometimes called dimesic polarization' ' due to
the analogy with the dielectric phenomenon in order
to distinguish it from the "nuclear" core polariza-

tion.
The purpose of this section is to express the po-

larization strength due to the 6 isobar-hole excita-
tions with good isospin in terms of 1 particle-1 hole
matrix elements which are calculated in a simple
manner.

To start with, let us work out the 6 isobar in-
duced polarization in the first order perturbation.

6 isobar-hole excitation scheme

d
XXIQQ

I
I'

I /(2To+ I)(TO+ I)
d

x 0 I /(Tp+ I)do(
I

0

(2Tp- I)/(2Tp+ I)

T I

o

X 0

I /(Tp+ I)

T,/0, +I)
)E OI 0

Tpt )
I

p

XX 000

I

To

Ex

d

I 5/(2TO+ l)(To+I) 3/2(TO+I)
I

" 00 (2TQ-I)/Tp(TO+I (2TQ $2(TQ )dV
lk To

(2Tp- I)(TQ-I)/Tp(2Tp+ I) I

T I.I

5Q(i;TT, )= g (i;TT,
~

V ~j;TT, )
EJ —E;

)& (j;TT,
~

0
~
ToTp), (4.1)

where i = 1, 2, 3 stands for the three cases
(oo,ov,vv) and j =4, 5 for the 2 b, isobar-hole cases
(bo, hu). r in Eq. (2.1) has been dropped, since we
are only interested in the &=1 part. The two body
interaction and the magnetic operators are denoted

by V and O. We will first connect the interaction
matrix elements with those of the 1 particle-1 hole
states. Decomposing

~
i; TT, ) into lp-lh, 2p-2h,

and 3p-3h states, we obtain a matrix equation for
(i;TT,

~

V ~j;TT, )

T To I

irrrrrn T {O+)0

To To+ I

A Af
A;M~JAJ ——W,J,

where

(4.2)

FIG. 3. The 6 isobar-hole excitation scheme with

good isospin. See the caption of Fig. 2 for details. and

(Ag)i~ =a((T =Tg+l —1,m) (4.3)
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(MJ)(~=(i;lp lh,-T,
~

V
~
J;mp-mh, T, ),

(8';J)~~=(i;T=T,+l —1,T,
~

V ~j;T=T,+m 1,—T, ) .

(4.4)

(4.5)

Here ( WJ. )1~ is diagonal due to the isospin conservation. Since A; =A; due to the orthonormalization con-
ditions, we can easily solve for M,J.,

(4.6)

Since we are interested in connecting the matrix elements of states with good T spins to those of 1 particle-1
hole states, we explicitly write the (1,1) component of the above equation,

3

(i, lp-lh, T,
~

V
~

j;lp-lh, T, ) = g a;(T =T,+l —1,1)aj(T=T,+l —1,1)
E=1

&((i;T,+1—1,T,
~

V ~j;T,+I —1,T, ) . (4.7)

This equation together with the fact that

TT.
I VIJ TT

does not depend on T, relates the matrix elements with good isospin to those of 1 particle-1 hole states.
We would now like to relate the 1 particle-1 hole matrix elements with different T, s so that those with

good isospin are related. For this purpose we introduce a model for the interaction V as V= V(r, o,S)P"T,
which is supposed to include the exchange contribution like that of the Landau-Migdal interaction. Here 0
and v are the Pauli spin and isospin operators while S and T are the transition spin and isospin operators con-
necting nucleon states to 5 isobar states Wit.h this model for the interaction we can write the 1 particle-1
hole matrix elements as

(i;lp-lh, T,
~

V(r, o,S)r T
~
j;lp-lh, T, ) =(i;lp-lh

~
V(r, o,S)

~ j;Ip-Ih)y;(T, )yi(T, ),
where

y;(T, ) =W2 for i = 1 (oo) and for T, =To 1 of i =2 (o—v) and i =3 (vv),

y;(T, )=1 for T, = To of i =2(ov),

yj(T, )=v'4/3 for j=4 (ho),

and

(4.8)

yJ.(To+1)=1
yj(To)=V'2/3 for j=5(hu) .

yi(To 1)=&I/3—
(4 9)

Furthermore, we wish to relate Q(i;lp-lh, T, ) with different T, s in order to relate the polarization
strengths for each i,

Q(i;lp-lh, T, )=(i;lp-lh, T,
~
O(r, o )rl„ I ToTo),

=(i;lp-lh~O(r, o) ~O)y;(T, ),
Q(j;1P-lh, T, )=(j;1P lh, T,

~
O(r, S)-T~&

~
ToTo),

=(j;lp-lh
~
O(r, S)

~
O)yj(T, ) .

(4.10)

(4.11)

Combining the above relations, (4.7)—(4.11),we can easily relate the polarization strengths

X(i;T, T, ) =5Q (i;T, T, )/Q (i;T, T, )

with different T s for each i First, in the .case of one isospin for T„such as (oo,T, =To+1), (ov, T, =To),
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and (vv, T, =To 1—),

X(i;T, T, )= g & i; lp-1 h, T,
~

V
~
j;I p-lh, Tz&

1 —1

X &j;1P I»Tz
I
0

I
ToTo &aq(Tz I)~&"1P I" Tz

I
0

I
ToTo &

(4.12)

This result indicates that when the low lying nuclear state with good isospin is a pure 1 particle-1 hole state
(no 2 particle-2 hole and 3 particle-3 hole components), we can take just 1 particle-1 hole intermediate states
without considering the isospin and obtain the polarization strength. In the case of two isospins for T„such
as (oo,T, =To) and (ov, T, =To 1), —

(4.13)

y;(T, )yj(T, )
xq(T)=

Ia, (T„1)I' y;(T, +1)y;(T,+1)
a;(T, +1,1)a~(T,+1,1) yJ(T, )y;(T, +1)

a,'(T, +1,1) y, (T.+1)y;(T.)
(4.14)

Here aj (T, + 1, 1) denotes the a&(T, + 1,1) coefficient of the system where the z component of the isospin is

T, + 1. Finally, in the case of three isospins for T„such as (oo,T, =To 1), we ob—tain a more complicated ex-

pression;

y;(T, )yj(T, ) a;(T, +1,1)aj(T,+1,1) y;(T, +1)yj(T,+1)
xj(T)=

Ia;(T„l)I2 y;(T, +2)yj(T, +2) a,'(T, +1,1)aj(T,+1,1) y;(T, +2)yJ(T, +2)

a;(T, + 1,1)aj(T,+1,1)a,'(T, —2, 1)aj (T, +2, 1)

a,' (T, + 1, 1)a~ (Tz+ 1, 1)

y, (T.)y;(T.+2)—a, (T, +2, 1)a;(T,+2, 1)
yj Tz+2 yr Tz

(4.15)

we note that x;J(T) does not depend on T, . The
coefficient x,j comes out to be one for most of the
cases except the following:

—1 —1+

2Tp —1
x; ) J 5(To)=

0

To —1

x;=i,;=5(To—I)=
0

Tp —1

x; 2J 5(To 1)=—
0

(4.16)

as usual. Furthermore, if we wish to iterate the po-
larization up to all orders, we can work out the iso-
spin part in the same spirit as the above.

V. COMPARISON WITH EXPERIMENT

Finally, we mention that the ground state correla-
tion [random-phase approximation (RPA) back-
ward amplitudes] can be added by replacing

by

We have worked out in the previous sections the
polarization strengths for magnetic states with good
isospin around the double magic N+Z nuclei and
related them with those calculated by 1 particle-1
hole descriptions. In this section we shall make a
comparison of the calculated values with experi-
ment. Of particular interest are the M 1 states seen

by (p, n), (p,p'), and (e,e') experiments on Ca and
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~Zr. Let us assume that these two nuclei have sim-

ple shell structures; i.e., the f7/2 orbit is occupied by
8 neutrons for Ca and the g9/i orbit by 10 neu-

trons for Zr. Then we have two cases which can
produce 1+ states which carry the M1 strength in
the long wavelength limit; (ph)=j( —j) ' and

1

j& —j& ' states where j& ——l+ —,. They correspond
to the cases ov and vv, respectively, in Sec. II.
Moreover, since these two states have the same spa-
tial wave functions, the transition strengths are sim-

ply related by the 9j coefficients. Therefore, we are
able to compare the transition strengths for four
states: ov; (T,T, } is equal to (Tp, Tp), (Tp, Tp 1), —
(Tp —1,Tp —1), and vv; (Tp —1,Tp —1) states
where Tp —,(E—Z——) of the double magic nucleus.

We first relate the M 1 strengths

(5.1)

for these four states before considering the polariza-
tion effect. We follow here the definition for the
transition strength from the work of Goodman
et al. ' For this purpose, we relate
S (VV' Tp —1 Tp —1 ) to S (ov' Tp Tp)

S(vv;Tp 1Tp —1—}

4S(ov;Tp Tp}

(J),J),1 iL =O,S=I;1)
(J(,J )', 1

I
L =O,S= 1;1)

(5 2)

The factor 4 in the denominator appears due to the
use of t in Eq. (5.1). This definition for the transi-
tion strength is nice because the isovector part of
the cross sections at q =0 is proportional to the S's
with the same factor for the (p, n) and (p,p') reac-
tions.

In order to see how the simple shell model results
compare with experiment, we extract the M 1

strengths from the experimental data. We take the
B(M 1)=4p,„obtained by electron scattering on

I

Ca for S,„(ov,T =4,T, =4). The value S,„=1.48
results by assuming that only the isovector part is
renormalized while the isoscalar part is un-
changed. ' The remaining numbers for Ca are de-
rived from the (p, n} cross sections at Ez ——160 MeV
(Ref. 3); i.e., der/dQ

~ s p
——2.22, 33.9, and 7.4

mb/sr for (i;T, T, )=(ov;4, 3), (ov;3, 3), and
(vv;3, 3},respectively, using the same distortion fac-
tor derived by Goodman et al. ' On the other
hand, S,„(ov,T =5,T, =5) in Zr is extracted from
the (p,p') cross section taken at Ez ——200 MeV,
where 25% of the cross section is assumed to arise
from the isoscalar excitation and again the same
distortion factor of Goodman et al.2' is used. S,„
for other states in Zr are obtained using the (p, n)
data at Ez ——120 MeV taken by Sterrenberg et al. '

The method used here to extract the M1 strengths
from the experimental data might cause systematic
errors, but these extracted values should be fairly
good estimates for the transition strengths and pro-
vide ideas on how various models compare with ex-
periment.

We show the comparison of the simple shell
inodel predictions with experiment in the first and
second columns of Table III. We notice two things.
First, the simple shell model overestimates the M1
strengths. Second, this deviation is much too large
for S(vv, T =Tp 1T =Tp ——1). The second part
originates from the nuclear structure effect where
the two states ov and vv, with the same isospin
T Tz Tp 1, mix strongly due to the identical
spatial wave functions. Bertsch et al. have made
a systematic study of the giant Gamow-Teller states
and found that a zero range interaction with a
reasonable strength which reproduces the excitation
energies of the Gamow-Teller states results in a
value of about 20% for the ratio between the transi-
tion strengths of the Gamow-Teller states, mainly
(ov T = Tp —1 T =Tp —1), and the lower M 1

states, mainly (vv; T =Tp 1T&= Tp —1).—Tile
states are therefore the linear combinations of the
two wave functions,

TovloTp —1)=V 1 —P ~ov'To —1,To —1)+P~ Tvv1oTp —1)

~
vv; To I, Tp —I)=P

~
ov;To 1—, To 1~ —+1——P I

—vv; To 1,To —1 ~ . —

The small amplitude P is fixed so as to reproduce the ratio

Sc (VV'To —1 Tp —1)/S (ov'Tp Tp —1)+Sc (ov'Tp —1 Tp —1)

(5.3)

which is determined well by experiment. The calculated results after this correction are shown in the third
column in Table III. Now, the calculated results are commonly about a factor of 3 too large as compared to
the experimental numbers.



1264 HIROSHI TOKI

TABLE III. Experimental and theoretical M 1 strengths defined in Eq. (5.1). The experi-
mental values S,„are derived from various sources with the procedures described in the text.
S,„(ov;4,4) in 'Ca is derived from 8(M1)=4p„' obtained by the (e,e') experiment (Ref. 4).
The others in 'Ca come from the (p, n) data taken at E~ =160 MeV (Ref. 3). S,„(ov;5,5) in

Zr is obtained by using the {p,p') cross section at Ez ——200 MeV {Ref. 5). The other
strengths for T, =TO —1 around Zr are derived from the unpublished data on the (p, n)
cross sections taken at E~=120 MeV (Ref. 16). The calculated values are the following:
S =simple shell model precitions; S{P)=M 1 strengths where the two bottom states are ad-
mixed with the amplitude P; S= the b, isobar polarization is added on S; S(P)= the 5 iso-
bar polarization is added on S(P).

"Ca
Case

ov
ov
ov

Case

ov
ov
ov
vv

S,„
1.48
0.57
8.69
1.90

Sex

2.10
0.63
7.55
2.07

3.42
1.71

11.97
10.29

"Zr

4.45
1.78

16.01
12.24

S{P=0.33)

3.42
1.71

18.70
3.56

S{P=0.23)

4.45
1.78

22.07
6.18

1.71
0.86
6.47
5.15

2.23
0.89
8.42
6.12

S(P=0.33)

1.71
0.86
9.92
1.70

S{P=0.23)

2.23
0.89

11.51
3.03

We believe that the major part of this common fac-
tor originates from the 5 isobar polarization
mechanism. This polarization strength has been
calculated by Harting et al. ' for Ca where pro-
tons and neutrons are treated explicitly. Therefore,
we have already the results on the polarization
strength for the state ~ov; Tp, Tp). Since the shell

model calculations by McGrory and Wildenthal'
showed that about 30% of the full quenching
strength is due to configuration mixing, we take in
this paper that the 6 isobar polarization mechanism
produces 50% quenching strength, which is ob-

tained with g'=0. 65.' We can now calculate the
quenching strengths of the other states using the re-
lations developed in the previous section with fur-
ther small assumptions. We assume that the polari-
zation strength for ~vv, Tp 1,Tp —1) is eq—ual to
that for ~ov; Tp, Tp), since the spatial wave func-
tions are the same. Furthermore, the polarization
strength ratios x,j in Eq. (4.13) are averaged over by
weighting the number of nucleons in the occupied
shells and in the valence shell for the ho and hu
contributions. The results calculated with and
without the admixture of the wave functions under
these assumptions are listed in the fourth and fifth
columns in Table III. If we consider the possible
additional contribution from the shell model config-
uration mixing (about 30% quenching)' and the
ambiguities caused by the procedures to extract the

M 1 strengths, the results are very satisfactory.
The ratio

S (ov; Tp —1 Tp —1)/S(ov' Tp Tp —1)

is 2Tp I; i.e., 7 for—Ca and 9 for Zr in the sim-

ple shell model. On the other hand, the ratio is 15.2
for sCa and 12.0 for Zr experimentally. The
latter value is not as well determined because the
two peaks overlap in the (p, n) spectra. After add-
ing the two states admixture and the 6 isobar in-
duced polarization effect, this ratio becomes 11.5
for Ca and 12.9 for Zr. The desired improve-
ment is achieved by the mechanisms considered
here for this ratio, although this ratio might change
experimentally due to the difficulty in separating
the two states in the (p, n) spectra.

VI. CONCLUSION

Motivated by the recent systematic (p, n) and

(p,p') experiments in the medium and heavy mass
regions, we have worked out the possible excitation
scheme of particle-hole excitations in NQZ nuclei
within the isospin formalism. We have also
analyzed the 6 isobar-hole excitations within the
isospin formalism and worked out the polarization
strengths for the magnetic transitions in the low-
lying spectrum through the 5 isobar intermediate
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excitations. In this way, we relate the 5 isobar in-
duced polarization strengths for different low-lying
MA, transitions.

We have applied these relations to the M1 states
around Ca and Zr found by the (p, n), (p,p'), and
(e,e') experiments. Note that the long anticipated
giant Gamow-Teller state in T, = To —1 nuclei was
discovered for the first time by Galonsky et al. in
the 9 Zr (3He, t) spectrum. Assuming the simple
shell model for the ground state where the fi&& shell
is completely occupied by 8 neutrons in Ca and
the g9/2 shell by 10 neutrons in Zr, we have two
kinds of excitations; one from the valence shell to
the open shell (ov) and one from the valence shell to
the valence shell (vv), for the M 1 states. Since the
two cases have the same spatial wave functions, we

can relate the transition strengths to those states (ov
and vv) through the 9j coefficients in the long
wavelength limit. There are two major discrepan-
cies found by comparing the simple shell model pre-
dictions with experiment. First, the transition
strengths calculated are in general too large.
Second, the lower M1 states in the T, =To —1 nu-

cleus with Tp being the isospin of the double closed
shell nucleus in particular have strengths which are
about a factor of 10 too large compared to the ex-

perimental values.
The second discrepancy has been removed partly

by considering the admixture of the ov and vv states
with T =T,=TO —1 with a reasonable residual in-
teraction which reproduces the excitation energies.
Then the achieved common quenching factors (a
factor of -3) are considered to originate mainly
from the 5 isobar polarization mechanism. By as-
suming the b, isobar polarization strength of 0.5 for
the ~ov; T=Tp T =Tp) state in the closed shell

nucleus, which has been provided by Harting et al.
in Ca, we calculated all the M1 strengths using
the relations for the polarization strengths. The
calculated results compare very well with the exper-
imental values. Although the methods used to ex-
tract the M 1 strengths from the experimental data
might have systematic erorrs, we seem to have a
good understanding of the M 1 states around the
double magic NQZ nuclei.
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