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A two-parameter pseudospin Hamiltonian is introduced which contains both the
Meshkov-Glick-Lipkin and the Abecasis-Fassler-Plastino Hamiltonians as special cases.
The ground state critical properties of the two-parameter Hamiltonian are determined: It
exhibits both first and second order phase transitions. The ground state critical properties
of any one-parameter pseudospin Hamiltonian contained in the two-parameter model can
immediately be determined by inspecting the interaction parameter space of the two-
parameter model. The critical set in this space is identified with that of the cusp catas-

trophe.

NUCLEAR STRUCTURE Pseudospin Hamiltonian, critical proper-
ties, first and second order phase transitions.

I. INTRODUCTION

The Meshkov-Glick-Lipkin (MGL) pseudospin
Hamiltonian! (la) and the Abecasis-Fissler-
Plastino? (AFP) pseudospin Hamiltonian (1b)

%MGL=€JZ+%V(J+2+J—2) , (1a)
Happ=€l,+5V'(I2—T 2+, , (1b)

have been studied for their ground state critical
properties. Studies in the MGL model have been
carried out both numerically® and analytically.?
The model exhibits a second order ground state en-
ergy phase transition as the parameter ¥ describing
the strength of monopole coupling increases
through the critical value |V, |=e/N. At this
value of the interaction parameter, the ground state
energy E, (V) exhibits a discontinuity in its second
derivative in the thermodynamic limit N-— co.
Studies on the AFP model were carried out numeri-
cally because of the difficulty of analytic treat-
ment.* A rapid variation in 82Eg( V') /3V"'? was ob-
served for NV’ ~¢, and it was inferred that the AFP
model exhibits a ground state energy phase transi-
tion similar to that of the MGL model.*

Both the MGL and the AFP pseudospin models
can be regarded as special cases of a slightly more
general two-parameter pseudospin model

H cusp/N=€(J,/N)+a(J,/N+b(J,/N) . 2)

The parameter € may be set equal to 1 by appropri-
ately scaling the energies. Pseudospin operators J
always appear in the combination (J/N) for well
defined thermodynamic reasons.>® Neither of the
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original models"? satisfied the thermodynamic cri-
teria, although the Hamiltonian used for studies of
the ground state critical properties did.> The MGL
Hamiltonian (l1a) can be seen to be a special case of
(2) by setting b =0 and rotating the coordinate sys-
tem of (la) through 7/4 radians about the z axis.
The AFP Hamiltonian (1b) can be seen to be a spe-
cial case of (2) by dropping the term + ¥"J?, which
simply adds a constant energy to all states in the
ground state manifold. It is this term which ac-
counts for the increase® in the ground state’s energy
E, (V") as V" increases, rather than the decrease that
is observed in the MGL model and that is expected
in realistic models of physical systems.

The pseudospin model (2) is simple to treat
analytically. As the subscript suggests, it is closely
related to the cusp catastrophe.””® As a result, the
critical properties of (2) are simply those of the cusp
catastrophe, which are well documented.

II. GROUND STATE CRITICAL PROPERTIES

To determine the ground state critical properties
of (2), we proceed according to a rigorous algorithm
which is derived from coherent states and a classi-
cal limit®°

(i) Replace J, /N by 5 sinfe ' and replace J, /N
by % cos6.

(i) Minimize the resulting function for a fixed
value of the parameters (a,b). The minimum value
is the ground state energy per particle, Eg /N.

(iii) Search for discontinuities in the ground state
energy, or its various derivatives, as the interaction
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parameters (a,b) are varied.

This algorithm determines the ground state critical
properties in the thermodynamic limit N— oo. The
ground state critical properties for finite N are
identical, but phase transitions (if any) occur at re-
normalized values of the interaction parameters,
i.e.,

ac(N)/a,(N—o)=14+0(N"1),

b.(N)/b.(00)=1+0(N"1).
Applying the first step of this algorithm to the
Hamiltonian (2) leads to the following function, de-
fined over the sphere surface (0< 6 <, 0<d <2m):

(H/N) =7 cosf+al5 sinfcosd)>
+b(5 sinf coss) . (3)

The minima of (3) are determined by the usual
methods:

5% (#/N)=5(—sing)(a sin®6 cosp +b sin) =0 .
This has solutions @

cosp=+1 (5a)
and

cosp = a;inO ! a sli’ne - (5b)
Differentiating with respect to 6 leads to

aa_e (/N )= sind+ L sin6 cost cos’$

+ %cos@ cos¢p=0. (6)

If ¢ determined by (5b), then (6) reduces to

%(%/N)=——%Sin9=0. )

This violates the condition stated in (5b), so that
cosp=+1. As a result of seeking a minimum,

bcosp=—|b|. Thus, the expectation value (3)
reduces to
(#/N)=7 cosO+asin®0— | b | sind . 8)

In the half planes b >0 and b <0, the function (8) is
locally diffemorphic with the cusp catastrophe.
This is most easily seen by expanding (8) up to
fourth order in (0 —m). As a result, the ground state
energy depends smoothly on the interaction param-
eters (a,b) except possibly for b =0.

To determine the continuity properties of
E,(a,b), we set b =0 in (8) (MGL model). It is easi-

ly verified that (8) is minimized by
O=m a>—1
m, a> ©)
cosf=+1/a, a<—1

and that a second order ground state energy phase
transition occurs at (a,b)=(—1,0)3.

To compute the critical properties elsewhere on
the symmetry axis b=0, we compute
N‘laEg(a,b)/ab in the right half plane b >0, and
evaluate the result at b =0:

%%Eg(a,b)= %sine-{-%a sin6 cosf
b a0 1 .
-5 cosd % 2 siné . (10)

The expression within parentheses vanishes at the
minimum by (6). The remaining term, —%sin@,
vanishes at b=0 for a>-—1, and is
—%(l—a“z)l/2 for a<—1 by (9). As a result,
there is a discontinuity in dEg(a,b)/0b on crossing
the half linea < —1, b =0:

3E, | 0Eg(a,b=0%) dE,(a,b=0")
b | b - b
=—(1—a~2)172, (11)

The critical properties of the pseudospin model
Hamiltonian are summarized in Fig. 1.

III. DISCUSSION

Model (2) is structurally stable”® in the sense that
any perturbation of it obtained by the inclusion of
additional pseudospin operators (e.g., {J,,J,}) will
not qualitatively change its critical properties.
Model (2) is canonical in the sense that its classical
limit is diffeomorphic with the canonical
mathematical function called the cusp catastrophe.?

In the construction of pseudospin models exhibit-
ing ground state energy phase transitions, it is suffi-
cient to study two-parameter models (the cusp ca-
tastrophe is a canonical two-parameter function).
One parameter must be coupled to an operator exhi-
biting at least a twofold symmetry: In the present
case J,>—(—J,)%. The other parameter must be
coupled to a symmetry-breaking term: In the
present case J,— —J,. Thus, on one hand model
(2) is a symmetry-breaking extension of the MGL
model, and on the other hand it is a direct pseudo-
spin operator analog of the canonical cusp catas-
trophe?:

J,+al 2+ bl ox*+ax?+bx . (12)
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FIG. 1. The interaction parameter space (a,b) de-
scribes the critical properties of the canonical pseudospin
model (3) and all of its one-parameter submodels. The
cusp point (@) describes a second order phase transition.
The long dashed half-line (a < —1, b =0) describes the
locus of first order phase transitions. The solid fold lines
(a +%)3 =(b/2)? describe the spinodal lines [limits of
metastability (Ref. 10)] of the model. One parameter
submodels of . (a,b) are described by curves
[a(s),b(s)] (— — —) in the interaction parameter space.
If the curve intersects the critical set (— — or @) the
model exhibits a (first or second order) phase transition.
Generically, one parameter trajectories will not pass
through the cusp point (—1,0) unless the model itself is
symmetry restricted (b =0). This is just the MGL case.
The parameter trajectory for the AFP model is the
—_— line (a,b)=(NV'/2,V'/2), which minimizes
the critical set. This model does not exhibit phase transi-
tions, although it will have excited metastable states for
sufficiently large values of the interaction parameter V’.
The parameter trajectory for the MGL model is along the
line, A4##4#, the cusp point @, and the long dashed line.
This corresponds to a trajectory along the b =0 line.

The catastrophe function x*+ax2+bx [right-hand
side of (12)] exhibits both first and second order
phase transitions, as does the pseudospin Hamil-
tonian ¥, [left-hand side of (12)].8 It is remark-
able that the ground state critical properties of the
two-parameter pseudospin Hamiltonian (2) are more
easily accessible than the critical properties of a
one-parameter special case (1b) of this model. In
fact, catastrophe theory was developed in part to ef-
fect such simplifications.”®

The particular cases (1a) and (1b) of (2) are indi-
cated in Fig. 1. Parameter variations in the
symmetry-restricted MGL model may drive the
model through the cusp point (a,b)=(—1,0). In
this case, a second order ground state energy phase
transition occurs. Parameter variations in the AFP
model drive this model along a straight line through
the origin. This line does not cross the half line
a < —1, b =0, so there are no discontinuities in the
ground state energy or any of its derivatives as a
function of the interaction parameter ¥’.> The ra-
pid variation in 3%E,(V")/dV"* observed previously
is due entirely to the nonthermodynamic scaling>®
used in the original AFP model (1b).

A large number of one-parameter special cases of
(2) can be studied simply by allowing the parame-
ters a,b to be functions of a single parameter s. The
corresponding model is

H(s)/N=J,/N+a(s)(J./N?+b(s)J,/N) .

(13)
The ground state critical properties of (13) are com-
pletely determined simply by following the path
[a (s),b (s)] in the interaction-parameter plane. This
path will generically miss the cusp point (—1,0) un-
less the model is symmetry restricted (b =0), in
which case the MGL model is recovered. Model
(13) will then have a first order phase transition if
the path [a(s),b(s)] crosses the half line a < —1,
b =0; otherwise, it will not exhibit any phase transi-
tions.
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