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Pion-nucleon scattering in the P ti channel
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We present a parametrization of the m-1V interaction in the Pli channel in which the

amplitude is the sum of a pole part and a non-pole part (t =t~i, +t„„)and satisfies two-

body unitarity. Here t~&, has both the nucleon propagator and the ~EN vertex dressed.

The final amplitude fits the scattering length and low energy m-X phase shifts (T'„' & 300
MeV). We study the effect of a resonance in t„„on the phase shifts, ~NX coupling

constant, and the off-shell behavior of the amplitude.

NUCLEAR REACTIONS mX scattering in Pil channel, renormaliza-

tion, resonance effect.

I. INTRODUCTION

Recent investigations into the inclusion of the ef-
fect of real pion absorption in m-d elastic scatter-
ing, ' and its extension to pion-nucleus scatter-
ing, ' have required the splitting of the tr-N ampli-
tude in the Pii channel into a pole part and a non-

pole part, i.e.,

In this way the non-pole part (t„~) gives rise to pion
multiple scattering, while the pole part (t~i, ) gives

the coupling to the pion absorption channel. In Eq.
(1) the pole part of the amplitude, which is sepa-

rable, is given in terms of the dressed nucleon pro-

pagator g, and the dressed nNN vertex f. This
structure for the tr-N interaction is quite different
from that commonly used in m-d elastic scattering,
and in the construction of pion-nucleus optical po-
tential, where the m-N amplitude has no nucleon

pole. Experimentally the a-E phase shifts in the

Pii channel are small at low energies. This has
been used to justify the fact that the contribution of
the Pi i amplitude to m-d scattering is small and can
be neglected. However, the fact that t is the sum

of a repulsive contribution (t~i, ) and an attractive
contribution (t„~), which contribute differently to
m-d and possibly m-A scattering, can make the total
effect of the P» channel important. Furthermore,

the P i t amplitude has the N*( 1470) resonance
which should, if included, lead to a modification of
the trNN vertex f through the dressing, and again
can lead to significant effect in m-d elastic scatter-
ing and pion absorption.

The aim of the present investigation is to con-
struct a Pti amplitude of the form given in Eq. (1)
with the full dressing for both the nucleon propaga-
tor and the ~EN vertex. In this way we can:

(i) Compare our amplitudes with those derived
from a potential.

(ii) Investigate the effect of a resonance in t„„on
the tr Nphase shi-fts and trNN vertex.

In Sec. II we present our basic equations which
are derived using the diagrammatic method
developed by Taylor for quantum field theory. For
the sake of future application of these amplitudes in
m/E calculations, we assume t„„ to be separable
(i.e., they are the solution of the two-body equation
for a separable potential). We then proceed in Sec.
III to a discussion of mass and wave function renor-
malization in our model. Here we find that our
wave function renormalization Z2)0, indicating
the absence of ghost poles. In Sec. IV we present
and discuss our numerical results. We find that in

the absence of a resonance pole our amplitudes are
similar to those obtained from a two term sepa-
rable potential. However, the inclusion of an
N" (1470) resonance pole does affect the off-shell
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26 PION-NUCLEON SCATTERING IN THE P]& CHANNEL 1149

behavior of the n.-N amplitude and can have some
infiuence on the ir-d elastic cross section.

write the dressed one-particle propagator in terms
of the bare propagator go as

II. THE BASIC EQUATIONS

The derivations of the basic equations were
presented elsewhere. " Here we give a brief di-
agrammatic presentation and the corresponding
algebraic expressions. Using Taylor's classifications
of the diagrams that contribute to the ir Nam-pli-
tude by exposing intermediate states, and restricting
ourselves to including two-body unitarity only, we
get the set of equations given diagrammatically in
Figs. 1(a)—1(c). The corresponding alegbraic ex-
pressions are

r () ) +f(i)gf () )+

g(1) g(2)+ t(2)6t(1)

f'( i ) f(2)+ r ())Gf(2)

(2)

(3)

(4)

MW +
(1) (1)

C

(2) (2) (1)

+ M} CW

where t is the full nNamp. l-itude and f is the nNN
vertex. The number in parentheses is the maximum

irreducibility of the amplitude or vertex. For exam-

ple, t' ' includes all amplitudes that are one- and
two-particle irreducible. The one- and two-particle
dressed propagators are denoted by g and 6, respec-

tively, and are represented in Figs. 1(a)—l(d) by a
line with a dot. The first and second terms in Eq.
(2) correspond to t„„and t~&, in Eq. (1), respective-

ly. Furthermore, if t( ' is taken to be a "potential"
then Eq. (3) reduces to the standard two-body equa-

tion except that G is fully dressed at this stage.
This dressing in 6 can be reduced to a simple mass
renormalization if we are to neglect three-body uni-

tarity. The one-particle propagator g is also
dressed; however, its dressing contributes to two-

body unitarity and cannot be neglected. We can

where the self-energy term X") is given by [see Fig.
1(d)]

g(i) y(&)+f(i)+Gf(2)

These results were originally derived within the
framework of a covariant quantum field theory, and
the decomposition of the two-particle irreducible di-
agrams in Eqs. (2)—(4), and (6) may be carried on

by exposing three- and more particle intermediate
states. However, since we do not intend to include
three or more particle unitarity explicitly into our
equations, we will assume that X( ', f' ', and t( ' are
independent of the total energy. In this way our fi-
nal amplitude satisfies two-body unitarity but does
not include the threshold for pion production (i.e.,
three-body unitarity}.

Since it is common practice' in pion-nucleus
scattering to treat the pion relativistically while the
nucleons are treated nonrelativistically, we take for
our propagators

g()(E}=(E —m)v )

G(E)=G()(E)=[E—E(p)]

with

2

E(p)=gp +m~ +m~+
2mN

Here E, mN, m, and p are the total energy, the
physical nucleon and pion masses, and the relative
momentum of the n-N system in the center of mass.

Since we hope to use our m-N interaction in a
three-body type ~NN calculation, it is advantageous
to have a n.-X interaction that is separable. To see
if one can justify approximating the potential t' ' by
a separable potential, let us consider the physical
content of t( '. According to our diagrammatic
classification t' ' is the class of all mN~irN dia-'
grams with at least two pions in every intermediate
state. The lowest order contribution to this class is
the diagram in Fig. 2. Note the appearance of this

(2) (1) (2)

(2) (1) (2)

FIG. 1. Classification of the diagrams for the m-N

amplitude. FIG. 2. The lowest order diagram of t"'.
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diagram in t' ' rather than the pole amplitude is the
result of using time ordered diagrams which in turn
result from the use of Blankenbecler-Sugar reduc-
tion or the use of nonrelativistic kinematics. This
lowest order diagram can be approximated by a
separable potential. ' Although the higher order di-

agrams are by no means separable, we will approxi-
mate r' ' by a separable potential for the practical
purpose of using it in many-body calculation.
Furthermore, this gives us the added advantage of
being able to introduce resonances in t p t most
simply. We therefore define

(10)

X'"(E)=5m+I (E), (18)

where 5m=X' '. The mass counter term can be
taken as a constant. Using the fact that

term.
Although we have included the minimum dress-

ing to satisfy two-body unitarity, we need to
guarantee that our nucleon propagator g (E) has the
correct asymptotic limit. In particular g (E) should
have a simple pole at E=mz and the residue of
g(E) at this pole should be one. ' In other words,
on the mass shell the nucleon propagator g(E)
should reduce to the free propagator go(E). To
satisfy these two conditions we write

where A, =+1 ( —1} corresponding to a repulsive
(attractive) interaction. We now can write Eqs.
(2)—(4), (6), and (7) as

r(E) =
[ Ii )T(E)(h and

Go{E}=Go(mN ) —(E mz )G—o(mw )Go(E}

(19)

+
~

f'"(E))g(E)(f"'(E) ~,

~ f( i)(E) ) (
f(2) )

+ )
h )~(E)(h

~

Go(E}
~

f' '),

&E)=(~ ' —(h
~
G,(E)

~

h &) ',
g (E)=[E—m~ —X"'(E)]

X"'(E)=X'"+(f' '
~
Go(E)

~

f"'),

(12)

(13)
I (E)= I'(m~) —(E —mN )I'i(mdiv)

+(E—mN} I'2(E) . (21)

We now can write Eq. (14}for the nucleon propaga-
tor as

r{E)= r{mN ) (E —mN—)r(m~)

X(h
~
Go(m~)Go{E)

~
h)r(E), (20)

we can write

where we have explicitly shown the energy depen-
dence of all quantities for two-body unitarity to be
satisfied. In particular, we observe that the nNN
vertex

~

f'"(E)) does not only depend on the
momentum but has energy dependence, and this en-
ergy dependence arises from dressing [second term
on the right-hand side of Eq. (12}]. Also the nu-
cleon propagator g (E) has dressing included
through X"'(E). The dressing in both the mNN ver-
tex and nucleon propagator is the minimum re-
quired for two-body unitarity to be satisfied. ' For
this reason we do not have any nonlinearity in our
equations.

The above result has been shown to be equivalent
to the solution of the two-body equation (e.g., the
Lippmann-Schwinger equation) for the energy
dependent two term separable potential'

g '(E)= (E —mz )[1+I', (m~ )—(E—m~ )I 2(E)]

—5m —I (mug) . (22)

(f"'
~
Go(mN)—~f"'(mdiv) & . (23)

To get a residue of one at E=mz we need to in-

troduce a renormalized propagator ga(E) and a
wave function renormalization constant Zz such
that

g '(E)= [1+I i(mN }](E—mN )

(E mg )I'2(E)—
X 1+I i(mN)

The condition that g(E} has a simple pole at
E=mN implies that

5m =—r(m„)

V= ih)X(h i+ i
f"') (f"'i (16)E —mp Z2 'ga '{E—» (24)

where

mp ——m~+5m (17) where

with 5m=X' ' playing the role of a mass counter Z2=[1+I'i(mN)l '. (25)
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where

Ifz"(E)&
= If"'«) &Z

'
= If~"&

+
I
h &«E)&h

I
Go(E}

I ft( '&

with

~

f( ~& =
~

f(2~&z

(27)

(28)

The dressed renormalized nucleon propagator can
now be written as

g„'(E)=(E —m~ )[1—(E —m~ }I'2(E)],
(29}

where

r",(E)=z,r,(E)

= &fz"(mdiv) I Go (mx)Go(E) I
fz"(E)&

+ &fR"(miv }
I Go (mN }

~
"&«mN }

X &h
I
Go(mN)Go(E) ~fi't"(E) & . (30)

We now can write the n N-amplitude given by Eq.
(11} in terms of renormalized nucleon propagator
arid mNN vertex as

t(E)=
(
h &«E)&h

( + [ fg"(E)&gg(E)&fs (E) ),
(26)

T" & 150 MeV, go through 90' at a pion energy of
T~ =530 MeV, indicating the presence of the well
known Roper resonance [N'(1470)]. However,
since most pion-nucleus experiments are below the
threshold for single pion production, we have
chosen to neglect the eff(x:t of inelasticity in our
present parametrization of the Pii amplitude. On
the other hand, the Roper resonance can be due to a
resonance in t„„which is shifted to higher energies
in the full amplitude. In the Appendix we show
how this shift arises in the present model. Since t„„
is that part of the ir Nam-plitude which gives rise to
pion multiple scattering in nuclei, a resonance in
this amplitude can have drastic effects on the pion-
nucleus amplitude. Furthermore, a resonance in t„&
leads to a resonance behavior in the dressed mNN

form factor [see Eq. (12}]which in turn can greatly
influence the pion absorption cross section.

To study the effect of a resonance in t„„on the
mNN vertex f'" and nucleon propagator g, we have
constructed two parametrizations of the n.-N ampli-
tude that flt the scattering length and low energy
(T" & 300 MeV) phase shifts. In this way we hope
to study the role of such resonances in m-d elastic
scattering and pion absorption. To construct our
n-N amplitudes we need to specify the undressed
nNN form factor f' '(p) and the form factor for the
separable non-pole part of the potential h(p). In
the present investigation we choose these to be

Finally, we can write the wave function renormali-
zation constant Z2 in terms of the renormalized
mNN vertex as

h(p)=c
p2+P2

(2)( ) a p
( '+d')'

(33)

Z2 ——1 —I i (m~), (31)

where

r", (m„)=z,r, (m„)

=&fz"(mx)
~
Go (mN) I

fs"(mz) & ~

(32)

Although I i(m~)&0, we will find that Z2&0
from our numerical calculation. This is consistent
with Eq. (25) which gives a positive value for Z2.

III. NUMERICAL RESULTS

It is a well known fact that the n Namplitude in-
the P» channel becomes highly inelastic above the
threshold for pion production. Furthermore, the
phase shifts, which are small and negative for

In this way we have four parameters (c,P,a,d) to fit
the experimental data. In Table I we present the
parameters of our two fits; included also are the
m-N scattering length, the mNN coupling constant,
and the wave function renormalization Z2. Here
the mNN coupling constant was determined by the
direct comparison of the residue of our amplitude
with that of the invariant amplitude for the nucleon
pole diagram. The parameter set A (set B}leads to
a resonance (no resonance) in t„~. For comparison
with the standard energy independent potential, we
will compare our parametrization with that of
Blankleider and Afnan (potential 8/8) (Ref. 7)
which will label as set C.

In Fig. 3 we compare the phase shifts for the
three parametrizations with the experiment. We
find that all three parametrizations fit the scattering
phase shifts very well below the pion production
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TABLE I. The parameters of the P» amplitude for sets A and B. Included also are the
prediction of the models for the scattering length, the md% coupling constant, and wave func-

tion renormalization. The experimental data are from Ref. 18.

Set A {resonance case) Set B (nonresonance case) Experiment

a
d
a,

2fm
Z2

—1

1.00899
5.05533 fm
1.00489 fm sn

1.33725 fm
—0.0908 m~

0.03576
0.9850

—1

0.535314
1.24487 fm
8.44136 fm 'i'
2.19154 fm

—0.0908 m„'
0.08198
0.8626

—0.0845+0.0102 m
0.08/+0.015

100—

80—

60—
0)a 40—

20—

Set A
——Set B

threshold (T' (300 MeV). It is difficult to com-

pare our phase shifts with the experiment above the
production threshold since we have not included

inelasticity. However, we observe that the phase
shifts for case A, which has a resonance in t„~, tend

toward 90' at high energies, while the phase shifts
for sets B and C parametrization agree with each
other and fail to approach 90'.

To examine the relative contribution of the pole
and non-pole amplitudes, we present in Figs. 4 and

5 the phase shifts corresponding to t„~ and

t~l, +t„z for both sets A and B. We find that for
both sets A and B the non-pole part of the ampli-

tude is attractive and large. This implies that the
small experimental phase shifts are the result of a
cancellation between two large amplitudes. The sig-

100—

80—

60—
(D
l3

40—
CL 20—

t = tpole ' top

nificant implication of this result, regarding pion-
nucleus scattering, is that the two parts of the am-

phtude are weighted differently. Thus, t„~, which
enters on an equal footing with all the other nN. -

amplitudes, gives rise to pion multiple scattering.
On the other harid, t~i, gives us the mNN form fac-
tor and thus determines the role of real pion absorp-

tion in pion elastic scattering. Although we have
almost total cancellation in the m-N system . for
T~ (150 MeV, the effect is more pronounced in
m-d scattering' and presumably in pion scattering
off heavier nuclei.

To examine more closely the relative magnitude
of the pole and non-pole amplitudes, we present in

Figs. 6 and 7 the ratio of Re(t„~)/Re(t~i, ) and

Im(t„z)/Im(t~i, ) for the three different parametri-
zations being considered. We find that for sets B
and C the pole and non-pole amplitude are close in
magnitude but opposite in sign. Furthermore, the

-20—
I

500
l

100 600
l I I

0 200 300 400
lab

( ~eY)

FIG. 3. The P» phase shifts for the three different
parametrizations: the results for set A; —.——-
the results for set B; and ———the results for set C.
The circles (4) are the experimental points from Ref.
16, while the triangles (5) are from Ref. 17.

-20—

I

500
1

100
1

0 300 600

T& ( MeY)

FIG. 4. The P» phase shifts for parameter set A:
———represent the phase shifts for t„„, while
are the phase shifts for the full amplitude. The experi-
mental points are as in Fig. 3.
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100—
I'x1

80—
I
I

60—
I

40-
I

Q I
20 —I

/

-20—

t=tpole+ tNP

I

100
I I I

200 300 400

T~ ( MeV)

I

500 600

FIG. 5. The P~~ phase shifts for parameter set B; the
labeling is as in Fig. 4. -10—

potential approach of Blankleider and Afnan (set C)
(Ref. 7) gives results that are similar to those of set
8 which has no resonance in t„„. On the other
hand, for the case when t„„has a resonance (set A)
the pole and non-pole amplitude are quite different
in that the Im(t~t, ) has a zero at T" =100 MeV,
and at high energies the t„~ is much larger than

t~&, . This difference between the two parametriza-
tions (sets A and B) can give different results in
pion-nucleus calculations. This can be further illus-

trated by comparing the amplitudes for the three

-12—

200 400

T& (MeV)
600

FIG. 7. The ratio of Im(t„~)/Im(t~t, ) for the on-

shell amplitudes. The curves are labeled as in Fig. 3.

parametrizations off the energy shell at negative en-

ergies. For it is these amplitudes that are the input.
to Faddeev-type calculations. In Figs. 8 and 9 we
give the ratio (t„„lt~~,) half off-shell for center-of-
mass energies of —43 and —200 MeV. Here again
we observe the similarity of the amplitudes for sets
B and C with no resonance in t„p, while set A has
quite distinct off-shell behavior.

O

-4,

IX
-6

CL

8

T( MeV)

F00 200 300 ~00 500 600
l l I

~ ggmaS 4 ~ ~ ~

-10— —Sel B
---Set C

CL -3—z

I I I

200 400

T~ ( MeV)

600

FIG. 6. The ratio of Re(t„~)/Re(t~~, ) for the on-shell
amplitudes. The curves are labeled as in Fig. 3.

FIG. 8. The ratio of t„„to t~~, for center-of-mass en-

ergy E=—43 MeV. The momenta correspond to the
pion laboratory energy T. The curves are labeled as in
Fig. 3.
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O
CL= 2-
CL

E = -ZOO MeV

Se
—.—Se--- Se

Set A

—.—Set B

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I I I

100 200 300 400 500 600
T( MeV)

FIG. 9. The ratio of t„~ to t~~, for center-of-mass en-

ergy E = —200 MeV. See the caption of Fig. 8.

I I I I , I

0 &00 200 300 400 500 600
T ( MeV)

FIG. 11. The imaginary part of the dressed mNN

factor. See the caption of Fig. 10.

Finally we turn to the dressed mNN form factor
which in this case is energy dependent, and the nu-

cleon propagator. In Figs. 10 and 11 we present the
real and imaginary part of ftt". We note that for
the potential model of Blankleider and Afnan (set
C) (Ref. 7) the nNN form factor is a real function.
The fact that the imaginary part of f~" is an order
of magnitude smaller than the real part may be con-
sidered as a justification for the use of simple poten-
tial models. A comparison of the range of the nNN
form factor for the different models reveals that in
general this formulation gives a much longer (short-
er) range form factor in coordinate (momentum)

space than is usually assumed. This may be a
consequence of the choice of form factors in Eqs.
(33) and (34). We also observe that the form factor
for set B is larger than is the case for set A. Turn-

ing to the dressed propagator given in Figs. 12 and
13 we find that the dressed propagator for set A is
closer to the result of Blankleider and Afnan (set C)
(Ref. 7) than is the case for set B. This is refiected
in the fact that the wave function renormalization
constant Zz is closer to one for set A than is the
case for set B (see Table I). In other words, the ef-
fect of dressing is not as important.

We have thus demonstrated that a fit to the Pi i

phase shifts does not uniquely determine the off-
shell P» amplitude. More important we have seen
that the relative magnitude of the pole and non-pole
parts of the amplitude cannot be determined on the
basis of the experimental ~-N phase shifts. In par-
ticular, the inclusion of a resonance in t„~ can
render quite a different result for both the nNN.
form factor and the relative magnitude of tz, i, and

t„~ This unc. ertainty should be resolved before one
can predict any unique result for the nNN system

fV

I

E

0.5-

0.4
/

o 3' — l
/

0.2 -I I
~ I

Set A

o

---- Set C
Set A

—- —Set B

0.1

I I

100 200 300 400 500 600
T{~eV1

FIG. 10. The real part of the dressed ~NN form fac-
tor. The energy T is the pion laboratory energy.
Curves labeled as in Fig. 3.

I

100
I

200
I

600
I I

0 300 400 500
T { MeV)

FIG. 12. The real part of the dressed propagator. For
parameter set C we have no dressing of the propagator.
See the caption of Fig. 10.
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-0.1

-0.2

T (MeV}
&00 200 300 400 500 600

is based on the equivalence between the results of
Eqs. (2)—(4} and the amplitude for a two term
separable potential of the form'~

V(E)=
~

f"') (f'"
[ +

~
h)~(h [E —mp

-0.3—
—=u&(E)+ut . (Al)

E
-0.4

-0.5

E
s -0.6

r

/

with

t„u(E)=
i
h )r„p(E)(h

i
(A2)

The non-pole part of the amplitude is a solution of
Eq. (3) with t' '=u2. Since u2 is separable we can
write t„u(E) as

-0.7— r„(E)=(A, ' —(h
i
Go(E)

i
h ) ) (A3}

-0.8— -Set A

—Set 8

The existence of a resonance pole at E=Ea implies
that

FIG. 13. The imaginary part of the dressed propaga-
tor. See the caption of Fig. 10. or

r.u
'(E) lE=s„=o (A4)

with the present form for the n-N amplitudes in the
P&~ channel.

ACK NO% LEDGMENTS

'=(h
i
Go(ER) I

h ) .

This allows us to write Eq. (A3) as

r„u(E)= F(E}
R

with

(A5)

(A6}

The authors would like to acknowledge many
useful discussions with Dr. B. Blankleider, Dr. R.
T. Janus, Dr. A. T. Stelbovics, and Mr. J.
McCarthy. One of us (S.M.) is grateful to the Aus-
tralian Research Grants Committee for a research
fellowship.

APPENDIX

In this appendix we show that a resonance pole in

t„~ is shifted in energy in t =t~&, +t„~. Our proof

F(E)= (h
~
Go(Ett )Go(E)

~

h ) (A7)

&n writing Eq. (A6) we have made use of a relation
similar to that of Eq. (19). The full amplitude can
now be written as

t(E)=t„„(E}+
~

f"'(E))g(E)(f'"(E)(,
{AS)

where the dressed mNN farm factor given in Eq.
(12) has the resonance pole which can explicitly be
exposed to give

If"'(E)&= (« Ea}If"'&+Ih&F—«)(h
I
Go«}If'"&1 (A9)

However, this pale in f"'(E) does not lead to a
second order pole in the amplitude since the dressed
propagator has a zero at E=E~ which can be ex-
posed to give

(E Ea)—
g (E)=[E—mo —1 (E)] D(E)

(A10}
with
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and

D(E)=d(E) (E— E—g )[E—mp —Gii(E)]

(Al 1)

suits of Eqs. (A9) and (A10) in Eq. (A8) to get for
the full amplitude

E —mp —Gl i(E)
d(E)=Giq(E)E(E)Gqi(E) . (A12)

Here the G,J(E) are given by

G„(E)= &
f'"

i G.(E) if'" &,

G»(E) —&h
i
Gp(E) if"'&,

Gi2(E)=&f' '
i
Gp(E) ih & .

(A13)

We thus see that any resonance pole in t„„will also
be in t~i, with opposite sign which might lead to
the cancellation of the resonance pole in the full
amplitude. We will now show that in fact the full
amplitude does not have a resonance pole at
E=Ez, but has a pole at E =E~+6 where 6 is a
complex number. To see this we substitute the re-

(2) G2i(E)F(E)
D(E

E(E)Gi2(E)
„E,

This amplitude has a pole at

d(E)
R+ E —mp —G|i(E)

and this pole can be a resonance pole.

(A14)
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