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The high-spin states of 123, 125, 127I have been investigated via the ~Sn( Li,3n)" + I reac-

tions to study the collective properties of the odd-mass I isotopes. In-beam measurements

of y-ray excitations, y-y coincidences, y-ray angular distributions, and pulsed beam-y tim-

ing were performed with Ge detectors to determine level energies, decay schemes, y-ray
multipolarities, J assignments, and lifetime information. A similar study of the ""' 'I

isotopes is reported in the following paper. Two collective features have been identified in

these odd-mass I nuclei. Systematic EJ=1 bands built on low-lying — proton-hole (4p-

1h) states were observed. The — bandheads, that involve the excitation of a 1g9/2 proton

across the Z =50 shell, drop to very low energies near the middle of the neutron shell. The
9+

properties of the —, proton-hole states for all of the odd-mass I isotopes are presented and

related to the systematic information for the proton-hole states in the entire Z & 50 transi-
11— 7+

tion region. Systematic bJ=2 bands built on —, (1h 11/2 quasiproton) states, on —,

5+
(1g7/2 quasiproton) states, and on — (2d5/2 quasiproton) states were also observed. The

AJ=2 band spacings generally follow the spacings of the Te-core ground-state bands with

the exception of the —AJ =2 bands, for which the spacings decrease significantly rela-

tive to those for the Te cores as A decreases. These systematic properties are discussed in

terms of several theoretical approaches to the onset of collectivity in transitional nuclei. An

isomer at 2660 keV in ' I was observed to have a mean lifetime ~=38+3 ns.

REACTIONS 120—124Sn( 6Li 3n )
123—127I+

coincidences, y(E, O, t); deduced level schemes in odd-mass ' ' I, y
multipolarities, J, Tl/2. Enriched targets, Ge(Li) detectors.

I. INTRODUCTION

The observed collective properties of odd-proton
nuclei in the Z & 50 transition region have generat-
ed considerable theoretical interest. Systematic ex-
perimental studies of high-spin states in the odd-
mass Sb (Z=51) (Refs. l —3), I (Z=53) (Refs.
3—5), Cs (Z =55) (Refs. 6 and 7), and La (Z =57)
(Ref. 3), nuclei as a function of neutron number
have been carried out at Stony Brook via y-ray mea-
surements following heavy-ion induced reactions.
These measurements covered the transition region
between the odd-mass La nuclei, for which
Stephens et al. had previously observed AJ=2
bands built on —, states, and the Z =50 closed

proton shell. The entire study was motivated by the
fact that the rich high-spin level spectra in odd-
mass nuclei have a considerable sensitivity to the
variety of coexisting collective properties.

The theoretical interpretations of odd-mass tran-
sitional collectivity, involving particle (hole)-core
quadrupole interactions, have traditionally ap-
proached the collectivity of the cores phenomeno-
logically in terms of deformed rotors of fixed (p, y)
coordinates or anharmonic vibrators' with dynam-
ic (p, y) coordinates. Recently the core collectivity
in the Z & 50 transition region has been examined"
microscopically in a generalized seniority scheme
with a coherent sum of core valence particles, where
the microscopic particle-particle interactions gen-

26 1089 1982 The American Physical Society



1090 SHROY, GORDON, GAI, FOSSAN, AND GAIGALAS 26

crate the macroscopic particle (hole)-core interac-
tion. The interacting boson-fermion model is also
currently being explored' for a more detailed
understanding of the collectivity of transition nu-

clej.
Two collective features were systematically fol-

lowed in the odd-proton nuclei in the Z & 50 transi-
tion region. ' Well defined hJ =2 bands were ob-

11— 7+
served on —, (lh»&2 quasiproton) states,

5+
( lg7/z quasiproton) states, and on —, (2d5q2

quasiproton) states in the I, Cs, and La isotopes.
The hJ =2 band spacings generally follow the spac-
ings of the ground-state bands in the corresponding
even Te, Xe, and Ba core nuclei; this feature has
been interpreted with some success in terms of
rotation-aligned coupling ' for a modest core defor-
mation as well as with particle (anharmonic) vibra-

tor models. ' A marked exception to these band
spacing systematics occurs for the lower mass I nu-

11—
clei where the —, AJ =2 band spacings decrease

significantly compared to the ground-state band
spacings of the Te core nuclei. This decrease as
well as the other AJ =2 properties can be explained
in terms of a macroscopic quadrupole interaction
that is generated by the number of core neutrons in
an effective shell. "

The second collective feature of this transition
region is the existence of systematic hJ =1 bands9+
built on low-lying —, states in the Sb, I, Cs, and La
nuclei. This feature has been interpreted in terms9+of strongly coupled bands of a [404] —, Nilsson
proton-hole orbital and a significant prolate core de-
formation. ' ' ' Using a triaxial rotor model, the
Sb results imply an asymmetry of y-20'; these
bands in the other isotopes seemed more consistent
with symmetric rotors. ' ' An anharmonic vibrator
approach' ' ' also has been used as a basis for the
hJ =1 bands. The microscopic calculation from a
generalized seniority scheme" was successful at
achieving the low-lying —, bandhead energies as

9 +
well as the band spacings. The energies of the —,

bandheads, which are believed to result from the ex-
citation of a 1g9/2 proton across the Z =50 closed
shell, when plotted against neutron number for each
Z, follow parabolalike curves with minima near the
rniddle of the X =50—82 neutron shell. The unex-9+
pected lowering of the —, bandhead energies has
been attributed to the collectivity of the core, which
achieves, on the basis of the band spacings, a max-
imurn near the middle of the neutron shell. In9+"Cs, the —, bandhead was surprisingly observed

to have dropped in energy to become the ground
state. ' The —, b J=1 bands from Sb (Z =51) to

La (Z =57) show a trend of decreasing band spac-
ings with increasing Z. '

The complete experimental results of the odd-
mass I nuclei which were obtained via ( Li, 3ny)
fusion-evaporation reactions are presented in this
paper (I) and the following paper (II). Paper I con-
tains the results for ' ' ' I and summarizes the
systematics of the —, 4J =1 bands for all of the

9+

odd-mass I nuclei. The complete experimental re-
sults for " '" ' 'I are given in paper II along with
a summary of the systematics of the odd-mass I
hJ =2 bands. Several preliminary reports for these
nuclei have been made previously. ' '

Earlier experimental information for the odd-
rnass I isotopes has predominantly involved low
spin states. ' During the course of this study, some
high-spin experimental information on 123, 125I has
become available from (a,2n) studies. Additional
information on " I has also been obtained in this
laboratory via the ' Cd( "N,2pn)" I reaction. The
results of these independent experiments are in
agreement with the present results, where overlap
occurs. Also high-spin information was obtained in
this laboratory for the next lower mass, " I, via the
'OsCd(' C,p 2n)" I reaction.

II. EXPERIMENTAL PROCEDURE

To study the high-spin level structure in the
odd-mass " ' I isotopes, the EZ =3 ( Li, 3ny)
fusion-evaporation reactions were used for six iso-
topically enriched even-Sn targets, taking advantage
of the stability of the closed Z =50 proton shell.
The targets used in most of the measurements were
either -3 mg/cm pr 10 mg/cm enriched metal
fpjls pf 114~ 116,118,120~ 122, 124Sn These fusipn
evaporation reactions favor population with large
alignment of high spin states, whose dominant de-

cay modes are via stretched y-ray cascades. In or-
der to determine the decay schemes and the level
structure for the odd-mass I isotopes, the following
set of y-ray measurements using Ge(Li) and intrin-
sic Ge detectors was performed: y excitation, y-y
coincidence, y-angular distribution, and pulsed
beam-y timing measurements. The typical energy
resolution of the large volume coaxial Ge(Li) detec-
tors was 2.2—2.5 keV FWHM at 1.33 MeV. A 5
mm thick planar intrinsic Ge detector, which was
used for low energy y rays, had an energy resolution
of 0.5 keV FWHM at 122 keV. The details of the
experimental techniques have been described ear-
lj
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The y-ray excitation measurements taken over a
Li energy range from the Coulomb barrier to 35

MeV were compared with reaction calculations
(AL1cE) as a means of selecting the optimal beam
energies and identifying the specific 3n reaction
channel. Most of the experiments were carried out
in the Li-beam energy range of 32—34 MeV. The
y-y coincidence measurements were necessitated by
the complex nature of the y-ray spectra from these
reactions. They were used to identify the y-ray cas-
cades and to establish the identities of the residual
nuclei via the connection of unknown y rays with
those known from previous P decay or light-ion re-
action studies.

To obtain information on y-ray multipolarities
and intensities Iz, y-ray angular distributions were
measured in singles at four angles between 153' and
90. The photopeak areas were extracted and fitted
to

8'(8) =I r[1+A 2P 2(c os 8) +A4P4(c os 8)],

where the P„are the Legendre polynomials. Spin
assignments were made on the basis of the 8'(8),
Iz, and lifetime information, assuming the popula-
tion of low-m substates and the decay via stretched
(J—+J L) transiti—ons; these assumptions have been

found empirically to be valid for the dominant y-

ray decay modes following heavy-ion fusion eva-

poration reactions. The mixing ratios 5 for the
transitions of mixed multipolarity were obtained
from the tables of Der Mateosian and Sunyar us-

ing the A2 coefficients'extracted from the angular

distribution results.
To locate isomeric states and to study their decay

modes, pulsed beam-y measurements were per-
formed for each of the Sn targets using a pulsed Li
beam of -2 ns width with pulse repetition periods
of 1 and 4 ps. The overall time resolution obtained

together with the Ge(Li) detectors was typically
3—10 ns depending upon the y-ray energy. De-

layed y-ray energy spectra were collected for several

time bins over both pulse periods, which allowed

the identification of isomers by their decay transi-

tions and yielded their approximate lifetimes. Life-
time limits were also obtained for nonisomeric
states. When isomers were located, time differential
spectra were then collected for selected y-ray photo-
peaks to obtain precise lifetime values for the iso-
mers. A time-differential perturbed angular distri-
bution (TDPAD) measurement was made of the g
factor for the " I isomer; this TDPAD technique
will be discussed in paper II. The lifetime informa-
tion including the lifetime limits obtained from

these measurements further aided in the definition
of specific multipolarities for the y transitions.

III. EXPERIMENTAL RESULTS

An analysis of the singles y-ray excitation results
showed on the basis of known ground-state transi-
tions that the ( Li, 3n) fusion-evaporation channel
was dominant for the ' ' ' Sn targets at 32—34
MeV. The ( Li,2n) and ( Li,4n) channels were ob-
served weakly as well as those involving Li break-

up with the subsequent reactions of the a particle
and the deuteron. A typical singles y-ray spectrum
for 32-MeV Li on the ' Sn target is shown in Fig.
1.

Figure 2 shows several y-y coincidence spectra
for ' I. The angular distribution information ob-
tained for ' ' ' I is given, respectively, in Tables
I—III. The high-spin levd structures and y-ray de-

cay schemes of ' ' ' I deduced from these y-ray
results are shown in Figs. 3—5, respectively.

The level structures observed in the ' ' ' I nu-
clei via the ( Li, 3n) reactions have two common
collective features. The first is AJ=2 y-ray cas-

11 — 7+ 5+
cades built on low-lying —, , —, , and —, levels.

The angular distributions of the cascade members
yielded A2 and A4 coefficients characteristic of pure
J—+J —2 quadrupole transitions. The spacings in
these cascades are fairly similar to the spacings of
the corresponding even-mass Te core nuclei.

The second collective feature common to these
odd-mass I nuclei is a series of EJ=1 cascades9+
built on low-lying —, states. The angular distribu-

tions of the y rays belonging to these cascades exhi-
bit a mixed M1-E2 character with a positive mix-

ing ratio 5, namely the A2 coefficients are small be-
cause the mixed contribution for a positive 5 largely
cancels the negative dipole contribution. The M1-
E2 character of the b,J=1 cascades is further cor-
roborated by the observation of J~J—2 E2 cross-
over transitions.

In addition to these band structures, the9+I isotopes have another —, state at approx-
imately 700 keV that decayed by dipole and quadru-
pole transitions, respectively, to the low-lying —,

5+ 9+
state and the —, ground state. These —, sites in

each case were also fed by the —, bandhead state.
s+ 7+

The spin assignments for the low-lying —,
11—

and —, states, which had been made in several

previous studies of ' ' ' I involving P decay,
( He, d) reactions, and Coulomb excitation, '9 are
consistent with the present measurements. The
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FIG. 1. y-ray singles spectrum observed with a Ge(Li) detector for the bombardment of a ' Sn target with a 32-
MeV Li beam.

overlapping information obtained for ' ' I from
the independent (a,2n) studies of Hagemann
et al. is in good agreement with the present re-
sults; the (a,2n) reaction achieves significant popu-
lation of the nonyrast states while the present
( Li, 3n) reaction emphasizes the high-spin yrast
states.

In addition to the previously discussed states in

I, a state at 3351 keV was observed to feed the
member of the —, band. The weak intensity

of the decay y ray from this state did not allow suf-
ficient angular distribution information to achieve
a spin assignment. Also, the y-ray deexcitating the

bandhead of the AJ =1 band shown in Fig. 5
9+

was not observed. This results from the weak popu-
lation of this hJ =1 band and the low detection ef-
ficiency at the expected high y-ray energy ( & 1200

keV). The assignment of this b,J=1 band to the9+
bandhead in ' I is based on the systematics ob-

9+
served for the —, bJ=1 bands in " ' I and the
fact that the excitation functions of these y rays are
appropriate to I.

The pulsed beam-y measurements for the
I nuclei revealed no delayed y rays except

for the decay of an isomeric state located at 2660
keV in ' I. This implies an upper mean-lifetime
limit of r(10 ns for all other states observed in

I (see Figs. 3—5). The weakly populated
I isomer was observed to decay via a 298.2 and

671.2 keV y-ray cascade through a state at 2362
15 + 9+

keV into the —, member of the —, hJ =1 band.
Fits of the time differential spectra for the 298.2,
671.2, and 503.1 keV y rays yielded a mean lifetime
of v= 38+3 ns for the 2660 keV isomer in ' I. The
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FIG. 2. Representative y-y coincidence spectra from the "Sn (6Li,3n}'23I reaction for selected y-ray gates.

(a,2n} study of ' I by Hagemann et al. resulted
in a value of ~=40+3 ns for this isomer; they gave

21 + 19 +
a tentative J~ assignment of ( —, } and ( —, ) for
the 2660 keV isomer and the 2362 keV level, respec-
tively, based on electron conversion information.
Two additional levels of lower spin were defined in
the (a,2n) study by y rays (doublets) that were in
coincidence with the isomeric decay. This is not in-

consistent with the present data because of the weak
population of these states by the (sLi, 3n) reaction.

IV. DISCUSSION

Two collective features were systematically ob-
served in the odd-mass I nuclei studied in this work
(papers I and II}: (I} b.J= I bands built on low-
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TABLE I. Angular distribution results for ' I.

E~' (keV)

138.4

272.6

331.2

343.2

362.3

375.0

414.0

474.3

503.1

510+1

532.6

552.4

574.1

586.8

604.1

606.2

641.3

655.9

671.2'

674.3

711.3'

715.4

766.6

782.S

840.6

898.3

102

100

11

117

10

89

31

41

63

36

69

25

38

35

—0.25+0.10

—0.16+0.03

0.24+0.12

0.12+0.04

0.06+0.03

—0.73+0.09

0.00+0.04

—0.08+0.03

—0.49+0.03

—0.50+0.03

—0.46+0.06

—0.2S+0.04

0.33+0.OS

0.28+0.08

0.34+0.04

0.30+0.05

0.24+0.04

0.28+0.06

0.32+0.03

0.16+0.04

0.16+0.10

0.38+0.05

0.34+0.04

0.28+0.10

0.37+0.06

0.29+0.04

0.24+0.05

0.18+0.09

—0.03+0.03

0.06+0.16
—0.01+0.04

0.00+0.03

—0.03+0.12

—0.06+0.04

0.01+0.04

—0.03+0.03

—0.03+0.03

0.00+0.07

0.09+0.05

—0.05+0.06

—0.06+0.10

—0.06+0.05

—0.02+0.05

—0.03+0.05

—0.05+0.06

—0.04+0.04

—0.03+0.04

—0.03+0.13

—0.04+0.07

—0.07+0.04

0.03+0.13

—0.10+0.08

—0.10+0.05

—0.09+0.06

—0.14+0.12

Branching

ratio

(B.R.) (%)'

78+S

10+5

80+5

22+5

61+15

61+5

53+5

23+5

39+5

90+5

47+5

77+5

27+S

20+5

39+15

7 +
2

11—
2

5+
2
9+
2

11 +
2

13 +
2
13 +
2
15 +
2

11—
2
17 +
2
9+
2

(
7 +
2
9+
2
15—
2
9+
2
9+
2
23

2
19—
2
13 +
2
11 +(—
2

9+
2
11 +
2
9+
2
13 +
2
1S+(—
2

17 +
2
15 +
2
17 +
2
15 +
2

21 +
2

27

2

9+
2
11 +
2
11 +
2
13+

9+
2
15 +
2

7 +
2
5 +)
2
7+
2
11—
2

7 +
2
5+
2
19—
2
15—
2
9+
2
7 +

)2
5+
2
/ +
2
5+
2
9+
2
11 +

)2
13 +
2
11 +
2
13+
2
11 +
2
17 +
2

23

2

J; ~Jg 5(E2/M 1)"

—0.15+0.05

+0.25+0.04

+0.20+0.03

—0.43+0.10

+0.15+0.03

—0.40+0.10

—0.50&5& —1.20

—0.33+0.10

'Energies are accurate to within +0.3 keV unless otherwise noted.

I~, the relative intensities, have been normalized to a strong low-lying transition; typical uncertainties are +10% except
where noted.
B.R. are the branching ratios of transitions from a given initial state.
The 5(E2/M1) mixing ratios were extracted from the angular distribution results following Ref. 23. An average value

of the m-substate population half-width, o =2.2+0.3, which was obtained from pure multipolarities for the ( Li,3n) re-
action in this region, was assumed.
'Doublet unresolved in the singles spectrum; evidence from coincidence data.
Not definitely placed in the decay scheme.
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TABLE Il. Angular distribution results for ' 'I.

Branching

ratios

E& (keV)'

113.5+0.2

333.5+0.5

346.2+0.5

380.3+0.5'

435.8

481.9

505.0+0.4

579.3+0.4

590.7+0.4

595.5+0.4

608.3

613.7

654.4

683.7

704.2

786.1

822.5

850.6

890+1.0

I b

160+20

11+3

8+2

25

62

51

14

21

54

32

70

52

83

19

29

9+3

A2

—0.24+0.10

—0.05+0.03

—0.06+0.04

—0.18+0.04

—0.63+0.03

—0.54+0.05

0.17+0.04

0.27+0.03

0.11+0.05

0.20+0.06

0.22+0.04

0.24+0.05

0.28+0.04

0.22+0.04

0.23+0.05

0.19+0.08

0.04+0.05

0.20+0.08

0.30+0.09

0.02+0.08

—0.01+0.05

—0.04+0.05

0.01+0.06

—0.02+0.05

—0.04+0.06

0.12+0.10

0.03+0.07

—0.05+0.04

—0.03+0.08

—0.06+0.04

—0.05+0.05

0.01+0.06

0.02+0.05

—0.07+0.09
—0.06+0.09

—0.08+0.07

J; —+Jy

7+ 5+
2 2

11+ 9+
2 2
13 + 11 +
2 2
11 — 9 +
2 2
15 + 13 +
2 2
13 + ll +
2 2
9+ 7+
2 2

23 — 19—
2 2
15 — 11—
2 2
9+ 7+
2 2
9+ 5+
2 2

13+ 9+
2 2
19 — 15—
2 2
11+ 7+
2 2
17 + 13 +
2 2

9+ 5+
2 2

15 + 11 +
2 2
9+ 7+
2 2

21 + 17 +
2 2

27 — 23—
2 2

(B.R.) (%)'

32+4

75+3

14+2

25+3

68+4

86+2

5(E2/M 1)

0.11+0.05

0.12+0.05

0.33+0.08

—0.4) 5p —2.0

0.28+0.08

0.20+0.07

'Energies are accurate to within +0.3 keV unless otherwise noted.
I~, the relative intensities, have been normalized to a strong low-lying transition; typical uncertainties are +10% except

where noted.
B.R. are the branching ratios of transitions from a given initial state.
The 5(E2/M1) mixing ratios were extracted from the angular distribution results following Ref. 23. An average value

of the m-substrate population half-width 0 =2.2+0.3, which was obtained from pure multipolarities for the ( Li,3n) re-
action in this region, was assumed.
'Doublet unresolved in the singles spectrum; evidence from coincidence data.

9+ 11—
lying —, states, and (2) b,J=2 bands built on —,
7+ 5+

, and — states. A summary and discussion of
0 +

all of the —, M =1 bands are presented in this pa-

per (I) while those for the b,J=2 bands will be9+
given in the following paper (II). The —, b,J=1
bands observed for the odd-mass " ' I nuclei are
compared in Fig. 6; the recent work on " I from
this laboratory has been included in the comparison9+
for completeness. The numbers below the
bandheads in Fig. 6 are the excitation energies in
keV. There is clearly a striking similarity in terms
of the EJ=1 band spacings, which become the

9+
smallest at " I. The excitation energies of the —,

bandheads, following a parabolic shape, reach a
minimum of 307 keV at "I (%=66). These9+LU=1 —, band systematics for the odd-mass I
(Z =53) nuclei and those observed in the odd-mass
Sb (Z =51), Cs (Z =55), and La (Z =57) nuclei'
(Fig. 7 shows the N =68 isotones) suggest a collec-
tive structure that is common to this Z) 50 transi-
tion region.

These —, bandheads are believed to involve the
9+

excitation of a 1g9/g proton across the Z =50 closed
proton shell achieving 2p-1h states in the odd-mass
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TABLE III. Angular distribution results for ' I.

E& (keV)'

57.6+0.2

325.6+1.0

340.1+0.4

374.5+0.5
396.5+0.4

430.0+0.4

490.6

550.1

593.4

610.1+0.4

615.5

651.8+ 1.0'

658.9+1.0'

686.8+0.5

722 +1.0

736 +1.0

744.8

763.5

880.1+0.5

933.5+0.5

I b

4+2

7+2

17

20

8+2

2+1

34

14

A2

0.17+0.12

—0.12+0.07

—0.70+0.06

—0.57+0.07

0.36+0.09

0.27+0.10

0.32+0.13

0.26+0.07

0.13+0.12

0.19+0.11

0.24+0.06

0.21+0.09

0.19+0.11

—0.20+0.13

—0.07+0.09

0.14+0.10

0.02+0.10

—0.08+0.13

—0.19+0.17

—0.05+0.09

—0.06+0.10

—0.11+0.09

—0.08+0.09

—0.13+0.11

0.11+0.14

7+ 5+
2 2

(—)~(- )
11+ 9+
2 2

(—)~(—)
15 + 13 +
2 2

(—)~(—)
13 + 11 +
2 2
23 — 19—
2 2
11 — 9 +
2 2
13 + 11 +
2 2
9+ 7+
2 2

17 + 13 +
2 2
13+ 9+
2 2
19 — 15—
2 2
9+ 5+
2 2

15 — 11—
2 2
11+ 7+
2 2
9+ 7+
2 2

{—)~(- )
13+ 9+
2 2

(—)~(—)
15 + 11 +
2 2
9+ 5+
2 2

15 + 11 +
2 2
19 + 15 +
2 2

21 + 17 +
2 2

Branching

ratio

80+10

80+10

38+ 4

19+ 6

20+10

20+10

81+ 6

5(E2/M 1)

—0.40+0.15

—0.4)6) —1.5

0.30+0.20

'Energies are accurate to within +0.3 keV unless otherwise noted.

I&, the relative intensities, have been normalized to a strong low-lying transition; typical uncertainties are +10%%uo except
where noted.
B.R. are the branching ratios of transitions from a given initial state.
The 5(E2/M 1) mixing ratios were extracted from the angular distribution results following Ref. 23. An average value

of the m-substate population half-width, 0.=2.2+0.3, which was obtained from pure multipolarities for the {Li,3n) re-
action in this region, was assumed.
'Doublet unresolved in the singles spectrum; evidence from coincidence data.

Sb nuclei, 4p-1h states in the I nuclei, 6p-1h states
in the Cs nuclei, and Sp-1h states in the I.a nuclei.
The theoretical interpretation of the hJ =1 collec-
tive bands can be approached macroscopically with
particle (hole)-core coupling for either deformed ro-
tors ' or anharrnonic vibrators. ' Although each
theoretical model can achieve somewhat equivalent
results, the deformed rotor basis is a natural start-
ing point in view of the collective properties ob-9+
served for these —, hJ =1 bands.

A strongly coupled deformed (prolate) rotor in-
9+

terpretation of these —, LU =1 bands is consistent
with the observed band spacings, the positive
E2/M 1 hJ = 1 mixing ratios, the direct-to-
crossover intensity ratios, and the —, bandhead en-

ergies. An axially symmetric rotor calculation in-
9+

volving the [404j —, Nilsson proton-hole orbital,
which is related to the lg9/g spherical orbital, has
been made to interpret the EJ=1 —, bands ob-9+

served in the odd-mass I nuclei. The band-mixing
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FIG. 6. Systematic properties of the observed hJ =1
band built on the low-lying —+ states in odd-mass

I nuclei. The results for " I include work from
Ref. 3. The y ray and bandhead energies are in keV.

type calculations were made at the equilibrium pro-
late deformations which were deduced from the to-
tal potential energy surfaces for each nucleus.9+
Reasonable agreement was achieved for the —,

bandhead energies and the band energy spacings as
a function of the neutron number N as shown in

Figs. 4 and 5 of Ref. 5. A somewhat unsatisfy-

ing aspect of this rotor calculation is that the [404]
amplitude of the band members decreases as J9

increases. For the J = —, band member of ' 'I,
7+

for example, the [413] —, component was greater
than 15%%uo.

Calculations with a triaxial rotor model also9+
could achieve agreement with the —, AJ =1 band

spacings of the I nuclei for an asymmetric parame-
ter y near 0' (a symmetric prolate rotor). The

11 + 13 +
squeezing of the —, and —, (j+1 and J+2)
band members, which was observed in the Sb —,

hJ =1 bands and fitted with y=20', is not present
in the I nuclei.

The other macroscopic approach, ' involving the
proton-hole coupled to an anharmonic-vibrator
core, has been compared to the rotor-core calcula-
tions by van Isacher et al. ' for the EJ=1
bands in both the odd-mass Sb and I nuclei. They
found fits to. the band properties with sufficient
anharmonic phonons that were essentially indistin-
guishable from those of the rotor calculation. This
similarity was also extended' to the electromagnet-
ic properties, which have been carefully compared
for " Sb by Bran et al. ' The mathematical over-
lap of these two macroscopic approaches prevents a
definite identification of a rotor or vibratorlike basis
(or possible combination) for these collective prop-
erties.



COLLECTIVE PROPERTIES OF THE ODD-MASS I. . . 1099

9/2+ b, J =) BANDS

N = 68

17/2+
Al

15/2+

1g/2+ ~ t

1 1/2+ ~ t 1L

O

9/2+ '1 t 1 t

I)9sb

19/2

O

1 ~ 1t

OD
A
FO

11

Cb
C4
tO

t1P
LO

PO

~ ~ 1P

l21I

I

I

t I

I
I

CO
tO

I

1 f1'

tO
I

O
tO

e1t
0)
CO
Al

(23 s

19/2+

I7/2+

l5/2
Co

~ I 1t
l g/2+

OJ
ll/2+

C4
'~ I It 9/P+

125
LLa

FIG. 7. Systematic hJ =1 band properties for the —,
+ proton-hole states in the N =68 isotones, "Sb (Ref. 2), ' 'I,

' 'Cs (Ref. 7), and ' 'La (Ref. 3). The y-ray energies are in keV.

The nonuniqueness and approximate basis of
these macroscopic approaches to the collectivity of
this region provide a motivation for a more micro-

scopic interpretation. In this respect, a microscopic
generalized seniority scheme has been applied to

9 +
the description of the —, hJ =1 bands observed in

the Z &50 transition region. " A perturbation ex-
pansion of the particle (hole)-collective core interac-
tion in terms of the number of neutrons in an effec-
tive shell has been obtained from a coherent sum of
nucleon-nucleon interactions. A second order
(seniority breaking) term introduces a quadratic

9+
dependence of the —, bandhead energies on the

neutron number N. A comparison of the experi-9+
mental and calculated —, bandhead energies as a
function of X for the Sb and I nuclei is presented in

Fig. 8. The parabolic dependence, which is obvious
in the figure, has a behavior similar to that achieved

by the introduction of a residual macroscopic quad-

rupole interaction. The experimental —, energies

at N =64 (" I and " Sb) are slightly higher than
that expected from the experimental systematics or
the theoretical curves; this possibly represents an in-

fluence of the subshell closure at X =64, which is
related to the Z=64 closure at ' Gd. The —,

hJ =1 band spacings for the Z & 50 region are also
well fit in this microscopic model. The resulting
hole-core interaction yields weak-coupling like spin
multiplets, which relate to the coupling of the odd
proton-hole J '= —, to the even-Xe core J,. TheJ,„state for each multiplet with J,=0, 2, 4, . . . is

l. 5-

l.0
0)

LLI

C:0

O

0.5—

o
62

/
Cs

/
/

/-+ I I

E4 66 68 70
I I

72 74

Neutron Number N

FIG. 8. Comparison of the observed —+ bandhead

energies for the odd-proton nuclei in the Z ~50 transi-
tion region with microscopic calculations of Gai et al.
(Ref. 11).

pushed above the J,„' member by the usual

particle-hole interaction resulting in LU =1 bands.
These calculations are being made for the entire
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Z g 50 transition region. Further comparisons with
this model are given in the following paper (II}.

The extensive systematic experimental properties
obtained for the collectivity of this Z ~50 transi-
tion region' provide a very detailed testing ground
for the various microscopic theoretical approaches.
It is hoped that such tests will reveal a unique
understanding of this collectivity as well as that for

other transition regions. Recent investigations in-
volving the interacting boson-fermion model for
odd-mass nuclei are currently being directed at
transition nuclei.
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