
PHYSICAL REVIEW C VOLUME 26, NUMBER 3 SEPTEMBER 1982

Influence of deformed-nucleus level densities on statistical model calculations
for high-spin fission

S. E. Vigdor and H. J. Karwowski*
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

(Received 19 March 1982)

Inappropriate formulations for nuclear level densities, based in part on an assumption of
spherical symmetry, have often been employed in statistical model calculations of the com-

petition between decay modes of nuclei at high spin and excitation. We investigate the in-

fluence on such calculations of nuclear deformation effects in the level densities, at both the

saddle-point shapes relevant to fission and the most probable shapes reached in particle
evaporation. The deformation effects are included in a Fermi-gas formalism in two stages,
first assuming complete independence of rotational. and intrinsic degrees of freedom, and

subsequently allowing for a deformation-dependent cutoff with increasing temperature in

the collective enhancement of the level densities. The latter effect gives rise, in the absence

of shell and pairing corrections, to a progressive increase with increasing temperature in the

most probable daughter-nucleus deformation for particle emission. The most significant

effects of the deformed-nucleus level densities on calculated decay properties for
Li+' Au —+ Pb, at several bombarding energies, are an increase in the cross section and

a decrease in the anisotropy for fission fragments. Ambiguities in the details of the collec-

tive cutoff yield a sizable uncertainty in the quantitative extent of the fission enhancement.

Relative measurements for different entrance channels to the same compound nucleus

which may be sensitive to the collective cutoff are illustrated by calculations for
Ne+ &80Hf vs Lj+ Au fusion-fjssjon.

NUCLEAR REACTIONS Fission-evaporation competition in decay of
Pb from high excitation and angular momentum. Statistical model

calculations for deformed nuclei incorporate collective level density

enhancements which fade with increasing temperature.

I. INTRODUCTION

In heavy-ion induced fusion and deeply inelastic
reactions, nuclei are often produced at quite high
angular momentum, excitation energy, and defor-
mation. Investigations of the decay products, espe-
cially of fission fragments, from such highly excited
nuclei are potentially useful in probing both the
mechanism for the initial formation of the decaying
nucleus' and its structure at high spin. ' However,
there are often serious ambiguities in the quantita-
tive interpretation of decay measurements, for
which one relies on some form of statistical model
analysis' of the competition among the many de-

cay channels open at high excitation. Such analyses
assume that the relative widths for different decay

modes are determined purely by considerations of
potential barrier penetrabilities and accessible phase
space (i.e., the number of relevant open channels).
Even if one grants the appropriateness of this basic
assumption, the detailed statistical model calcula-
tions of inverse reaction cross sections for particle
emission, and of nuclear level densities relevant to
both particle and fission decay, are plagued by con-
siderable theoretical uncertainties and by a lack of
opportunity to test these theories independently for
nuclei with suitable properties. Thus, inverse reac-
tion (i.e., fusion) cross sections for nucleons and a
particles can be measured for target nuclei in their
ground states, but there is no direct experimental
guidance on how to extrapolate from such measure-
ments to the "hot," and possibly highly deformed,
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nuclei of interest. ' ' Similarly, theoretical calcu-
lations of level densities have been compared with
direct experimental results'" ' only at relatively
low excitation and spin, and over the limited range
of deformations provided by nature for particle-
stable or nearly stable nuclei.

The best chance for progress in understanding the
decay competition in hot, high-spin nuclei lies in
identifying theoretically expected changes in level
densities and penetrabilities with increasing spin,
excitation, and deformation, and in incorporating
such changes in analyses of systematic measure-
ments of many decay properties. The encouraging
results of such a comprehensive program of experi-
ments and statistical model analyses of fusion-
product decay have been reported in the preceding
paper. ' In the present paper, we describe in detail
our improvements to standard statistical model
treatments of nuclear deformation effects on the ex-
citation energy and spin dependence of level densi-
ties. In this work we have been guided by the
theory of deformed-nucleus level densities
developed by Ericson' and by Bj@rnholm, Bohr,
and Mottelson. '

It is crucial in any calculation of fission-
evaporation competition to consider the difference
in level densities between the strongly deformed
saddle-point and more mildly deformed equilibrium
shapes of the nucleus. This difference is very sensi-
tive to the changes with deformation in the density
of single-particle levels at the Fermi energy, and in

the potential energy surface relative to which one
must measure the energy available for intrinsic exci-

tations. These two indirect effects of the deforma-
tion have been incorporated, via adjustable parame-
ters, in previous statistical model analyses. Howev-

er, the role of deformation in establishing an
energy-favored spin orientation (in a body-fixed
reference frame) has usually been neglected; i.e., the
number of levels of a given excitation energy and
total angular momentum has been deduced under
the implicit assumption of spherical sytnrnetry from
the thermodynamically calculable density of states
with a given spin projection along some chosen
axis. ' This approach is inappropriate for any
body-fixed axis in a deformed nucleus and is expect-
ed' ' ' ' to lead to large errors in the absolute
values of the level density for deformed nuclei at re-
latively low excitation. The error introduced with
this approach in the relatiue level densities for fis-
sion versus particle emission from a highly excited
nucleus is not clear from previous work, and is the
subject of the present investigation.

In taking explicit account of the deformation in

enumerating levels of given spin, one must decide
whether to include collective (rotational) degrees of
freedom independently of the intrinsic nuclear exci-
tations, ' ' and if so, whether to include them in a
similar manner at the saddle-point and equilibrium
shapes. In the present work, we investigate the in-
Quence of the collective excitations in two stages.
First we include the full collective enhancement of
level densities (corresponding to complete indepen-
dence of the collective and intrinsic degrees of free-
dom) at all deformations and temperatures, yielding
a treatment similar in spirit to that of Jensen and
co-workers. %e then propose a new method for in-

corporating the expected dilution of the collective
enhancement with increasing temperature, which
must arise when the single-particle Coriolis excita-
tions associated with the rotational motion become
accessible. ' In our approach the net effect of the
collective enhancement "fadeout" is a progressive
increase with temperature of the most probable de-
formation reached in particle emission processes.
We include the effect of this increasing deformation
on the transmission coefficients for particle de-
cay' ' ' ' as well as on the level densities.

The general features and underlying assumptions
of our statistical model calculations are discussed in
Sec. II, along with the formulas used to evaluate the
fission (crf ) and particle-emission (a„~~) cross sec-
tions and the fission fragment anisotropy (yf ) once
the level densities are known. In Sec. II, we also
present our method for estimating transmission
coefficients for deformed nuclei. A detailed
description of the level density treatment in conven-
tional codes, and of the two stages of the
deformed-nucleus treatment in our code, is given in
Sec. III. Differences among the various treatments
are illustrated by comparing calculations of the fis-
sion probability as a function of spin and chance
(i.e., the stage during the evaporation chain at
which fission occurs), and of crf, tr, and yf as a
function of bombarding energy, for the system
Li+' Au~ Pb. All of these calculations as-

sume a nuclear potential energy surface and intrin-

sic level density parametrization consistent with the
rotating-liquid-drop (RLDM) (Ref. 22) and nonin-

teracting Fermi gas (NIFG) (Refs. 8, 11, and 23)
models of the nucleus; we thereby exclude from our
present considerations the additional complicating
influence of the variation in shell and pairing struc-
ture corrections with spin, deformation, and excita-
tion. ' ' ' The comparison of our statistical
model calculations with experimental results in the
preceding paper suggests that this neglect of micro-
scopic corrections is appropriate at the high tem-
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peratures which apparently dominate the observed
decay. ' The conclusions of the present work are
summarized in Sec. IV.

II. THE STATISTICAL MODEL CODE

A. General features and assumptions

Our calculations have been carried out with an
extensively modified version of the code MB-II (Ref.
26), the logistics of which have been described in
detail elsewhere ' '; we call the new version
MBEGAT. As is conventional in statistical model
analyses, we assume (for the purposes of the present
paper, but see Ref. 16) that the decaying nucleus
has reached thermal equilibrium, so that the
mechanism of its formation is reflected at most in
the excitation energy and spin distributions of the
populated states, and not at all in their structure.
The relative probabilities for different decay modes
are then determined by barrier penetrabilities and
accessible phase space.

The relevant level densities are evaluated as if a
given decay process always led to a given well-

defined nuclear shape, corresponding in principle to
the most probable deformation (at the appropriate

excitation and spin) in the final nucleus reached via
particle emission, or to the phase-space
"bottleneck" along the most probable path to fission
(the "transition state" of Bohr and Wheeler ). In
keeping with standard terminology, we will refer to
these deformations henceforth as "yrast" (or
"equilibrium" ) and "saddle-point" shapes, respec-
tively; however, it must be understood that they are
not necessarily simply related to features of the ae-
tua/ potential energy surface (PES) of the "cold"
nucleus. Indeed, with increasing nuclear tempera-
ture one expects ' shell and pairing corrections to
the PES and to level densities to counterbalance one
another progressively more completely, so that the
relevant deformation probabilities (at least those de-
rived from the density of intrinsic excitations)
evolve toward the values characteristic of a
RLDM-NIFG nucleus. In addition, we will argue
in Sec. IIIC that, even at temperatures where shell
and pairing effects are already negligible, allowance
for the "fadeout" of the collective enhancement to
level densities may lead to a further temperature
dependence of the effective "yrast" deformation.

The relative decay widths for fission (I I) and for
particle emission (I „v=n,p, a) from a nucleus of
spin I and excitation energy E* are evaluated in the
code as follows:

[E*—E d(I))
I I(E*,I) ~ I PI[E* Ek,I]dEk, —

ao I+1 fE*—E,(J)—B ]
I „(E',I) ~ (2s„+1) g g j p,[E' B, e,J]—T„(e—)de .

l=O J= (I—l
f

(2)

Here the potential energies corresponding to the ef-
fective saddle-point and yrast shapes, as defined
above, are given by E„d(I) and E„,(J), where J is
the angular momentum of the daughter nucleus
reached by particle emission; the corresponding lev-
el densities pI and p„are calculated as functions of
excitation energy and total angular momentum ac-
cording to one of the three prescriptions described
in Sec. III; s and 8 are, respectively, the intrinsic
spin and the s-wave separation energy of the emit-
ted particle; Ek is the kinetic energy associated with
the fission distortion; e, 1, and T„(e)are the c.m. ki-
netic energy, the orbital angular momentum, and
the associated transmission coefficient of the emit-
ted particle with respect to the daughter nucleus. In
writing Eq. (1) we have implicitly assumed that the
fission barrier transmission is unity above and zero
below the barrier height. This classical approxima-

tion, introduced for convenience, is well justified in
the present calculations, where the fission decay is
overwhelmingly dominated by processes occurring
well above the barrier.

The partial widths I ~ and I „are calculated for
all relevant values of E* and I (in 1 MeV by ifi
bins), for each nuclide in the chain deexciting the
compound nucleus (CN). The CN itself starts with
a unique excitation energy and a spin distribution
o CN(I) specified as input to the calculation.
Evaluation of the evaporation widths as a function
of e and J then yields the population profiles
os,z(E*,I) for each subsequent nuclide (N, Z) in
the decay chain. The fraction of oN z(E*,I) which
goes in turn into one of the four (f,n,p, a.) decay
modes is given by the ratio of the corresponding
partial width to the sum of all four partial widths.
In the present calculations we assume that y decay
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does not compete effectively with the above modes,
but rather occurs only at the end of the chain when
fission and particle emission become energetically
inaccessible. To save computing time, we further
neglect here the very small contributions' from de-

cay processes involving multiple charged-particle
evaporation or fission after charged-particle eva-

poration.
The decay widths calculated for a given level den-

sity treatment and, to a lesser extent, the relative
values for different level density formulations, are
sensitive to the values chosen for the input parame-
ters which determine such quantities as E„s(I),
E„,(J), B„, T,(e), and ocN(I) Wit.h a few excep-
tions which are noted explicitly in subsequent sec-

tions, these and other input data are chosen via the
prescriptions explained in detail in Sec. IV B of the
preceding paper. '

B. Fission-fragment angular distribution

It is useful to consider the angular distribution

WI(8) of the fission fragments as well as the total
cross section o.~ because the two quantities exhibit

complementary sensitivities to the nuclear structure
parameters which infiuence the fission decay
widths. ' ' The evaluation of WI(8) in MaEG&T

follows essentially the geometrical model proposed

by Halpern and Strutinski (see also Ref. 30). As-
suming that the fragments separate along the
saddle-point symmetry axis, a fissioning nucleus of
total angular momentum I, projection E along the
symmetry axis, and zero projection along the beam
direction (M =0), will be characterized by an angu-
lar distribution

Wx o(8) ~ 1/sin8 . (4)

The M =0 assumption is strictly valid only if the
CN is formed from spinless projectile and target
nuclei, and even then, only for first-chance fission,
since neutron emission may change M. If M &&I,
however, as is the case for the dominant contribu-
tions to our calculated fission yields, the M =0 ap-
proximation introduces only very small errors ( & a
few percent) in WI(8}, and is sufficient for our
purposes.

For fission of a hot nucleus (nuclear temperature
r) of spin I, the angular distribution is obtained by
summing Eq. (3) over the full expected distribution
of K values:

Wix(8) o: [sin 8—K /I ]

for sin 8) . (3)
E
I2

In the limit K =0, Eq. (3) reduces to the more fami-
liar form

I (I+1/2)
WI,(8)= g Wgx(8)rjl, (K) + I W—gx(8)rig, (K)dK,

K=0

where we have denoted the probability of finding the fissioning nucleus with projection K by rll, (K), and we

have made the usual classical (high-spin) replacement of the summation by an integral. We make the standard
assumption ' that the K distribution is "frozen" at the saddle point, and for computational convenience we
use the Gaussian form

gr, (K) ~ exp( K /2Eo ), 0—&K&I,

where

W~~ and Wi are the moments of inertia (for rotations about the symmetry axis and about an orthogonal axis,
respectively} evaluated at the saddle-point deformation for spin I. As will be seen in Sec. III B, the Gaussian
approximation to the EC dependence of the saddle-point state density is valid in the limit

E))E„(Is) +PirK/2(&, rr)„s,

our failure to include in rll, (K) the appreciable deviations from a Gaussia, n expected in the tail of the K distri-
bution (for K) 2Ko) introduces a small error in Wj(8) which nearly cancels that arising from the M =0 as-
sumption.

Combining Eqs. (3), (5), and (6) we obtain the following analytical expression for the angular distribution at
given spin and temperature:
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Wl (8)=C(I,r)exp[ (I—+ —, ) sin 8/4%0 ]Jo[i(I+—, ) sin 8/4Eo 2],

where Jo is a zero-order Bessel function of ima-

ginary argument. In the code, Eq. (8) is applied to
fission from a given spin in a given nuclide in the
decay chain (i.e., a given "chance" of fission). For
fission following particle emission, the effective
saddle-point temperature ~, and hence Eo, are
determined from the calculated E" Ipop-ulation
profiles, to correspond to the mean excitation ener-

gy contributing to fission from the appropriate spin
and chance. The normalization factor C(I,r)
[which incorporates all angle-independent factors
appearing elsewhere in expressions analogous to
Eq. (8)] is determined by requiring angular integra-
tion of Eq. (8) to reproduce the MBEGAT prediction
for O.f from that spin and chance. The final calcu-
lated angular distribution is obtained by summation
over all spins in each fissioning nuclide, and over all
fissioning nuclides:

W(8)= g QW„(8).
chance 1

(9)

For purposes of comparing different calculations,
or calculations with measurements, the fission-
fragment angular distributions are most easily
characterized by the anisotropy

yf = Wf(170')/Wj(90'), (10)

which can be seen from Eq. (8) to be quite sensitive
to the ratio I/Eo. Specifically, yf increases as I in-

creases for roughly constant Eo, or as ~ and Eo de-

crease for fixed I. The overall anisotropy, corre-
sponding to Eq. (9), is thus particularly sensitive to
the distribution of the fission cross section with

respect to spin and chance. ' '

C. Transmission coefficients
for particle emission

For reasons explained in the preceding paper,
'

the present calculations are based on the standard
assumption that the inverse reaction (namely, fusion
on hot target nuclei) cross sections for particle emis-
sion are well approximated by total reaction cross
sections for cold target nuclei. Thus we generate
the transmission coefficients T„(E) appearing in Eq.
(2) from optical model (OM) calculations, using po-
tential parameters deduced in low-energy n, p, and
a elastic scattering studies ' for targets in the Pb re-
gion. Strictly, the OM calculations should solve the
Schrodinger equation for scattering potentials

I

which deviate from spherical symmetry, reflecting
the effective yrast deformation in the daughter nu-

clei reached by particle decay. ' In practice, howev-

er, the RLDM yrast deformations for the mass
and spin range of interest here are sufficiently small
(major-to-minor axis ratios typically less than 1.10)
that the effect of deformation on the T,(e) can be
safely neglected. Thus, for most of the calculations
reported in the present paper, we use standard
shapes for the n, p, and a scattering potentials, e.g.,
real central nuclear wells of Woods-Saxon form:

U~(r)= —Vo[1+exp[(r —Ro)/aii]I ' . (ll)

The neglect of deformation effects on the T'„(e)
is no longer necessarily justified once we allow for
the "fadeout" of the collective level density
enhancement, since then the deformations most
probably reached in particle decay may considerably
exceed the RI.DM values (see Sec. IIIC). In these
cases we approximate the solution of the
Schrodinger equation for deformed OM potentials
by a method similar in spirit to, although differing
in detailed execution from, those applied in Refs.
10, 20, and 21. We treat a range of deformed nuclei
with axial and reflection symmetry, for which con-
tours of constant matter density (or constant nu-

clear potential) are assumed to have the form

R (8)=Rp[ 1 +ao+ a2P2(cos8) +a4P&(cos8)]

(12)

where 0 is the angular deviation from the symmetry
axis. (For a given value of the quadrupole deforma-
tion parameter cx2, a4 is always chosen to minimize
the total RLDM potential energy and o;0 to main-
tain the volume of the spherical nucleus; see the
Appendix. )

The approximation method we use for the
deformed-nucleus transmission coefficients is a
compromise between the demands of computing
speed and accuracy. %'e do not solve the full
three-dimensional Schrodinger equation for a de-

formed, complex potential of realistic shape. Rath-
er, we consider a series of one-dimensional radial
equations, each involving an effective central poten-
tial appropriate to a (classical) particle incident at
some well-defined angular orientation 8 with
respect to the symmetry axis of the target nucleus.
This "equivalent spheres" approximation has been
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applied in most previous work' " as well, with

varying degrees of sophistication in the subsequent
calculations. Stokstad and Gross ' numerically in-

tegrate the radial equations for many 8 values, us-

ing (9-dependent radius parameters in both real and
imaginary potential form factors. This procedure
was deemed too time consuming in the present ap-
plication, where transmission coefficients must be
calculated as functions of particle type, energy, an-

gular momentum, and deformation. Rasmussen
and Sugawara-Tanabe present an alternative treat-
ment in which only the real part of the effective
central potential is included (assuming a "black"
nuclear interior):

Vo

1+expI [r —R(8)]/az )

Z)Z2e Z)Q2e
+ + P2(cos8)

r 2p

l, a2, e
Ujr (r) =—

+ A'l(l+1)
2pf

(13)

g d'U, «'
ACOl a g=

p dr
barrier top

The final effective transmission coefficient for the
deformed nucleus is then obtained by angular in-

tegration of Eq. (14):
m/2

T,(e,a2) = T,(e,a2, 8)sin8d8 . (16)

The Hill-Wheeler approximation allows a much
more rapid, although cruder, evaluation of the T„'

than does numerical integration for a complex po-
tential. We expect that it provides a more accurate
account of the change in transmission from a spher-
ical to a deformed nucleus than it does of the abso-
lute value of the transmission coefficient for either

Here R(8) from Eq. (12) replaces the spherical
real-well radius Rp, the quadrupole moment Qq of
the target nucleus is given in terms of a2 in the Ap-
pendix, and p is the reduced mass. The barrier in

U,rr(r) is furthermore approximated by a parabola,
leading to the following (Hill-Wheeler ) analytical
expression for the angle-dependent transmission
coefficient:

T', (e,a2, 8)= [ 1+ exp[2m(e B~ ~, p)/fu—uI ~ e] J

(14)

l, a2, 8
where B~, e is the value of U,rr' (r) when its radi-

al derivative vanishes, and
1/2

case. We have therefore used Eqs. (13)—(16) in

MBEGAT to calculate not the T„(e,aq} directly, but
rather an effective energy e' at which the transmis-
sion through a spherical potential barrier would

equal that for the deformed nucleus at the actual
particle energy e:

[1+exp[2m(e' —BI p)/flcol p] I

=T (e,aq+0) . (17)

[Whenever the spherical (az ——0) real potential does
not exhibit a barrier (or at least an inflection point),
e' is set equal to e.] The shift from e to e' reflects
the (8-dependent) change in the height and width of
the real potential barrier when the target nucleus is
deformed. ' ' This energy shift is calculated in
the code via Eq. (17) as a function of v, I, e, and az',

representative results are shown in Fig. 1. The final
calculation of particle emission widths for deformed
nuclei then uses spherical OM transmission coeffi-
cients evaluated at the relevant approximate
energies e'. The OM coefficients for spherical

[T„(e,a2 ——0)] and deformed [T„(e',a2=0)] nuclei
are compared for several cases in Fig. 1, to illustrate
the effect of the energy shift.

We find (see Fig. 1) that the energy shift (e' —e)
generally crosses zero where

T„(e,aq ——0}=0.4,
being positive for smaller and negative for larger
values of e. Correspondingly, the falloff in T„with
decreasing energy for fixed I (or with increasing l
for an energy above the Coulomb barrier) is always
more diffuse for the deformed than for the spheri-
cal nucleus, but is usually centered about similar e
values (or I values) for the two cases. It is clear
from Fig. 1 that the deformation effect grows rap-
idly with increasing l, and for this reason has a
more pronounced influence on emission widths for
o, particles than for nucleons. These observations
are qualitatively consistent with the results of ear-
lier treatments' ' ' ' of deformed-nucleus barrier
penetrabilities.

Earlier calculations involving approximations
similar to ours have been compared with experi-
mental results for fusion ' ' and elastic scattering
of a's or heavier ions on deformed nuclei; such
comparisons suggest that as long as the deformation
effects on the inverse reaction cross sections are not
very large, the method used in MBEGAT should ac-
count for them adequately. The "black interior"
and Hill-Wheeler approximations are expected to be
less valid for nucleons than for a particles (al-
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FIG. 1. Illustration for representative partial waves (l =9 or 19) of the deformation-induced shift in effective parti-
cle energy [(e —e) calculated with Eq. (17)], and of the associated changes in the transmission coefficients, as a func-
tion of actual particle energy e for n, p, and a emission from Pb. The broken curves are calculated following the
prescription in the text for daughter nuclei with oblate (+2&0) or prolate (a2g 0) deformation, as indicated in the fig-
ure, while the solid T„curves represent conventional spherical optical model results.

though probably not so bad for fusion with hot tar-
get nuclei, the processes of real interest here); but in

any case, the calculated effects on nucleon emission
widths are quite small.

III. COMPARISON OF CALCULATIONS
FOR DIFFERENT LEVEL DENSITY

TREATMENTS

A. Spherical-nucleus formalism

The evaluation of nuclear level densities in the
present, as well as in most other, statistical model
calculations is based on an approximate two-
component Fermi-gas (NIFG) treatment, s 2~ which
yields for the overall (spin-integrated) density of in-

trinsically excited states at excitation U:

Q;„„(U) cc U ~ exp[2(aU)'~2] . (18)

Q;„,„(U, M )= (2iro. )

In Eq. (18) U is to be measured with respect to the
ground-state energy of a nucleus with the same de-
formation as that being considered (i.e., with respect
to the appropriate point on the I=0 PES). The lev-

el density parameter a is proportional to mass num-
ber A, with the (possibly deformation-dependent)
proportionality constant generally adjusted to fit
measured level densities at excitations near the neu-
tron separation energy. Lang' has generalized the
NIFG result to specify the density of states charac-
terized by fixed angular momentum projection M
along some chosen axis:
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cr =W„srjiri,

in terms of the nuclear temperature
—j

[lnQ(E)]
8
E

(20)

(21)

In most of the widely used statistical model
codes, ' ' the transition from Eq. (19) to the
dependence of the level density on total angular
momentum I is made via the following rela-
tion"'":

p(U, I)= Q;„,„(U,M=I)
—Q;„„(U, M =I+ 1)

where W„s is the moment of inertia of a rigid body
having the same density distribution with respect to
the chosen axis as the Fermi gas. The "spin cutoff"
parameter a. is given by

as the net excitation energy of the nucleus above the
PES for the appropriate spin and shape. In such a
"hybrid" level density treatment, based on spherical
symmetry but acknowledging some deformation ef-
fects, it is unclear whether one should further incor-
porate the moment of inertia difference in the tr
factor in Eq. (22): This difference is included in the
code GROGIF (Ref. 6), but is not in MB-II (Ref. 4) or
ALIcE (Ref. 5). Our intention here is not to estab-
lish a preference for one or another of these codes,
but rather to stress the inconsistency inherent in all
of them. For simplicity, we will then compare our
deformed-nucleus treatments with calculations
based on only one of these "hybrid" spherical ap-
proaches, namely, that of Refs. 4 and 5; the level

densities appearing in Eqs. (1) and (2) are then given

by

p)'"(E*,I) ~ (2I+1)U„d

BQ;„„(U, M)

I=i+in

=(2I+1)(8ir) ' 'cr '

Xexp[2(a/U„d)'~ ],
p'„~"(E',J) (2J+ 1)Uy,

&& exp[2(a „U„„)' ],
where

(23)

(24)

fi I(I+1)
~ln~r U—

fig

(22)

The initial step in Eq. (22) depends on the assump-
tion that for given I all possible projection quantum
numbers, —I (M &I, are equally probable —i.e.,
Eq. (22) assumes spherical symmetry It is the.
failure of this premise for any body-fixed axis in a
deformed nucleus —specifically, for the saddle-point
and yrast shapes relevant to high-spin decay
processes —which has stimulated the present inves-

tigation of more appropriate formalisms.
In a self-consistent (albeit inappropriate) treat-

ment via Eq. (22), the moment of inertia appearing
in the argument of Q;„„, and in the factor o.

would have to be assigned the same value (corre-

sponding to a spherically symmetric matter density
distribution) in evaluating level densities relevant to
fission and to particle emission. However, one
would then. be unable to account for the spin depen-
dence of the fission probability, since the decreasing
fission barrier with increasing angular momentum
is manifested in the phase space calculations pre-
cisely through the difference between the saddle-

point and the yrast rotational energy terms in the
argument of 0;„„.It is thus conventional to inter-

pret the argument

U'==- U fPI(I+ I )/2'„s-ar—

U„=E' E„(I); U—„„=E' E„,(J), —
and we have allowed for different level density
parameters for fission (a/) and particle emission

(a, ). In the approach of Ref. 6, the level density ra-
tio pI/p„would be reduced from that given by Eqs.
(23) and (24) by an effective factor of (W„,/W„d) ~;
this factor typically has a value =0.2 for the cases
we consider in the present paper.

Calculations of fission decay widths, cross sec-
tions, and anisotropies, and of a-emission cross sec-

tions, employing the level density treatment of Eqs.
(23) and (24) are represented by dashed curves in

Figs. 2 and 3. The results are extremely sensitive to
the ratio aI /a„and slightly sensitive to the absolute
value chosen for a„.' In all of the calculations re-

ported in this paper for Li+' Au, we have used
the fixed values a//a„=1. 039 (based on RLDM-
NIFG arguments, see the preceding paper' ) and

a, =A/9. 0 (based on smoothed shell-model single-

particle level spectra in the Pb region, Refs. 38 and
39). The saddle-point and yrast energies are taken
from the RLDM calculations in Ref. 22.

B. Deformed-nucleus leve1 densities
with fu11 rotational enhancement

In the mass and spin range investigated here, the
RLDM predicts axially symmetric yrast and
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FIG. 2. The (a} spin and {b) chance distributions for
fission following fusion of 84.2 MeV Li+' Au, from
statistical model calculations employing the three dif-
ferent level density treatments outlined in Sec. III of the
text. The relative partial width for 1st-chance fission is
plotted versus the compound-nucleus angular momen-
tum in (a), while the spin-integrated relative fission cross
section is plotted for the various stages of the decay
chain in (b). With the exception of the parameter g,
which is introduced in allowing for the collective
enhancement fadeout [see Eq. (44)], all input parameters
are identical for the three calculations, with values given
and justified in Ref. 16.
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FIG. 3. The influence of the level density treatment
on calculated decay properties for Li+' Au as a func-
tion of bombarding energy. The quantities displayed are
the total fission cross section (o~) and anisotropy (yy),
the absolute cross section for a evaporation (u ), and its
ratio (o /o~) to that for proton evaporation. The initial
compound-nucleus spin distribution is based (Ref. 16) on
an assumed total fusion cross section of 1100 mb at
E~,b ——55 MeV and 1213 mb [an average of measured
values (Ref. 16) for various targets and energies] at all
higher energies.

saddle-point deformations. For such nuclei it is ap-
propriate' ' to apply Eq. (19) to deduce the distri-
bution of states with respect to the (intrinsic) angu-
lar momentum projection E along the symmetry
axis, and then to sum over all relevant E values to
obtain p(E",I), rather than using the "difference"
method of Eq. (22). In doing so we are forced to
address the important contribution of collective ro-
tational bands to the density of levels at low excita-

tion in deformed nuclei. The collective rotations do
themselves arise from coherent superpositions of
particle-hole excitations, which would eventually be
counted in 0;„„,but the collectivity gives them en-
ergies much lower than the unperturbed values
characteristic of the contributing intrinsic states.
There is consequently a collective enhancement of
the level densities, at least at low temperature,
which should be explicitly incorporated in the sum-
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mation of states over K. This can be done as
prescribed by Bjprnholm, Bohr, and Mottelson
(BBM) (Ref. 18), replacing Eq. (22) with:

p( U,I ) = , g—Q;„s,[U E„—,(I,K },K)
K= —I

the RLDM, the saddle point on the PES for given I
corresponds to a strong prolate deformation, with
the angular momentum vector perpendicular to the
symmetry axis, so that the rotational contribution
to E„d(I) is

= (8ir)-'"ox -' E"d(I)=Pi I(I+1)I2(&i)ssd . (27)

fP[I(I+ 1)—K']
intr

'

K= —I

(26)

where ott =&~~1IA In E. q. (26), [U—E, s(I,K)]
is the energy of an intrinsic configuration with an-

gular momentum projection E, upon which a collec-
tive level of total excitation U (with respect to the
I=0 PES) and total angular momentum I is built.
The factor —, preceding the first summation in Eq.
(26) accounts for the reduction in states (restriction
to non-negative K values} associated with the as-
sumed reflection (9P-) symmetry of the nucleus.

In this subsection we describe calculations which
include, via Eq. (26), the collective enhancement at
low and high temperatures alike, for both the yrast
and saddle-point deformations (similar calculations
are included in Ref. 7). We postpone until the fol-
lowing subsection discussion of the possible
shortcomings of this approach, particularly the
double counting which is inevitable at high tern-

peratures when 0;„„includes significant contribu-
tions from configurations implicitly exhausted by
the lower-lying collective levels.

In relating the argument of Q;„„in Eq. (26} to the
net excitation energies U»d and U„, defined by Eq.
(25), we take explicit account of the expected differ-
ence in the nature of the two deformations in the
mass and spin region of interest here. According to

In contrast, the RLDM yrast deformation is mild
and oblate, with spin parallel to the symmetry axis,
yielding

Eros(J) fi J(J+1}
2(W(()y,

+iri'J(J+1) A'J(J+1)
2(J i)~, 2(&,tt)y,

where the effective moment of inertia,

Jr ett=WiW~
~

I(&i—W~
~

),

(28)

(29)

is negative for oblate and positive for prolate
shapes. [It should be noted that for a Fermi gas,
the simple collective rotational energy formula (28)
is a good approximation to the average yrast
behavior, despite the fact that collective rotations
about a symmetry axis are strictly disallowed in a
quantal treatment. ' ' ] While we assume spin
along the symmetry axis for the yrast level itself,
the collective excited levels to be included in p via
Eq. (26) are still those corresponding to rotations
about an axis orthogonal to the symmetry axis. The
following level density treatment, based on the dis-
tinction between Eqs. (27) and (28), becomes invalid
for angular momenta just below the critical value
(I,„,=83fi for Pb) where the difference between
yrast and saddle-point deformations, and hence the
fission barrier, vanish. In that limit, of course, one
should use the same form for pf and p„.

Combining Eqs. (27) and (28) with Eq. (26), we
obtain:

I AE
pf' (E*,I ) =fi[8ir(W~

~

)ssdrssd] g Qiogr Ussd ——
2(jeff }sad

(30)

J
p„' (E*,J ) =fi[8n.(W~

( )y,ry, ] ' g Q;„,r Uyr— (31)

Note that as a result of the difference in deformations, the K distribution of the state densities peaks at K =0
for the saddle-point but at

~

K I
=J for the yrast shape. Substantial computing time can be saved and little

accuracy lost if the summations over K in Eqs. (30) and (31) are replaced by integrals, and the integrals in turn
evaluated assuming the arguments of 0;„„to be close to U„d and U„„respectively; e.g.,

fi K
lllrr sell

K= —I eff sad

(,I+ ]/2)
=Q;„„(U„d)f exp( Ki/2K0 )dK . — (32)
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In Eq. (32) we have made the same Gaussian approximation to the E distribution introduced earlier [Eq. (6)]
for the fission angular distribution calculation. If a power series expansion of the exponential argument in Eq.
(32) were extended to include the next term

( E—r„s/16EO, U„d),

the integrand would begin to deviate noticeably from a Gaussian for ~E
~

&2Ep but the value of the integral
in the cases of interest ~ould not be altered by more than a couple of percent.

The approximate formulas we have actually used to evaluate the deformed-nucleus level densities in
MBEQAT are as follows:

1 2
'

exp 2(a U-d}'"
I f II »d 0, d ~2~ U3/2

'(E',I) ~ [2m/(W ) j' E erf
O,~d SSd

(33)

"(E*J) (2J+1)(~ )
'"

1 — + ++ ~~"' I ~+ ln ~ U'&'0, Oyr yr

t

(34)

where

Kp =
~
W,rr ~

vari, r=(U/a)'~

and

erf(x)=2m '~ I exp( t )dt . —

(35)

(36)

while

Eo -(60 MeV ')r»d .

The factors multiplying 0;„„(U) in Eqs. (33) and
(34) vary much more slowly with excitation energy
than does 0;„,„ itself; these slowly varying factors
are evaluated in the code only for Ek ——0 and @=0,
and are removed from the integrals over these vari-
ables in Eqs. (1) and (2). RLDM values for the
moments of inertia (J ~~)„„, (J i)„„, (W~~)»d, and
(J i)»d are calculated as a function of spin for each
nuclide in the decay chain. The accuracy of the
various approximations used in MBEGAT for numer-
ical convenience in evaluating the deformed level

densities is very good in comparison with remaining
theoretical uncertainties in the formalism (see Sec.
III C).

Calculations utilizing Eqs. (33) and (34) for the
level densities are displayed as dashed-dotted curves
in Figs. 2 and 3. It is clear from Fig. 2 that both
the spin and chance distributions for the calculated
fission cross section are significantly affected by re-

placing the spherical-nucleus with the deformed-

In the approximation for p„we have taken advan-

tage of the fact that the mild yrast deformation re-
sults in large values of Ko .. Typically, in the cases

yr

considered here,

Eo & (1000 MeV ')rr, ,

def'

P Osh
sph —3

~sph
1/2

~sph&

For nuclei with 3=200, W,ph/fi =100 MeV ', so

nucleus treatment. The more rapid explicit spin
dependence of p„, compared to pf, in Eqs. (33) and

(34) is reflected in Fig. 2(a) by an enhancement of
I f /I „,at low spins and a suppression at high spina

(and hence a decrease in the mean spin of the fis-
sioning nuclei) in the deformed-nucleus treatment.
As a result, the relative partial width for fission
does not begin to increase rapidly until we have
passed I=20k When the results in Fig. 2(a) are in-

tegrated over the full CN spin distribution, we find
an overall reduction of -20% in the first-chance
fission cross section calculated with Eqs. (33) and
(34). As seen in Fig. 2(b) this reduction factor in-

creases to =2 at the late chances, resulting in an in-
crease in the mean temperature of the fissioning nu-

clei, in comparison with the spherical level density
treatment. The overall effect of the deformed level

density treatment for 84 MeV Li+' Au is to
reduce af by -30% and the anisotropy yf by
—10%. Both the decrease in mean spin and the in-
crease in mean temperature of the fissioning nuclei
act to reduce yf (see Sec. II 8). The comparison of
calculations in Fig. 3 shows that these reduction
factors depend quite weakly on bombarding energy,
and that there is almost no effect on o. of the
change from Eqs. (23) and (24) to (33) and (34).

It should be understood that the deformation has
a very much larger effect on the absolute values of
the level densities than it does on the ratio pf/p,
which is reflected in the calculations in Fig. 2.
Comparison of Eqs. (26) and (22) in the low-spin
limit yields
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that at the nuclear temperatures considered in the
present calculations (v&2 MeV) the deformation
typically increases the abolute level density by two

orders of magnitude I.n contrast, the fission-to-
particle emission ratio increases only by a factor

defy def

. h .,h ~(~II4 ~(~II)

which has a value =1.4 for Li+' Au, as seen at
low spin in Fig. 2(a). The large change in absolute
value results primarily from the introduction of the
rotational levels, which multiplies the level density
by WirlR (approximately, the number of levels in

each band with rotational energy smaller than ~, see
Refs. 8, 13, 17, and 18). This collective enhance-
ment factor is typically three times larger at the
saddle-point than at the yrast deformation in our
cases. Consequently, if the rotational levels had not
been included in Eq. (26), the absolute values of pI
and p would be much closer to those from Eqs.
(23) and (24), but the calculated total fission cross
section would be reduced by a factor (=4) signifi-
cantly greater than that observed in Figs. 2 and 3.

C. Allowance for the
collective enhancement fadeout

1. Quaiitatiue effect of the fadeout

The level density treatment described in the
preceding subsection is at least internally consistent,
and thus represents a considerable improvement
over Eqs. (23) and (24). However, there are several
serious concerns about the general quantitative va-
lidity of deformed-nucleus approaches based strictly
on Eq. (26). For example, that equation is based on
the assumption of axial and reflection symmetry;
triaxial nuclei have more rotational degrees of free-
dom, and hence a greater collective enhancement of
the level density. ' In addition, collective Vibration-
al states have not been included, since they tend to
occur at significantly higher excitation than the ro-
tational states. This neglect may be important for
small deformations, as it contributes to the artificial
discontinuity' in the state density [by a factor
-o. , see Eq. (37)] as one approaches spherical sym-
metry and passes from Eq. (26) to Eq. (22).

Of even greater concern in the present application
than the above caveats is the central assumption
behind Eq. (26), that of complete independence of
the collective and intrinsic degrees of freedom. In a
broad sense, this assumption is not valid, since all

nuclear excitations can be accounted for, in princi-

ple, by intrinsic degrees of freedom alone. Howev-

er, as noted in the preceding subsection, the collec-

tivity does act to redistribute levels with respect to
energy, giving rise to an effectiue separation between

rotational and intrinsic motion at low temperatures.
As stressed by BBM,' this effective distinction
must begin to fade at temperatures where the
single-particle excitations which contribute
coherently to the rotational motion would also con-
tribute appreciably to the intrinsic level density.
The relevant single-particle excitations are generat-
ed by the Coriolis coupling, ' ' and in an axially
symmetric harmonic oscillator well they fall

predominantly at energies

ecoriolis +@oi2 ~o3)

-(41MeV)A '~
~5», ~

. (39)

In Eq. (39), c02 and co3 denote the oscillator frequen-
cies for particle motion in the directions perpendic-
ular to the rotation axis; their difference can be ex-

pressed as the product of the mean oscillator fre-
quency (ficoo-41M ' MeV) and a potential defor-
mation parameter" 5», (positive for prolate and
negative for oblate shapes).

Equations (33) and (34) are strictly applicable
only at temperatures small in comparison with

ec,„,~;,. When ~&&ac,„,h, there can no longer be
any distinction between rotational and intrinsic de-
grees of freedom, and the appropriate (purely intrin-
sic) deformed-nucleus level densities can be ob-
tained ' by dividing Eqs. (33) and (34) by the col-
lective enhancement factor Wirifi (-10 ). In this
section we describe a method for treating the inter-
mediate temperature region, where there must be a
smooth transition from the collectively enhanced to
the purely intrinsic form for the level density. In a
previous attempt to include such a transition in sta-
tistical model calculations, ' the expected depen-
dence of ec,„,h, on 5„, was effectively neglected.
To see that this deformation dependence is of cru-
cial importance in evaluating fission probabilities
for hot nuclei, one need only note that RLDM
shapes for the nuclei investigated in the present
work are typically characterized by values

5„,——0.04, ec,„,~;,-0.3 MeV at the potential en-

ergy minimum, and 5„,-1.0, ec,„,~;,-7 MeV at
the saddle point. At temperatures ~-1—2 MeV,
one would then expect the collective enhancement
to be almost fully depleted in the yrast level densi-
ties, but still fully effective in p~. At first sight, it
might seem that this difference would lead to an
enhancement of fission widths by about two orders
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of magnitude over those calculated with Eqs. (33)
and (34).

The latter inference, which suggests a tempera-
ture dependence of I f/I „,much more rapid than
is observed, is based on fiawed reasoning. If at
temperature ~ the collective enhancement is indeed

fully depleted at the RLDM yrast shape, but fully
effective at the saddle point, one must expect to
find a maximum value of p„at some intermediate
deformation, in the vicinity of

(5, (
=rA' /(4l MeV), (40)

where an almost complete collective enhancement
more than compensates for the reduction in intrin-
sic level density from the yrast value. Recall from
the discussion in Sec. IIA that the appropriate de-
formation to use in particle emission calculations
(short of a complete, but excessively time-
consuming, integration over deformation) is the
most probable one reached in the daughter nucleus.
A realistic (i.e., deformation-dependent) treatment
of the collective enhancement fadeout thus leads na-
turally to a temperature-dependent shift in the defov
mation at which level densities (and barrier
transmission coefficients) are eualuated for particle
emission. The saddle-point properties are unaffect-

ed at the temperatures of interest here.
The existence of such a shift in the most probable

deformation is illustrated in Fig. 4 by level density
calculations for Pb at J=25A' employing two dif-
ferent, somewhat arbitrary, analytical expressions
for the fadeout of the collective enhancement. We
have constrained both expressions to satisfy the fol-
lowing criteria: (i) the collective enhancement van-

ishes in the limit ~5~/r~0, thereby ensuring a
smooth transition in p from deformed to spherical
nuclei; (ii) for a given deformation 5, the collective
enhancement is complete for ~~&ac,„,~;„and is re-

1

duced by a factor =—, when ~=ac,„,~;,. Both
fadeout expressions are taken in the form

p,(E',J,5)= p"„' (E*,J,5)

(41)

with p„' (E*,J,5) calculated from Eq. (33) for 5& 0
and from Eq. (34) for 5~0. [Equations (33) and
(34) approach the same limiting form as

~

5
~

~0.
The proportionality constant omitted from both of
these equations has been set equal to A for the pur-
poses of Fig. 4.] In the "slow" collective fadeout
treatment (dashed curves in Fig. 4) the dilution
function X(5,r) is tied simply to the Fermi-gas oc-
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FIG. 4. Illustration of the temperature-dependent
shift in the most probable daughter-nucleus deformation
when the collective level density enhancement is allowed
to fade as the temperature approaches the single-particle
Coriolis excitation of Eq. (39). The potential energy
curve in the bottom frame is calculated for axially sym-
metric shapes in Pb, at an angular momentum of 25%,
using the approximate relations in the Appendix and
setting the energy to zero at spherical symmetry. The
dashed vertical line marks the deformation correspond-
ing to the minimum potential energy. In the top frame
the logarithm of the level density is plotted versus defor-
mation for three excitation energies. The E* values are
specified in the figure with respect to the potential ener-

gy of a rigid sphere, but in the level density calculations
these values are decremented by the deformation energy
for 5+0. The solid level density curves are calculated
with Eqs. (33) and (34), and the broken curves with Eq.
(41), using the dilution functions from either Eq. (42)
(dashed curves) or Eq. (43) (dotted-dashed). The vertical
arrows indicate the oblate and prolate shapes corre-
sponding to the cutoff deformation of Eq. (40) for each
excitation.

cupancy of single-particle levels at energy Troop ~

5 ~,

X,I,„(5,r) =2[exp(ficoo
~

5
~
/r)+1] ', (42)

while the dotted-dashed curves assume a more rapid
disappearance of the enhancement:
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gt„,(5,r) = [exp[5(1 rl—ftcoo
~

5
~
))+1)

(43)

The deformation energies (to be subtracted from
E'}and moments of inertia needed for the calcula-
tions in Fig. 4 have been evaluated as a function of
5 using the relations compiled in the Appendix. We
have furthermore included in these calculations a
variation of the level density parameter a„with
deformation, as prescribed by Bishop et al. on the
basis of NIFG calculations for nuclei with diffuse
surface regions and deformation-dependent
surface-to-volume ratios. The maximum increase in

a„ from the value assumed for spherical nuclei
(A/9. 0) is only 0.7% over the range of deforma-
tions included in Fig. 4.

The calculations in Fig. 4 demonstrate clearly
that the collective enhancement fadeout results in a
considerable displacement between the deformations
corresponding to the maximum level density and to
the minimum potential energy. At a given excita-
tion energy, this displacement is appreciably dif-
ferent for the "slow" and "fast" fadeout assump-
tions, but in both cases it grows in rough propor-
tionality to the temperature. Furthermore, the peak
value of the level density [p, (E',J)] is quite simi-
lar for the dashed and dotted-dashed curves, smaller
in each case than the yrast level density including
full collective enhancement [i.e., the value

p,
' (E,J) used in the particle emission calculations

described in Sec. III B], but very much larger than
the purely intrinsic level density appropriate to
spherical symmetry. Consequently, either of the
fadeout treatments in Fig. 4 would lead to a
suppression of particle emission relative to fission in
comparison with full collective calculations, but by
a factor -2, rather than -10 as appeared initially.
This suppression factor [p„'(E',J)/p, '"(E',J)] in-

creases slowly as the most probable deformation
shifts further away from the RLDM yrast value
(5„"," ), i.e., as the temperature increases for fixed
spin of the daughter nucleus, or as the spin (and
hence

~
5„","

~
) decreases for fixed r.

2. Incorporation in the code

Expressions (41)—(43), and the calculations based
on them, have been introduced here for illustrative
purposes only. The actual treatment of the collec-
tive enhancement fadeout in MBEGAT is (for com-
putational convenience) more simplistic than those
in Fig. 4, but it adequately incorporates all of the

important features discussed above. In the code we
use the collectiuely enhanced level densities for par-
ticle emission, but we evaluate them (as well as the
transmission coefficients T,', see Sec. II C) at an ef-
fective deformation equal to the larger of the
RLDM yrast value (

~
5„,

"
~

) and

(44)

where g is an adjustable normalization factor, in-
dependent of J and E*. For each E' Jbin -where

~
5,tt ~

exceeds
~

5„", ~, the level density is
evaluated both at +

~
5,ff ~, using Eq. (33), and at

5eff
~

via Eq. (34), with the larger of the two re-

sulting p„values used to determine the emission
widths. For example, if g were chosen to be unity,
then for each excitation energy considered in Fig. 4
we would take p„ from the values of the solid level

density curve at the two deformations marked by
the vertical arrows; the larger of these two values of
p„would be used in the decay calculations. This
procedure is based strictly on the assumption of a
sharp cutoff in the rotational levels within each
E* Jbin at -the associated value of

~
5,tt ~; however,

the effect of this cutoff varies smoothly with E'
and J, in a manner quite similar to that expected of
more sophisticated treatments springing from Eq.
(39). The introduction of the normalization factor g
provides some freedom to accommodate the quanti-
tative uncertainties which exist in the precise loca-
tion of the relevant Coriolis excitations and in their

precise relation to the temperature scale characteriz-

ing the reduction in the collective enhancement.
While g should certainly be of order unity, it is ap-

propriate to investigate the influence on statistical
model calculations of plausible variations in this
parameter.

Some representative features of calculations in-

corporating the above "sharp cutoff" of the collec-
tive enhancement are displayed in Fig. 5. In the top
part we have plotted the effective deformation (for
(=1.0) as a function of spin (I) for two stages in
the decay of Pb formed in 125 MeV Li fusion
with ' Au. Rather than 5, we have plotted the re-
lated quantity a2 [see Eq. (A2)], the quadrupole de-
formation coefficient introduced in Eq. (12). Also
included in Fig. 5(a} for comparison is an estimate
of a~i""(I}for the RLDM yrast shape, based on Eq.
(A15). The most probable deformations in the hot
nuclei tend to be prolate at low angular momenta,
despite the mild oblate deformation at the potential
energy minimum, because the PES rises less steeply
on the prolate side (see Fig. 4). At high spin a
discontinuous transition to oblate most probable
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creases slowly with increasing I, reflecting the
reduction of ~ as an increasing fraction of E* is ex-
hausted by the rotational potential energy.

The primary effect of the collective enhancement
cutoff on the competition between fission and parti-
cle decay may be characterized by the change from
the RLDM fission barrier height
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FIG. S. The broken curves represent the spin depen-

dence of (a) the daughter-nucleus deformation used for
0.1 MeV neutron emission and (b) the corresponding ef-
fective fission barrier height [see Eq. (46)l relevant to
calculations incorporating the fadeout of the collective
level density enhancement, for two stages in the decay
of Pb following fusion of 12S MeV Li+' Au. For
comparison, the solid curves display representative
RLDM results, for (a) the yrast deformation in ' Pb
(the RLDM values in 'Pb would be lower in magni-

tude by -12%), and (b) the fission barrier in Pb (the
RLDM values for ' 'Pb would be lower by a spin-

dependent factor, —11% for I=0 and -25% for
I =Ski). When the RLDM yrast deformation exceeds
the collective cutoff values (as for I g Sly at 9th
chance), conventional RLDM predictions are used for
all relevant nuclear structure properties.

shapes occurs in the calculations, when the potential
energy minimum has progressed to deformations al-
most as large in magnitude as the cutoff deforma-
tion. At the lower excitation considered in Fig.
5(a), the RLDM yrast deformation exceeds the cut-
off value, and hence is used in its place to evaluate
particle emission widths, for I~51k'; the corre-
sponding intersection for the higher excitation does
not occur until I=7(Yi (where the approximate
treatment of deformation in the Appendix is al-
ready of questionable validity). It may be noted
from the figure that at a fixed overall excitation en-

ergy the magnitude of the cutoff deformation de-

effwhere E„,(I) is the potential energy at the most
probable deformation. Values of the ratio

eff RLDMBf /Bf, corresponding to the deformation
curves in Fig. 5(a), are plotted in Fig. 5(b). Both

RLDM eff
8~ and 8~ decrease rapidly with increasing I,
but their ratio remains roughly constant (for given
E ) over much of the spin range of interest in the
present calculations. The ratio must approach unity
as the shift between the RLDM yrast and most
probable deformations vanishes, i.e., at low z and

high I [in the case of Pb, Fig. 5(b), the ratio goes

through a minimum just beyond the spin range
shown and then rises rapidly to unity at I=70K&].

The effects of the collective enhancement fadeout
which one should expect qualitatively from the
preceding discussion are borne out by the compar-
ison of calculated results in Fig. 2. Fission is clear-

ly enhanced with respect to particle emission, by a
factor which grows with increasing temperature,
and for fixed temperature, with decreasing spin.
The increase in the relative contributions to fission
from early chances and low angular momenta rein-
forces the trend already observed in the replacement
of the spherical [Eqs. (23) and (24)] by the full col-
lective [Eqs. (33) and (34)] level density treatment.
The changes to the I and w dependence both act to
reduce the fission anisotropy slightly, while they
tend to cancel in their effects on the variation of the
total fission cross section with bombarding energ
(see Fig. 3).

'ng energy

It should be noted from Fig. 3 that the calcula-
tions incorporating the collective fadeout yield re-
sults for o~, y~, and oz/o that do not fall between
those for the spherical and full collective limits.
This result is not surprising: In any fadeout
prescription, the absolute level density at given
values of E*, J, and 5 is clearly required to lie be-
tween the corresponding purely intrinsic and fully
collectively enhanced densities, but the relatiue leuel

densities for different deformations or different exci
tations (and hence the competition between different
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FIG. 6. As in Fig. 2, except for three calculations in-

corporating the collective fadeout, but with different
values for the cutoff-deformation normalization parame-
ter g.

decay modes} are not similarly constrained .Indeed,
the results in Fig. 4 illustrate that the shape of the
level density curves as a function of deformation is
altered much more radically by the fadeout than by
the full inclusion or full exclusion of the collective
enhancement.

The magnitude of the fadeout effect on crf is
strongly dependent on the cutoff-deformation nor-
malization parameter g, as illustrated in Fig. 6. In
comparison with the calculations based on the full
collective level density treatment, of increases by a
factor =1.4 for (=1.3, =1.8 for g= 1.0, and =3.0
for (=0.7, roughly independent of the bombarding
energy (except for a natural saturation when of ex-
hausts a dominant fraction of the fusion cross sec-
tion). Correspondingly, yf for 84.2 MeV
Li+'9 Au is lowered by 2.4%, 3.7%, or 6.8%.

The fractional reduction in yf grows with increas-

ing bombarding energy (see Fig. 3), but even at 125
MeV for (=0.7 it remains (15%. The more rapid
change of the fission predictions as g decreases
from unity, in comparison with increasing g, re-

flects the steeper slope of the (solid) level density
curves in Fig. 4 with greater displacement from
spherical symmetry. In the absence of direct exper-
imental information on the degree of persistence of
rotational bands at high temperature, the range of g
values considered in Fig. 6 is felt to represent a
reasonable guess at the level of quantitative uncer-

tainty in the fadeout treatment. It thus appears
necessary to treat g as an adjustable parameter in

comparisons of statistical model calculations with

experimental results on the decay properties of hot,
high-spin nuclei.

Up to now, we have included the treatment out-
lined here in an analysis of one extensive data set,
that reported for Li-induced fusion with targets of
2=200 in the preceding paper'; when all nuclear
structure parameters are fixed to RLDM-NIFG
predictions, and the effects of preequilibrium nu-

cleon emission are incorporated in the calculations,
very good quantitative agreement with all measured
quantities is obtained with (=1.05. However, the
effects of the above level density treatment on crf
and yf for a given system are not unique —they can
be simulated by appropriate changes to other input
parameters of the code' —and the effects on other
calculated quantities seem unfortunately too small
to serve as a signature for the collective fadeout.
For example, while the increased daughter-nucleus
deformation does enhance barrier transmission for
a particles relative to nucleons, as expected from
the discussion in Sec. IIC, the resultant change in
the ratio cr~/err is no more than 10% at any of the
bombarding energies considered (see Fig. 3). Furth-
ermore, the penetrability effect is counterbalanced

by the increasing fission competition, so that the
collective fadeout produces almost no net alteration
in the absolute a-emission cross sections (Fig. 3).
The only appreciable change in the calculated ener-

gy spectra for evaporated particles (see Fig. 7} is a
slight enhancement in the yield of sub-barrier a' s.

Systematic measurements which permit some
separation of the spin and temperature dependences
of fission probabilities would seem to offer the best
hope for experimental confirmation of the
deformation-dependent dilution of collective level

density enhancements. Appropriate experiments
might involve decay studies for a given compound
nucleus formed with widely differing entrance
channels, or measurements of projectile fragment-
fission fragment coincidences (over a broad energy
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FIG. 7. Influence of the collective level density
fadeout and deformed-nucleus barrier transmission on
the calculated energy spectra for proton and a evapora-
tion. Without inclusion of the deformed barrier
transmission, there would be essentially no difference in

shape between the solid and dotted-dashed curves.

range for the former particle) in incomplete fusion
reactions. In order to illustrate the potential sensi-

tivity of the former class of experiments, we have
performed statistical model calculations, using all

three of the level density treatments discussed here,
for the decay of Pb formed in fusion of

Ne+' Hf at two bombarding energies. The first
energy (E»N ——89 MeV) was chosen to yield a CN

spin distribution similar to that obtained in Pb
from 84.2 MeV Li+' Au fusion, but at substan-

tially lower initial temperature; at the second energy

(E» ——136 MeV) the initial temperature is the

same as for the Li+' Au case, but considerably
higher spins are populated. The ratios of calculated
decay properties for the 22¹vs sLi-induced fusion
are listed in Table I. The most significant effect of
the level density treatment is the reduction in the
fission ratio crI( Ne)/aI( Li) for both Ne bom-

barding energies when the collective enhancement
fadeout is included. This reduction reflects the
larger contributions to the Ne-induced fission
from low temperatures (at the first bombarding en-

ergy) and from high angular momenta (at the
second energy). The magnitude of the reduction
seems large enough that in an analysis of careful
and complete measurements it should not be
masked by uncertainties in the relative fusion cross
sections, or in the relative importance of preequili-

TABLE I. Ratio of calculated quantities for compound nucleus decay following "Ne+" Hf fusion vs 84.2-MeV
Lj+ ' Au fusion.

Ne bombarding

energy (MeV)

EcN a
O fus

(Mev) (mb)

Io/fi" Level density

treatment

~ ("Ne)

cTf( Li)
yf( Ne)

yf{ Li)

e ( Ne)
0. { Li)

o. ( Ne)

cd( Li)

89.1 41.4 430 31.0'

spherical
full

collective
collective
fadeout

0.0684

0.0494

0.0418

1.44

1.49

1.50

0.0288

0.0264

0.0288

0.0306

0.0279

0.0292

136.2 83.4' 1150 63.7

spherical
full

collective
collective
fadeout

5.19

6.12

3.74

1.75

1.96

1.97

0.591

0.687

0.637

0.540

0.598

0.568

'Fusion cross sections for 'Ne+" Hf were calculated according to the prescription developed by Bass, Ref. 42.
The CN angular momentum for which the partial cross section is taken to be half of the corresponding unitarity limit,

i.e., 0.5n)ci(2Io+1). For the 2Ne+" Hf entrance channels, the CN spin distribution has been assumed to have a
Fermi-function falloff characterized by the same diffuseness value (2.70A') as used for 84.2-MeV Li+' Au (see Ref.
16).
'The "Ne bombarding energy was chosen to yield approximately the same value for this quantity as used for 84.2-MeV
'Li+ '"Au.
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brium particle emission, for the different entrance
channels.

It should be kept in mind that the treatment we
have proposed is justifiable only at nuclear tempera-
tures sufficiently high that we may safely neglect
microscopic corrections to the PES and the level
densities. At lower temperatures, shell corrections
may well introduce local fluctuations in deforma-
tion probability curves (e.g. , see Ref. 25) which are
more important than the modifications in Fig. 4
arising from the collective enhancement fadeout. In
addition, for nuclei with substantial ground-state
deformations, the "melting" of the shell corrections
with increasing temperature ' ' will lead natural-

ly to a decrease in the effective yrast defor-
mation —from the microscopically corrected toward
the RLDM value —counteracting the effect illus-

trated in Fig. 4.

IV. CONCLUSIONS

Statistical model calculations of the decay prop-
erties of hot, high-spin nuclei depend on the relative

level densities appropriate to different decay modes,
and they do not, in general, require as much sophis-

tication as treatments aimed at reproducing mea-

sured absolute level densities at relatively low excita-
tion. " ' Nonetheless, the evaluation of level den-

sities in most existing statistical model codes seems

needlessly crude in several respects, especially in the
incorporation of deformation effects. In the present

paper, we have compared calculations of decay
properties based on three different approaches to
evaluating level densities as a function of excitation

energy and angular momentum: (1) an internally

inconsistent, but widely used, treatment which im-

plicitly assumes spherical symmetry of the nucleus;

(2) a formalism appropriate to deformed nuclei, but

assuming a complete independence of rotational and

intrinsic degrees of freedom at all deformations and

temperatures; and (3) a modification to method (2)

allowing for the expected dilution of rotational
band structure at high excitation. In order to sim-

plify the calculation and discussion of deformation

effects, we have systematically ignored the influence

of shell and pairing corrections to the level densities

in all three approaches, as should become appropri-
ate at moderately high temperature. ' ' ' ' We
have thus implicitly assumed that (at sufficiently

large deformation) collective bands may continue to
enhance level densities even after microscopic struc-
ture corrections are washed out; this assumption is

experimentally untested and subject to question.
Method (2) for incorporating the full collective

enhancement is well established theoretically, ' '
and has been reasonably successful in accounting
for measured level densities at low excitation in de-
formed nuclei. ' ' The effects are much smaller
for relative than for absolute level densities, but
they result in appreciable changes to calculated fis-
sion cross sections and anisotropies (see Figs. 2 and
3). Our technique for including the fadeout of the
collective enhancement with increasing temperature
is more speculative, and is appropriate only at tem-
peratures considerably higher than those accessible
in direct level density measurements. As long as
one starts from the theoretical expectation" 2 that
the temperature characteristic of this fadeout in-

creases in proportion to the nuclear deformation
(and is substantially larger at the saddle point than
the temperature from which the decay begins), then
the qualitative effects on statistical model calcula-
tions can be surmised independent of computational
details: The most probable deformation reached in
particle emission will increase progressively with in-

creasing temperature, and the relevant level density
will correspondingly decrease, from the values asso-
ciated with the minimum in the potential energy
surface and full collective enhancement; fission will

be enhanced with respect to particle emission, with
the largest effects at low angular momenta and high
temperatures. In our treatment an adjustable nor-
malization parameter g for the deformation shift is
introduced to accommodate quantitative uncertain-
ties in the theory of the collective fadeout. The fis-
sion enhancement factor produced by the fadeout is

quite sensitive to g, varying for the system con-
sidered in the present calculations from —1.5 to
-3.0 for different plausible choices of this parame-
ter. The quantitative effect of the fadeout is thus

quite uncertain, but perhaps our most important
conclusion is that it, like the effect of the inclusion
of collective bands in the first place, is much small-
er than the associated order of magnitude changes
in absolute level densities.

The net effect of the change from level density
treatment (1) to (3) above for the Li+' Au system
is a moderate increase (-50%) in the fission cross
section crf and a reduction ( —15%) in the fission

anisotropy yf, with little change in the bombarding

energy dependence of these quantities. A slight
(-5%) enhancement of a particle relative to nu-

cleon evaporation arises from the influence of the
increased daughter-nucleus deformation on barrier
transmission coefficients. While treatment (3) is to
be preferred on theoretical grounds, there is little
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hope of providing convincing experimental support
for this preference by comparing statistical model
calculations with measurements of quantities (such
as of and yf) that are integrated over the angular
momentum and excitation energy distributions of
the decaying nuclei. Rather, we encourage experi-
ments aimed at mapping out the spin and tempera-
ture dependences of fission probabilities as a means
for confirming the existence, and constraining the
magnitude, of the temperature-dependent shift in
the most probable deformation which accompanies
the collective enhancement fadeout in our level den-

sity treatment.

properties needed in evaluating p, and also the
transmission coefficients T'„(e), for these "effective
yrast" shapes.

The effective shape is defined by Eq. (44) in

terms of the deformation parameter 5 for an axial-

ly symmetric harmonic oscillator potential. For the
purposes of computing energies and moments of in-

ertia it is more convenient to work with the quadru-
pole matter deformation parameter a2 appearing in
a Legendre polynomial expansion of the surface
contour for an axially and reflection-symmetric nu-

cleus:

R (8)=Rp[ 1 +ixp+ix2P2(cos8)
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APPENDIX: DEFORMATION-DEPENDENCE
OF NUCLEAR STRUCTURE PROPERTIES

NEEDED IN THE COLLECTIVE ENHANCEMENT
FADEOUT TREATMENT

The evaluation of level densities in the statistical
model code MBEGAT requires calculation of the de-
formation energy and moments of inertia for nuclei
of various shapes. In the level density treatments
outlined in Secs. IIIA and III B, and for the fission
level densities involved in the calculations described
in Sec. III C, the shapes of interest always represent
a minimum or saddle point of a RLDM potential
energy surface; in these cases the relevant energies
and moments of inertia are taken directly from the
published results of Cohen, Plasil, and Swiatecki.
In allowing for the fadeout of the collective
enhancement, however, we evaluate the level densi-
ties p„ for particle emission, according to Eqs. (33)
or (34), at "effective yrast" deformations which
generally deviate considerably from the correspond-
ing RLDM shapes. In this appendix we give the re-
lations used in MBEGAT to compute the structure

Assuming a2 to be by far the largest of the a coeffi-
cients in this expansion, we obtain a2 from 5 via
their respective relationships to the length ratio r
of the symmetry axis to the orthogonal axes:

(A2)

The effective deformations considered in the cal-
culations are almost always small enough to war-
rant truncation of the expansion (Al) at the P4
term. The coefficient ao is constrained to ensure
equality of the volumes of the deformed nucleus
and of the corresponding spherical nucleus of radius
Ro. Through order a2 and a4 this constraint
yields:

ao= —0.2a2 —0.019a2 —0.057a2 a4 —0.111a4 .

(A3)

~ =0.01965&-~Z2g - ~ (A4)

and angular momentum parameter 2

y = 1.9249') 'I(I + 1)A (A5)

where I is the angular momentum and g is the
neutron-proton difference term

The hexadecapole deformation coefficient a4 is ad-
justed for given a2 to minimize the total (Coulomb

plus surface plus rotational) potential energy of the
deformed rotating nucleus, which can be character-
ized by fissility2
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g= 1 —1.7826(E —Z) A (A6)

The minimization procedure [based on Eqs. (A10),
(A13), and (A14) below] gives

ci ———0.700,

c2 ——0.663,

c~ ——0.286

(A9)

with

ci ———0.266,

c2 ———0.896,

c& ———0.571

(AS)

for a2&0 and

a4 ——(1—0.370x —c~y)

X [ aq (0.057+0.171x +czy)+c3azy],

(A7)

for az&0, for oblate and prolate deformations,
respectively. For the calculations presented in this
paper, typical values for the above parameters are
x=0.70, y &0.010, —0.2&o,2&0.2, 0&o,4&0.01,
and —0.01 &ao&0.

The deformation energy and moments of inertia
are computed through fourth order in the quadru-
pole and second order in the hexadecapole coeffi-
cients. The expansion for the liquid-drop potential
energy E, relative to the energy E' ' for a rotating
sphere characterized by x and y, is adapted from
Swiatecki~:

E E' '=E—,'„~ aq [0.4(1 —x)]—aq [0.038(1+2x)]—aq [0.217—0.256xj

—aq a4[0.114(1+3x)]+a4[1—0.370x]+y —1
2 2 Wo

W)
(A10)

In Eq. (A10), E',„~ is the surface energy of the
spherical nucleus

E,'„~——17.9439gA MeV;

Wo is the rigid-sphere moment of inertia:

Jr /R =0.014483 MeV

(Al 1)

(A12)

—0.212a2 —1.143+2+4

+0.494cx2 a4+0.266+4

~J /~0 ——1 +0.5a2+ 1 .286+2 +0.58 1u2

—0.451a2 +0.571a2a4

+ 1.897u2 u4+0. 700a4

(A13)

(A14)

Equations (A13) and (A14) are identical through or-
der a2 to the corresponding expressions given in
Refs. 7 and 45, but they differ in the higher-order
terms.

and W) represents the larger of the two moments
of inertia W~~ and Wz, corresponding to rotations
about the symmetry axis and about the orthogonal

axes, respectively. For the rigid-body moments of
inertia, integration over the deformed matter distri-
bution [assumed to have a sharp surface at R(8)
from Eq. (Al)] yields:

~~~/J 0= 1 —ax+0.429aq +0.268az

a~q""-—1.25y/(1 —x) . (A15)

Equation (A15) is used in MBEGAT in deciding
whether the collective cutoff deformation [Eq. (44)j
exceeds the RLDM yrast value in magnitude.

The electrostatic quadrupole interaction between
an emitted charged particle and the deformed
daughter nucleus is included in the angle-dependent
effective radial potential [Eq. (13)] used to compute
barrier transmission coefficients by the method out-
lined in Sec. II C. An expansion for the static quad-
rupole moment needed here is taken from Ref. 45:

Qq ——ZRg ( 1.20aq+0. 685aq +0.069az

—0.100a2 + 1.371u2a4

+1.122a,'a4+0. 347a4') . (A16)

In evaluating Qq in the code, we take
—1 50/2~ fm

We also obtain from Eq. (A10) an approximate
expression for the RLDM yrast deformation, valid
when this deformation remains mild and oblate, i.e.,
as long as the angular momentum is not too close to
the critical value at which the fission barrier van-
ishes. Using Eqs. (A7) and (AS) to replace a4, and
then retaining terms in the energy formula through
third order in a2 and first order in y, minimization
of E with respect to a2 yields
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