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Density matrix approach to the complex heavy ion optical potential

R. Sartor and Fl. Stancu
Institut de Physique B5, Uniuersite de Liege, Sart Tilman, B-4000 Liege 1, Belgium

(Received 28 April 1982)

We extend the applicability of the density matrix expansion to a complex effective in-

teraction depending both on the density and the kinetic energy density. A detailed study of
the kinetic energy density dependence of the density matrix expansion coefficients is given.
The corresponding energy density has a parametrized form which is tested in the calcula-

tion of the optical potential of the ' 0+ ' 0 system at several energies. Exact results are
well reproduced by the complex density matrix expansion.

NUCLEAR REACTIONS Density matrix expansion for a complex ef-

fective interaction; application to heavy ion optical potential.
J

I. INTRODUCTION

It is now common practice' ' to define the
heavy ion optical potential at a separation distance
D as the difference between the expectation value of
some effective Hamiltonian H at distance D and the
expectation value of the same Hamiltonian at infini-

ty

V», (D)=(H(D)) —(H(ce)) .

Early computations' used an energy functional or
an effective interaction which can be related to G
matrix calculations in nuclear matter with a spheri-
cal Fermi sea. As a consequence those computa-
tions could only determine the real part of the opti-
cal potential. However, if the heavy ion collision is
locally described as the collision of two nuclear
matter systems, one is led to a non-Hermitian 6
matrix ' ' ' ' which will also enable the compu-
tation of Im V,„,(D) through the use of Eq. (1.1).

The direct computation of V», from a finite

range effective interaction is, however, cumbersome
and time consuming. As a consequence, approxi-
mation schemes have been proposed. A convenient
procedure, extensively used for the real part' of
V»„ is based on energy functionals. In a previous
work ' we proposed a complex Skyrme-type interac-
tion which generates a complex energy density, to
be used in the calculation of both the real and imag-
inary parts. The imaginary part of the Skyrme-type
interaction was obtained by multiplying the real
Skyrme-interaction used in Ref. 3 by a scaling fac-
tor. This was assumed to depend on the local densi-

ty p and the intrinsic kinetic energy density v' ' and
found numerically from the finite range complex ef-

fective interaction of Ref. 12.
In Ref. 14, more emphasis was put on avoiding

the explicit use of any wave function in the compu-
tation of the expectation values appearing in Eq.
(1.1). Suitable approximations for p and r'~' have
been found to reproduce the exact results at low en-

ergies by means of a generalized double folding
method.

In this paper we extend the density matrix expan-
sion (DME) of Negele and Vautherin to the com-
plex domain in order to justify the energy function-
al introduced in Ref. 21.

The present paper is organized as follows. In
Sec. II, we briefly recall the DME and single out
the peculiar features arising from its application to
a complex effective interaction. In Sec. III, we dis-
cuss the asymptotic behavior of two colliding nu-

clear matter systems when the Fermi sea is nearly
spherical, and its consequences on the imaginary
part of the optical potential. In Sec. IV, we provide
a parametrized form for the DME coefficients, and
in Sec. V we apply it to the calculation of the opti-
cal potential of the ' 0+ ' 0 system and compare
the present results with the exact calculations of
Ref. 13.

II. THE DENSITY MATRIX EXPANSION
WITH A COMPLEX EFFECTIVE

INTERACTION

In this section, we recall the relevant DME for-
mulas derived in Ref. 22 and adapt them to the case
of a complex effective interaction. The discussion
is limited to nuclei having an equal number of neu-

trons and protons. The effective N-N interaction
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which we use in this paper is the spin S and isospin
T dependent force derived in Ref. 12. Each ST
component can be written as

where p(R) and T(R) are, respectively, the matter
and kinetic energy densities at point R, and

psL(kFS) is the Slater approximation given by

6
UsT(r) ( 1 e

—2x)2e —3x ~ g sT
X m&

m=0
3

PSL(kFS)= J (kFS)
sk~

(2.4)

for r (1 fm, (2. 1)
7

(1 —2x)2 y ZST
m=1

for r )1 fm, (2.2)

1/3

p(R) (2.5)

In Eqs. (2.3) and (2.4), the local Fermi momentum
kF is related to the matter density p(R) by

with x =0.7r, where r is the separation distance be-
tween the interaction nucleons, and Am and Zm"
are complex coefficients depending upon the local
density p, the local intrinsic kinetic energy density
T' ' defined in Sec. III, and the incident energy (see
Refs. 10—14 for full details).

The basic approximation of the DME proposed
in Ref. 22 was to use the following truncated Bessel
function expansion for the density matrix:

P R+—,R——=PSL(kFS)P(R)+
2skp3

Xj,(kFS)[ —,V'P(R) —T(R)

By writing a similar expansion for the product

p R+—p R——
2 2

(H )~,=f4 ~,(R)dR, (2.6)

where the potential energy density 4 ~,(R) reads:

~Pot(R) VNM + 2 VD(P~'P —
I ~P

l

')

which appears in the direct term of the expectation
value (H), one can express the potential part of
(H) as":

+ —,kF P(R)], + Vs( 5 kF P 2T+ —,V —P) . (2.7)

(2.3)
I

The expression of P p t has two distinct parts

V~M —— fd s[3v (s)+3usa(s)+9v (s)+Uso(s)]

2

+ fd sPSL (kFS)[3U (s)+3U (s) —9U (s)—U (s)]32 (2.8)

is the potential energy of nuclear matter corre-
sponding to the local density p(R), and V23 and Vs
are the direct (D) and exchange (E) finiteness
corrections given by

I

with

35g(kFS)= j3(kFs) .
2(kFs)

(2.11)

and

VD —— Jd ss g(kFS)[3u (s)+3U (s)
1

+9u (s)+U (s)]

(2.9)

Vz —— d ss PsL(kFS)g(kFs)
16

X [3v (s)+3U (s)

(2.12)

Negele and Vautherin then proceed to eliminate the
V p terms by an integration by parts. In the case of
a complex effective interaction, this implies the ap-

pearance of U derivatives with respect to both p
and ~. In order to avoid any derivative here we

keep the V p terms.

. We introduce the following notation:
' 2/3

A =V~~+ 3 37K s/3
5 2 p VE,

9~To(s } U so(s) ] (2.10)

B= —pVE,
1C= ——,VD,

(2.13)

(2.14)
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FIG. 2. Brueckner-Hartree-Fock contribution to the
binding energy of the Fermi sea depicted in Fig. 1. The
wiggly line depicts the Brueckner reaction matrix G.

22 treats a static case. The replacement of ~ by r' '

appears as a consequence of preserving the Galilean
invariance of the interaction.

FIG. 1. A deformed Fermi sea used in the local
description of a heavy ion collision as the collision of
two nuclear matter systems.

III. THE BINDING ENERGY
OF NUCLEAR MATTER

FOR A NEARLY SPHERICAL
FERMI SEA

1 1

D = ,p( Vn +——,VE ), (2.15)

where 2, 8, C, and D are complex quantities, which
depend on p, ~' ', and the incident energy. Then the
potential energy density (2.7) becomes

4 ~,(R)=A+Br' '+C(Vp) +DV' p . (2.16)

At this point we stress that the potential energy
density (2.16) depends on the intrinsic kinetic ener-

gy density r' ' defined in Eq. (3.15) instead of the
kinetic energy density ~ as introduced by Negele
and Vautherin. The difference comes from the
fact that we deal with a moving system while Ref.

I

As it will turn out in Sec. IV, it is useful to study
the ~' ' dependence of the imaginary part of the
binding energy for a nearly spherical Fermi sea.
The present analysis takes place in the momentum
space and the density and the incident relative
momentum EC, given by the separation distance be-
tween the centers of the two spheres constituting
the Fermi sea shown in Fig. 1 are fixed quantities.
The intrinsic kinetic energy density ~' ' is then
uniquely determined by the radii of the two spheres.

In the Brueckner-Hartree-Fock (BHF) approxi-
mation, the potential energy of nuclear matter is
given by the diagram of Fig. 2. It can be easily
shown that its imaginary part is proportional to
the integral

ImVEHF cc fdk)dk2dk3dk4 [ (k)k2
~

G(co&+cop)
~

k3k4)A I
@coi+coz—co3—~4 (3.1)

where the momenta k~ and k2 are inside the de-
formed Fermi sea F of Fig. 1, while k3 and k4 are
outside it, and G is the Brueckner reaction matrix.
The single particle energies co; are defined as

1

where we have shifted from k =
~

k
~

to co as thein-
tegration variable. This causes no problem since
co(k} is a monotonously increasing function of k.
Hence, we can write

A'k, '
co; = +U(kc),

201
(3 2) Im V,„„fdco~d-co2dco3dcl)4I (co]&c02&c03&c04)

where U is a continuous auxiliary potential. For
any k integration, one has

X5(co~ +cop —co3 —co4) (3.4)

fdk =fk dk dk =fk (Co} dCodk, (3.3) with

I( „, , )=g k; f gdk; ) (k, k
~
G(,+ )

~

k k )„('. (3 5)

I.et us consider the Fermi sea of Fig. 1 and denote by coF ~
the energy associated with the momentum kF &

and
by ~~~+ g that of E,+k&2. The quantity g is small compared to ruz~ since the Fermi sea is nearly spherical.

Since co3 and co4 are greater than coF &, the 5 function in Eq. (3.4) vanishes except when k& or/and k2 lie in-
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(3.6)

side the dashed region called Z in Fig. 1. We thus have to consider two cases.
Case 1. Only one of the momenta k1 and k2 is inside Z. Let us consider that k1 is outside Z while k2 is in-

side it. Since all the above expressions are symmetrical in k1 and k2, the case in which k1 is inside Z and k2
is outside it would yield the same result. The contribution to (3.4) is

F1 ~F1+~ 00 00

(Im VBHF)1 — dco1 dcog dco3 dco4I(co„co2,co3, 4)5(co1~co2—co3 —
40 F1 ~F1

COF1 —g & CO1& COF1,

NF1 (C02 (COF1+'g,

F1 &3(F1+9

(3.7)

The function I(co1,co2, co3,co4) can thus be appmxi-

where we have specified the integration limits. It is,
however, clear that the 6 function imposes further
restrictions over the range of integration of co1, co3,
and ~4. One can easily see that in fact, the integra-
tion limits are restricted to

mated by l(coF»coF»coF»coF, ) and be taken outside
the integral sign in Eq. (3.6). The remaining in-
tegrations are then straightforward and yield

( Im VBHF ) 1 I (COF» COF» COF»COF 1)93

I (COF 1 ~ COF 1 ~ COF 1 ~ ~F 1 )

X [co(K,+kF2) —co(kF1)]' . (3.&)

Case 2. Both k1 and k2 lie inside Z. The contri-
bution to (3.4) is now

~F1+& F1+'9 00 00

(Im VBHF)~- dco1 dco2 dco3 dco4J(co1, co~, co3 co4)5(co1+co2 co3 co4)~F1 ~F1 F1 NF1
(3.9)

and the further restrictions imposed by the 6 func-
tion give

I

(3.12) can be written in leading order

ImVBH&-(51+5&)3 . (3.14)
N3 & Q)F1+2'g ~

Q)4 &COF1+2Y/ . (3.10)

Therefore the function I(co1,co2,co3,co4) can again be
approximated by I(coF1,coF1,coF1,coF1) and taken
outside the integral sign. Explicit integration then
yields

VBHF)2 i(COF1 COF1 COF1 COF1)C)
3

I (COF 1 &
N F» COF 1 ~ N F 1 )

=r—pkG
(2) (3.15)

where p is the density, ~ is the kinetic energy densi-
ty given by

We have now to relate 61 and 62 to the variation of
the intrinsic kinetic energy density ~' ' when one
goes from the spherical Fermi sea of radius kF to
the deformed sea I' of Fig. 1.

The intrinsic kinetic energy density ~' ' is defined
as10

X [co(K„+kF ~) co(kF, )]',—

i.e., the same as in case 1.
Therefore, one has

Im VBHF [co(Ki +kF2) co( kF 1)]—

(3.11)

(3.12)

r= gk—1

V-
k cry

and k G is the mean momentum per nucleon

(3.16)

(3.17)

kF1 kF 61 ~

K„+kF2——kF j62,
(3.13)

where 61 and 62 are small with respect to kF and the
change in the Fermi sea is such as the density
remains equal to p (constant volume). Then Eq.

Let us define kF as the radius of the spherical Fer-
mi-sea corresponding to the fixed density p. One
can write

N—=p=constant .
V

(3.18)

The intrinsic kinetic energy density ~' ' defined

In Eqs. (3.16) and (3.17), the k summations extend
over the deformed Fermi sea F, o. and ~ are the spin
and isospin degrees of freedom, V is the volume of
the box in which the system is contained, while N is
the total number of nucleons. As usual V and N
tend to infinity with
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above represents the same quantity as that given by
formula (6) of Ref. 21.

Denoting by M the variation of any quantity x
when one goes from the spherical Fermi sea to the
deformed one depicted in Fig. 1, one has

(3.19)

kF kF —1 5 +
2p+ &r

(3.24)

Hence, when hp=O, we have in the lowest order

because ko ——0 for a spherical Fermi sea (static
case). By explicit calculation we obtain up to
second order in 5;

2
2) kF kF —1 52

3m'
(3.25)

2 2 1 kF
bp= — kp 5)+ kp 3+ 5)

2%2
By comparing Eqs. (3.14) and (3.25) and taking into
account Eq. (3.21), we get

kF kF

2n
L

&m~mrF -~&(2) (3.26)

kF kF
+ —1 5)52+ (3.20) which is the main result of this section and will be

used as a basic argument in the next section.

5)——0(52 ) . (3.21)

Hence, up to third order in 52, a consistent approxi-
mation to Ap is provided by

kF
bp= — kF 5)+ —1 52

2' p

Equation (3.20) shows that 5~ and 52 cannot be of
the same order of magnitude. The reason is that
the density must remain constant and the constraint
Ap=O would imply 5;=0, i.e., no deformation at
all. Therefore, the constraint Ap=0 imposes

IV. THE PARAMETRIZED FORM
OF DME COEFFICIENTS

We have computed the A, B, C, and D coeffi-
cients of Eq. (2.16) for E„=O, 0.5, and 1

fm '/nucleon and for a series of spherical and de-

formed Fermi seas. In view of possible future ap-

K„=0.5 fm

kF kF —1 5)5p

r

kF
+

2rr'
(3.22)

C)
X

QJl
K„=1.0 fm

The variation of the intrinsic kinetic energy density
r' ' is then related to the variation b,p of Eq. (3.22)

by

20

15

10

h~=kF bp+ —1 62
3m-2

0.5

+0(5 )+. (3.23)

where the term 0(52 ) also contains the variation of
k62 given by

FIG. 3. The ratio (=ImA/ReA for various densities

and two K, values as a function of x defined by Eq.
(4.1). po ——0. 17 nucleon/fm is the normal nuclear
rnatter density.
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plications, it is useful to provide a simple parame-
trization of their dependence on p and s' '. In the
following, 4 will designate any of the A, 8, C, and
D coefficients.

coefficients is proportional to x. Parametrizing the
remaining dependence on x by a second degree poly-
nomial we take the following expression for Im@':

ImÃ=x(Ii+I2x+I3x ) (4.2)

A. ~' ' parametrization

It turns out that the dependence on E„and r' ' of
the real part of any 4 coefficient is negligible and

therefore we only have to discuss the r' ' parame-

trization of ImÃ. It is useful to define the p depen-

dent ratio

(2) (2) (2) (2)
ax VmIII %max Vm

(4.1)

where z' „and ~',', are the minimum and max-
imum intrinsic kinetic energies associated with a de-

formed Fermi sea of a given density p. The value
~' „corresponds to a spherical Fermi sea and gives

x =0. The other extreme ~ma'x implies x =l and

corresponds to a deformed Fermi sea composed of
two spheres of equal radii having their centers

separated by a distance j:„.
At present we wish to make use of the result ob-

tained in the previous section. For a small defor-
mation of the Fermi sea, i.e., small x, expression
(3.25) indicates that the imaginary part of all 4'

and find values of the coefficients I„(n =1—3)
which reproduce the exact results within 3/o. We
note that each I„depends on E„and p. The p
dependence is parametrized below. In Figs. 3—6,
we plot the ratio

Im@'

Re@

as a function of x for a series of values of p and E,.
Parametrization (4.2) is used for Im@'. These fig-
ures are very much reminiscent of Fig. 3 of Ref. 21
where the x dependence of the entire imaginary part
of the Skyrme-type interaction had been found nu-
merically. The present parametrization is more de-
tailed than that of Ref. 21 and gives an explicit
dependence on r' ' of the imaginary part of the en-

ergy density.

B. p parametrization

We now discuss the p parametrization of Re@
and of the I„(n =1—3) coefficients appearing in
Eq. (4.2). As can be seen from Eqs. (2.8), (2.12),

K„=0.5 fm '

20-
K„=1.0 fm"

Pl
C)
X

Qdl

20

K„=1,0 fm"

15

10 10

0.5 0.5

FIG. 4. Same as Fig. 3, but for g=ImB/Re8' FIG. 5. Same as Fig. 3, but for g=lmC/ReC.
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K„=0.5 fm '

K„=1.0 fm "

potential as defined by Eq. (1.1), where we have
used the expression (2.16}with the parametrizations
found for A, B, C, and D.

The densities p and v' ' have been calculated with

a two center shell model described in Ref. 3 and

equivalent to Fliessbach's model.
In this model the ground state of ' 0+' 0 is

described by a Slater determinant built from the
single particle states

20

15

eik [z+(D/2)]
Wa(1) Y'a(1)e

—ik [z —(D/2)]
'VP(2) 9'P(2)e

(5 1)

10

0

FIG. 6. Same as Fig. 3, but for g=ImD/ReD.

(2.13), and (2.15), a p factor can be extracted from
the p dependence of A, while a p factor can be ex-
tracted from that of B and D. By parametrizing the
remaining p dependence by a cubic polynomial, we
can write

Owing to the fact that the single particle states g i i ~

and ltipi2~ are not orthogonal, we have

—1

X pv), ( ) ( }C(.)WP(j)
p(j ),a(i)

(5.3)

—1 +

Bp(j),a(i) (D) k) V 0a(i) V tkp(q )(54)'
p(j ),a(i)

and

where Pa~, ~
and PP~2~ are eigenstates of harmonic os-

cillator wells centered at —(D/2) and D/2, respec-
tively. The relation between the single particle
momentum component k along the z axis and E,
defined previously is

(5.2)

Re@=p'(R ) +R2p+R 3p'+R4p')

I„=p (I„(+I„2p+I„3p+I„4p )

(4.3} 1 —1
Bp( ) a(;) (D,k)

P p(j),a(i)

X(ga(,;)V Qp(;) Vga(i)fpij—)) ~

(5.5)
(5 =1—3), (4.4)

where the exponent a is equal to 2, 1, 0, and 1 for
the coefficients A, B, C, and D, respectively. Densi-

ty parametrizations analogous to (4.3) and (44)
were also used in Refs. 9 and 22.

The numerical values of Rj and Iaj (n =1—3;

j=1—4) of all 4 coefficients are gathered together
in Table I. For E,=0, all I» vanish because in the
static case the G matrix has no imaginary part.

V. APPLICATION TO THE
OPTICAL POTENTIAL

In order to check the reliability of the density

matrix expansion applied to a complex effective in-

teraction, we have calculated the ' 0+' 0 optical

where

Bp(j),a(i) ('Pp(j )& Qadi) ) (5.6)

The results (full curves) are presented in Figs. 7
and 8 for the real and imaginary parts of V, „
respectively. %e compare them with the "exact"
computation of Ref. 13 (dashed curves}. The agree-

ment for Im V,„, is very good at all separation dis-

tances.
For the discussion of the real part it is useful to

roughly divide the range of the separation distance

R into two intervals. I.et us call R0 the distance at
which ReV», has an inflection point.

(a) R )Rp. This interval is dominated by the

nuclear surface properties of the interaction because

in the region where the nuclei interpenetrate the
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TABLE I. The real RJ and imaginary I„J parts of the DME coefficients A, 8, C, and D defined by Eqs. (4.3) and (4.4).
Note that R, does not depend on K„.

K, =0.5

K„=1~ 0

K, =0.5

K, =1~ 0

K,=0.5

K, =1.0

K,=0.5

K, =1

RJ

Ii)
I2J
I3J

Ii)
I2J
I3J

RJ

Ii)
I2J
Ig)

I))
I2J
I3J

Ri

I)~
Ip)
I3J

I)~
I2J

Ig)

RJ

I)~
Ig)
Ig)

I)~
Ip)
I3J

j=1
—519.42

—1.7061
—0.0639

1.0509

—30.761
55.802

—47.766

178.24

0.89300
—0.30740
—0.12053

9.1548
—14.065

11.292

72.343

0.27056
—0.06102
—0.07316

3.9753
—7.3330

6.2272

—116.90

—0.49381
0.13787
0.10329

—6.2640
10.849

—9.0502

J=2
1936.5

—22.876
38.424

—36.367

282.88
—671.27

623.59

—1058.2

—1.6991
—4.2111

6.5022

—91.622
163.45

—141.52

—385.83

1.6955
—3.5555

3.5791

—38.710
91.173

—82.406

650.39

—1.2707
4.6082

—5.2046

61.615
—132.03

117.79

J=3
—5391.2

175.19
—227.17

191.34

—950.54
2707.1

—2649.9

3359.3

—13.110
34.202

—36.914

319.86
—634.96

578.26

1085.1

—16.537
22.764

—19.642

136.09
—374.66

352.60

—1925.0

19.815
—31.314

28.871

—216.05
533.39

—497.16

j=4
6265.3

—289.25
349.65

—2S2.25

1086.1
—3541.0

3600.5

—3969.4

32.117
—57.614

56.152

—376.59
808.30

—763.18

—1184.6

28.762
—35.986

29.476

—161.54
496.01

—480.85

2176.9

—36.791
50.390

~
—43.514

255.68
—698.08

671.64

density is not higher than the saturation density of
the nuclear matter. This can be easily seen within
the proximity concept. ' In this interval the
DME results are slightly higher than the exact re-
sults. The difference shows that the surface proper-
ties of the exact interaction have somewhat been al-
tered by the DME. This is not surprising because
the DME introduces a truncation of the higher or-
der derivatives of the density matrix. To find the
effect of this truncation it would be interesting to
calculate the surface energy of semi-infinite slabs of
nuclear matter both with the exact interaction and
the energy density resulting from DME.

(b) R &Ro. At such separation distances the
overlapping region has reached the nuclear matter
density regime and the behavior of Re V,', is essen-

tially given by the bulk properties of the nuclear
matter. Owing to the independence of ReÃ on E„
and r' ' the discussion given below is valid for any

E,. For nuclear matter the DME approximation
gives E/A = —16.85 MeV and

d E =451.9 MeV fm
dp2

at the saturation density p=0.2234 fm . On the
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20-

l

' (1)

-20

-60 -10

-80
4

D (fm)

D (fmI FIG. 8. Same as Fig. 3, but for Im V p$.

FIG. 7. A comparison between the density matrix ex-

pansion computation of ReV, ~& as a function of D (full
lines) and the exact computation of Ref. 13 (dashed
lines). The curves marked I, 2, and 3 correspond to
E,=O, 0.5, and 1 fm ', i.e., E~,b ——0, 83, and 332,
respectively.

overbinding mentioned above. Towards R ~0, both
potentials are linear, and the difference between
their slope is consistent with the values found for

Q2

(jp~

For the imaginary part, the ~' ' dependence plays
the dominant role and thus Im V,„, is insensitive to
the saturation density effects described above.

In conclusion, we believe to have found a reliable
parametrization of a complex density functional to
be used in the calculation of the heavy-ion optical
potential. Our results are given at two different en-
ergies and can be applied to any pair of nuclei once
the density and the kinetic energy density of the
colliding system are known.
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from the Institut Interuniversitaire des Sciences
Nucleaires.

other hand the exact binding energy is —15.59 MeV
and its second derivative takes the value 575.8
MeVfm at a lower saturation density p=0. 1752
fm . Therefore the DME overbinds the nuclear
matter, as already noticed in Ref. 28, and alters the
curvature at the saturation point. The changes it
produces on the nuclear matter constants can ex-

plain the difference between the two results. Name-

ly, ReV,~, calculated with the DME reaches a
deeper minimum at shorter separation distances
than the exact ReV,&,. This is because the satura-
tion Fermi momentum kF ——1.49 fm ' given by the
DME is larger than the exact one KF 1.37 fm-—
Hence, in the first case, the saturation density is
reached when the nuclei interpenetrate further,
bringing in the extra attraction associated with the
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