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Recoil and correlations in pion double scattering
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The contribution to the optical potential due to double scattering of a pion by a pair of
correlated nucleons has been calculated for nuclear matter taking account of nucleon and

delta kinetic energies. The calculation includes a variety of field theoretical effects due to
crossed processes and all possible time sequences of the two scattering events including

overlap in time. For sequential processes, where the first scattering is complete before the

second starts, it is found that inclusion of kinetic energies of the nucleon and delta

reduces the contribution drastically. The contribution of these sequential processes is

about 2% of the first-order optical potential as contrasted with about 50% at T„=140
MeV when the fixed scatterer approximation is employed. The most important correlated

double scattering contributions arise from the field theoretical effects which yield about

8% of the first-order optical potential at T =0 and 140 MeV. Thus, the net contribution

of correlated double scattering processes is about 10% of the first-order optical potential.
Since the double scattering of the pion by a correlated nucleon pair is a major contributor

to the Ericson-Ericson effect, the present work suggests reduced importance of the effect.

NUCLEAR REACTIONS Correlations, fixed scatterer approxima-

tion, LLEE effect, double scattering, recoil, pion scattering.

I. INTRODUCTION

In this paper, we calculate the optical potential
contribution due to double scattering of a pion
from a correlated pair of nucleons in the nucleus.
A logical separation is made between scattering
processes and pion absorption processes, each of
which forms a major component of the second-
order pion-nuclear optical potential. Absorption
by correlated nucleon pairs is the subject of a fu-
ture paper.

The contribution to the optical potential due to
correlated double scattering has its own indepen-
dent history as exemplified by recent work' and
older work bearing on the so-called I.orentz-Lorenz
Ericson-Ericson (LLEE) effect. The history of
pion double scattering is dominated by calculations
based on the fixed scatterer approximation (FSA).'
In FSA, the amplitude for the pion to scatter from
two fixed nucleons is averaged over a static corre-
lation density to get the final amplitude.

The mN interaction is strongest in the I' wave
and the off-mass-shell P wave scattering amplitude
increases with increasing pion momenta over a
large range of momenta. As a result of this and
the fact that nucleon-nucleon correlations can sup-
port high momentum, the pion tends to have high

momentum in its flight between the two nucleons.
Conservation of momentum requires that during
the flight of the pion the nucleon struck first must
recoil with correspondingly high momentum. This
has two consequences. First, the energy of recoil
of the struck nucleons must be taken into account.
Second, since the intermediate states have, of
necessity, high energy, other processes involving
comparable energy must also be considered. An
example would be crossed processes where a pion
is emitted before it is absorbed. Another example
is a situation where the two scattering amplitudes
overlap in time. These processes are possible be-
cause the pion number need not be conserved. A
nucleon can become a delta not only by absorbing
a pion but also by emitting one. Such events will

be referred to as field theoretical effects.
Treatments using FSA usually include only

those double scattering processes where interaction
one ends before interaction two begins (in time).
We refer to these as sequential processes and the
corresponding diagrams as sequential diagrams.
These are the only processes describable by multi-

ple scattering theory based on a aN potential.
Field theoretical effects usually are not included in
treatments using FSA.

As the object of' the paper is only to assess the
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importance of ground state correlation in double
scattering, all calculations have been done for nu-
clear matter. There are several additional simplify-
ing approximations which are described in Sec. III.

Calculations based on FSA produce very large
second-order optical potenti. als, ranging from
—16% of the first-order optical potential at pion
laboratory energy T =0 to -50% at T =140
MeV. Eisenberg et al. pointed out that the con-
tribution of double scattering may be much smaller
if the mE form factor is sufficiently soft. Recent
work' on the mN P-wave interaction has shown
that the form factor is quite hard. Thus, the ex-

pected reduction does not occur. We find that
upon inclusion of recoil the contribution of the
sequential processes reduces to less than 2/o of the
first-order optical potential at both energies. How-

ever, when field theoretical effects are included, the
second-order optical potential increases to —10%of
the first-order optical at both T =0 and 140 MeV.

In a recent paper we have described a new or-
ganization of m-nuclear scattering based on a Gold-
stone expression of the m-nuclear optical potential.
The organization centers on the construction of a
self-consistent ~X t matrix in the nuclear medium.
This is done in a manner which emphasizes the
importance of the effects of the medium on the mN

(elastic) intermediate states of the ~N t matrix in
the nucleus. A set of diagrammatic elements is re-
quired to represent the driving term of the self-
consistent equation. Not only do these diagram-
matic elements provide a first estimate of the opti-
cal potential, but also serve as building blocks to
generate all other possible diagrammatic contribu-
tions to the optical potential through the self-
consistent equation. These diagrammatic elements
consist of two classes. First, all diagrams contri-
buting to the free mE t matrix with appropriate
modifications for Pauli blocking and binding shifts
are included in the set of diagrammatic elements.
Second, the remaining diagrams in the set of di-
agrammatic elements contain nucleon-nucleon
correlations and do not contain mN(elastic) inter-.
mediate states where there are any elastic interac-
tions of the m with the nuclear medium. In the
previous paper only diagrammatic elements from
the first class were used in order to make the cal-
culation tractable. Clearly, the next logical step is
to consider the contribution to the optical potential
of the leading order diagrams of the second class
containing ground state correlations as is done in
this paper and in a subsequent paper studying the
absorption of a ~ on a correlated XE pair.

II. CI.ASSIFICATION QF DIAGRAMS
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FIG. 1. A double scattering diagram and its ex-
change.

In this section we list and classify the Goldstone
diagrams one must evaluate to obtain the optical
potential contribution due to pion double scattering
by a correlated nucleon pair. The rules for Gold-
stone diagrams for pion-nuclear processes have ap-
peared elsewhere. ' In the Appendix we give the
standard rules and an additional rule for the off-
shell 1V interactions which arise in pion-nuclear
processes.

Altogether, 144 diagrams are considered. Let us
begin with two particularly simple diagrams,
namely the sequential diagrams of Fig. 1, where
Fig. 1(b) is obtained from Fig. 1(a) upon inter-
changing the hole lines. In these diagrams the
off-shell mÃ scattering is indicated by a cross
hatched box and the nucleon-nucleon 6 matrix is
represented by the horizontal wavy lines. Upward
directed solid lines represent particles and down-
ward directed lines represent holes. We will al-
ways consider diagrams in such direct-exchange
pairs as in Figs. 1(a) and 1(b), which ensures the
antisymmetry of the two-nucleon states. There-
fore, it suffices to discuss only half of the 144 di-
agrams with the understanding that the remaining
72 diagrams, obtained by exchanging hole lines, are
present and are taken into account.

Accompanying the sequential process of Fig.
1(a) is a set of five diagrams shown in Fig. 2,
which represent the other possible time orderings
of the two scattering events. The diagrams of Fig.
2 represent field theoretical effects. Note that on
the left-hand side, the beginning and the end of the
AN interaction (hatched box) is accompanied by
absorption of a pion. On the right-hand side a
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FIG. 4. Diagram obtained from Fig. 1(a) by inter-

changing the entrance and exit points on the second del-

ta. To this diagram there corresponds five more ob-

tained by the time orderings of the endpoints of the del-

tas.

FIG. 2. Diagrams obtained from Fig. 1{a)by time
ordering the endpoints of the deltas {cross-hatched box).

pion is emitted at both ends. Figure 1(a) will be
termed as diagram 1. Figures 2(a) —2(d) will be
termed as diagrams 2 —6.

For every diagram of this set of six there are
three more obtained by crossing the two pion lines
at the end of each hatched box. Figures 3—5 are
the crossed counterparts obtained from Fig. 1(a).
When all possible time orderings are included, the
diagram of Fig. 3 expands to a set of six diagrams
and the same thing happens to the diagrams of
Figs. 4 and 5. The set headed by Fig. 3 will be la-
beled diagrams 7—12, the set headed by Fig. 4 will

be labeled diagrams 13—18, and finally, the set

headed by Fig. 5 will be labeled diagrams 19—24.
For convenience, the four sets of six diagrams will

be referred to as sets 1 —4 corresponding to the se-

quence in which they were introduced. The di-

agrams in sets 2 —4 follow the same sequence of
time ordering of the two scattering events as those
in set 1.

These 24 diagrams together with the 24 ex-

change diagrams complete the list of all double

scattering diagrams in which the nuclear 6 matrix
appears after the end of the two-pion scattering
processes. We call these prescattering processes.
For every prescattering event there is a postscatter-
ing counterpart. Figure 6(b) shows the postscatter-
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FIG. 3. Diagrams obtained from Fig. 1(a) by inter-
changing the entrance and exit points of the pion lines
on both deltas. To this diagram there corresponds five
more obtained by the time orderings of the endpoints of
the deltas.

FIG. 5. Diagram obtained from Fig. 3(a) by inter-
changing the entrance and exit points on the first delta.
To this diagram there corresponds five more obtained by
the time orderings of the endpoints of the deltas.
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FIG. 6. (a) A prescattering event which is the same
as Fig. (a). (b,' The correspondin postscattering event.
(c) The intermediate scattering event.

ing counterpart of Fig. 6(a) which is diagram 1.
Figure 6(c) shows the intermediate scattering coun-

terpart of diagram 1. Here the scattering events
are sandwiched between two 6 matrices. This
completes the listing of the 144 diagrams men-

tioned earlier.

h33(z)dz
hz(x —e )=-

z —x+e —tg
(la)

where h33(z) is the on-shell function appearing in
the expression for the t matrix,

1/2, 3/2
r p(~, k, k') = g h2r, 2r(~)~2I, 2J(cc P k ic

I,J
(lb)

(c) We use the nonrelativistic form for kinetic
energies of the nucleon and delta.

(d) The integrations over internal pion momenta
are cut off at 10m . This simple choice is based
on the recent result that the P33 form factor
varies very slowly for small momenta [see Eq. (Al)
of the Appendix].

(e) We also regard the external pion momentum
to be small compared to the typical momentum of
the internal pion. This momentum is set to zero
everywhere except in the P33 projection operators.

(f) For sequential processes, we need only the
off-shell mX amplitude hrc(x) obtained from the
right-hand cut of the full ~E amplitude:

III. SEQUENTIAL PROCESSES

As stated at the outset, our calculations are for
nuclear matter. %e make several further approxi-
mations, described below, all designed to facilitate
the calculation without affecting the usefulness of

.the qualitative conclusions.
(a) The Fermi motion of the nucleon is ignored.

All hole energies are replaced with an average
value —8 = —21 MeV.

(b) We include only the P33 channel for the vrX

t matrix. The static projection operator for this
channel is used as given in Eq. (A2) of the Appen-
d1x.

as is given by

( I /4n )( W/M)gzr, zr(co)e '~ 1—
h2r 2J(co)=-

. 2lq

(lc)

The phase shifts are given in the center of mass,
hence, the appearance of the recoil energy e in the
argument of h~ accounts, in an approximate way,
for the c.m. to laboratory transformation.

Using the Goldstone rules and Eq. (1) one ob-
tains for diagram 1 and its hole line exchange
counterpart

d3"
U, =J,q g g [(Ap

1

G
1
ij)—(Irx

I
G

I
ij)]

(217 ) 2coq p gj )f EA+Ep Ci

Ap gkF

1
X hrc (co+e +eg —e —& —e ) &j 1

~33(P,cc, q, k )
1 p &l J Q)+Pg —P —Q) +l 7/

xh~(~ ek+er. )(~ 1~33(~—»k q)1~& (2)

Here, i,j label the particle states and A, ,p label the hole states of the nucleon. e;, etc., are the energies of
these single-particle states. The quantities e& and ek are defined as

q
2
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and

k

2M'
(3)

With approximation (e) it follows that the particle state i has momentum —q, the state j has momentum q
and ek-0. We set

2

6g EJ 2M

Consistent with approximation (a) we ignore Pauli blocking. Thus, the range of q is from Om to 10m
The defect function

(4)

is related to the Bethe-Goldstone correlated wave function 1t through 1(t=p —X, where p is the unperturbed
product wave function. Incorporating the various simplifying approximation one gets

d3 2 2

U& ———( —,p) I Tr g X(q)hz co 2B — —— P33 (P,a, q, k)
(2m) 2coq p 2M 2M'

)& hg (co—8)P33'(a,P, k, q )[co—8 q l(2M—) coq +i q]—

Here, p=2kF /3' is the nuclear matter density. We take kF ——1.9m~. The symbol Tr means the spin and

isospin traces for both nucleons. The channel projection operators are operators in single nucleon spin-

isospin space. The superscripts are the nucleon labels. The relative motion defect function is also an opera-

tor in the spin-isospin space of the two nucleons. It may be written in the following form:

X(q)=4m[X(q, 'S)Q, A, +X(q, 'S)Q, A, +X(q, S~ D)Qz&A, ],
where it has been decomposed into its singlet S, triplet S, and triplet D components. These are all for a
starting S-wave relative motion. Q„Q, are the S-wave singlet and triplet projection operators given by

Q, = —,(1—o
~ oq),

Q, = 4 (3+cr~.oq), (Sa)

with the analogous singlet and triplet isospin operators given by

Ag ———,(1—7(.Pp),

A, = , (3+r) rp) . — (Sb)

We also have Qz~, which operating on the triplet SJ ~ spin angular momentum state produces a triplet
DJ &

state

3q o~(q oz) —q o& oz
Qsg)— (Sc)

The quantity X(q, 'S) is the S defect function in the momentum space. X(q, 3S) and X(q, S~ D) are the S
and D defect functions with the unperturbed state being S~. These defect functions were calculated with
the Reid soft core 8 (Ref. 9) potential. Carrying out the spin-isospin traces one has
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2 2 2 f q4dq hz[co —2B(q /2M) —(q /2M&)]
U~

———k p hR(co —8}—
2mq co —8 coq —(q /2M)+iri

x —,„X(q, '&)+ —„X(q, '&) — X(q, '& '&) (9)

Inclusion of nucleon and 6 energies produces two
effects. First and more important is the change in
the effective pion energy in the second mNsca. tter-
ing amplitude. Instead of being equal to co, the
external pion energy, it is reduced by the excitation
energy of the nucleon and delta. The factor q,
appearing because of the I' wave nature of the in-

teraction, coupled with the ability of the defect
functions to support high momentum causes most
of the integral in Eq. (9) to come from large q
values. The root mean square value of q in a typi-
cal defect function is about 4m . Thus, the
change in the effective pion energy is quite large
and this recoil effect drastically reduces the value
of h~ compared to hz(co), the value used in a FSA
calculation. The second effect is the appearance of
nucleon recoil energy in the denominator. While
not as dramatic as the effect of recoil on the ~N
amplitude, it is not a negligible feature.

The expression given by Eq. (9) for the contribu-
tion of the sequential process of the prescattering
class to the optical potential was evaluated at two
values of pion laboratory energy T, viz. , 0 and
140 MeV. The numerical results are shown in the
first row of Table I. The second row of Table I
gives the result of evaluating the sequential process
in the static limit, i.e., when the nucleon and delta
kinetic energies in Eq. (9) are dropped. One sees
that inclusion of baryon kinetic energies results in

a reduction of the contribution by a factor of 5 at
T~ =0. For T = 140 the reduction in the ima-

(10)

and it differs from the static limit of (9) in several
respects. In FSA the full scattering amplitude is
used for both scattering events. We have indicated
this by adding the left-hand cut and then squaring,
since omission of the nucleon pole terms is of little
consequence in the present context. In the static
limit the denominator of (9) is 2coz(co —

co&
}. In

FSA this is replaced with the nonrelativistic form
ko —q, where ko ——co —m, which is then used
for the entire range of q. Finally, in the FSA it is
not customary to pay close attention to the details
of the spin-isospin algebra. The defect function

X(q,S) is some suitable defect function for the rela-
tive S state. As we will see later, we need the
value of the defect function at zero internucleon
separation and this value is independent of spin.
Writing

q

CO —m —q +lg2 2 2

Q) —Pl ~
2 2

= —1+
CO —Ill~ —g +l'g

we once again drop the pole term on the right-

I

ginary part is almost by a factor of 40.
It should be noted that the static limit of (9)

does not produce the popular form of the FSA re-
suIt for the prescattering (PS) process. The latter
1s

UFSA 3 k P [~R(~)+~R( ~)l

TABLE I. Contributions to the optical potential. The numbers are in units of
10 k/m '.

T =0 T =140 MeV

Sequential diagram (1)
(prescattering)

Sequential diagram with no recoil
(prescattering)

FSA [Eq. (15)]

First-order optical potential

0.755

3.95

16.37

—93.5

2.67+i 1.63

—9.5+i 63.4

—58.2+ i 123.0

—144.0—i 228.0
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hand side for reasons to be discussed shortly. One
gets

UpsA g
k p [hz(oi)+4( —oi)]'—I q'dq X(q)

For future convenience we cast (11) in the form of
a matrix of an operator A„s„between the defect
function g and the unperturbed wave function P,

with

UFSA —&&
I
AFSA

I 0 & (12)

Aps~ ————,k p [ha(co)+ha( —co)] 5(r) . (13)

where g is the Bethe-Goldstone wave function.
Since Aps& contains 6(r) one gets

Uqsz ——+ 3
k p [hei(co)+hei( —co)] (15)

where we have used P(r =0)= 1 and P(r =0)=0,
the latter because of the strong short range repul-
sion between nucleons. Note that the full FSA re-
sult is identically equal to Uzsz.

The form (14) is true for every triad of
postscattering, prescattering, and intermediate
scattering diagrams 1 —24. The sum of all 144 di-

agrams can be represented as

24

n=1

where A„ is a two-nucleon operator appropriate for
the nth diagram. Whenever the pion propagator
has a pole, whether in FSA or for any of the 24 di-

agrams, A will have an infinite range part

e/r, wh-ere qz is the position of the pole in
the variable q, and r is the internucleon distance.
Since the Bethe-Goldstone wave function f rapidly
heals up to the unperturbed wave function P(r) the
infinite range part of A contributes little to the
second-order optical potential.

The third row of Table I contains values ob-
tained from Eq. (15}. The last row of Table I con-
tains the values of the first-order optical potential,
which is

U' '= —,k p[ha(co —B}+hei(—co —8}]. (16)

In terms of AI;s~ the postscattering contribution is

(P I Aps~ I
X) and the intermediate scattering con-

tribution is —(X
I
Ai:s~ I

X). The total is

UFsA = —
&&IAFsAIN & &Pl AFswl &&+ &&I AFsAI & &

(14)

The factor —, comes from spin-isospin averaging of
the P33 projection operator. An examination of
the results for T =140 MeV immediately shows
the need to take the recoil energies into account.
Both static calculations give contributions whose

1 1

imaginary parts are 4 to —, of that of the first-
order optical potential. While the calculation tak-
ing account of the recoil energies gives an ima-

ginary contribution less than 2% of the imaginary
part of the first-order potential.

Because the sequential processes are suppressed
so strongly by the recoil effects it becomes neces-
sary to examine the contribution of the field
theoretical effects described by the remaining di-
agrams. This is done in the next section.

IV. ALL PRESCATTERING DIAGRAMS

In this section we consider all prescattering di-
agrams. Half of these diagrams are obtained from
the other half by interchanging the entry and exit
points of the external pion, i.e., by crossing. ' For
example, set 2 can be obtained from set 1 by cross-
ing and the last three diagrams of set 3 (diagrams
16—18) are the crossed counterparts of the first
three (diagrams 13—15}. Similarly, in set 4, the
last three diagrams are the crossed counterparts of
the first three. In the present calculation the exter-
nal pion momenta, which are equal, appear only in
the external factor k . The initial and final isos-
pins are also the same. So the only result of cross-
ing is to change the sign of co, the external pion en-

ergy. Thus, it suffices to consider half of the
terms and evaluate them at both positive co and
negative co.

Evaluation of any diagram requires a three-
dimensional integration over q and integration .

over the mass variables zi and zz associated with
the left and the right hatched boxes, respectively.
The integrands of the six diagrams in any set
differ from each other only in the four-
denominator factor that appears. The denominator
occurring immediately below the G matrix is the
same for all diagrams. In the previous section we
have seen how this denominator together with the
6 matrix gives the defect function. Let the symbol
d„stand for the product of the remaining three
denominators of the nth diagram. The integrals
over zi and zz are carried out most conveniently if
the integrand can be arranged to have the follow-
ing two features. First, no factor contains both zl
and zq. Second, zi and zq each appear in only one
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denominator. Then, the integrals factorize, and the
z& and zz integrations may be performed to give a
product of two h~ amplitudes [see Eq. (10)]. But
most d„'s are not of the desired form. Neverthe-
less, it is possible to arrange the integrands to have
the desired feature by partial summation of groups

of terms (generalized time ordering ) and occasion-
ally decomposing a single product of denominators
into a sum of products. These points are illustrat-
ed with the denominators of the first three di-
agrams, viz. ,

1 1 1

co —28 (q /—2M) (q'/—2M&) z2 co—8 —(q'/—2M) coq ~——8 —z~

1 1

28 —(q /.—2M) (q /—2M') z2 ~——~q —28 (q /2—M~) zi —z—2

1

6)—8 —z]

(17a)

1 1 13=
co —28 —(q /2M) —(q /2M') —z2 co —coq 28 ——(q /2M') —z~ —z2 —coq —8 —(q /2M') —z2

2 2 2 2

(17c)

While d~ is of the desired form, d2 and d3 are not. Summing the two we get

1 1 1d2+d3 ——
2 2 2a) —28 —(q /2M) —(q /2M') —z2 —coq —8 —(q /2M') —z2 ~—8 —zi

which does not have any factor containing both z~ and z2 but still has two factors containing zz. That is
remedied by decomposition into partial fractions.

1 1
d2+d3 ——

N —8 —zi ~—8 —(q /2M)+mq

1

co —28 (q /2M) —(q /2M~) —z2—
1+ 2—coq —8 —(q /2M') —z2

(18)

Now the two terms are both in the desired form. We note also that the first term of (18) differs from d~,
given by (17a) only in the sign of coq in the middle term. The sum of the two produces a Klein-
Gordon —type denominator [(co—8 —q /2M) —~q ] '. Finally, the sum of the six diagrams of set 1 is
given:

set 1

g U„= kp f q d—qF (q—)
5

2
g

2

2M' 2M
—28 1

h~ (co —8)
[co (q /2M) 8—] coq +i—ri—

q 8+(q /2M)+Ag Q)q
1

hg(~ —8)
(co +co )q(q /2M+8) —+i'

(19)

where

F~(q) = „[X(q, 'S)+X(q, '&—)]— X(q, 'S~'D) .
108

An examination of the arguments of the hz functions shows that the first term in the curly bracket of (19)
is the larger of the two. The second term involves hz far from the positive energy resonance. The relevant
part of Eq. (19) differs from the result for diagram 1, given by (9), in having the denominator
[2coq(co —8 —coq —q /2M+iq)] ' replaced by the Klein-Gordon —type propagator. One expects this re-
placement to cause an increase by a factor of -2 in the contribution to the optical potential. The result of
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calculation is given in the first row of Table II and the expected increase occurs. Note that the tensor corre-
lation contributes significantly. The expression for set 2 is obtained by replacing co with —co in Eq. (19).
The effective pion energy, the argument of hR, is negative for all four hR s and consequently the contribu-
tion is very small as given in the second row of Table II. Note that the contribution is real. This is because
of two reasons. First, the amplitudes hR are all real, the arguments being less than m . Second, no pole
term appears in the pion propagator when co~ —co. The result for set 3 is

set 3 B+(q /2M)g U„= kp— J—q dq Fz(q) hei( co —B) —1+
7T COq

where

Fz(q)= —„(X(q, 'S)+X(q, S) j+ X(q, S~ D) .
36

1
hq (co —B)

co —[co~+(q /2M)+B]

(21)

These diagrams have different spin-isospin structure which results in Fz(q) being different from Fi(q). Had
it not been for the tensor correlation, Fq(q} would be —, times larger than Fi(q). Since the set is by itself
crossing symmetric the expression (21) is an even function of co.

The most remarkable feature of (21) is in the effective pion energies at which the amplitudes hit s are
evaluated. They contain no nucleon or delta kinetic energies. The absence of the latter is easy to under-
stand. The first delta is formed by the incoming pion, hence e =k /2M~ =0 in our approximation scheme.
The second delta formation is accompanied by the emission of the outgoing pion. So, once again
e =k /2M~=0. The removal of all reference to the recoil energy of the nucleon is not obvious at all. The
result appears only after summing the six diagrams. The sum is of the generalized time ordering type.
Comparing (21) with the first part of (19) shows two major differences. The first is the replacement of
Fi(q} by Fq(q), which has been mentioned already. The second is the effective energy appearing in the first
hei function. For set 1 the energy argument is co —2B —q /2M —q /2M~, showing the reduction due to the
kinetic energy of the nucleon and the delta. In (21) the energy is co B. In —both—cases, the hR function is
reduced considerably relative to the value of hei(co). The two reductions are, a priori, comparable. The rea-
son why the contribution of set 3, given in row 3 of Table II, is consistently larger than that of set 1 is be-
cause" Fz(q) &Fi(q). The diagrams of set 4 gives the following expression which is an even function of co:

set 4 2

g U„=—k p —J q dqFq(q)hii —
co& B——

2M'

X AR co —2B— 1

2M 2M& [co—(q~/2M) —B]~—co
~

2
q

2
1+~R QP —28—

2M 2M' [—co —(q~/2M) —B]~—co
~

q (q /2M)+B
co —[coq (q /2M) B] — co—

q

(23)

In every hz function appearing in (23) the ener-

gy argument is considerably less than co. Natural-

ly, the contribution, given in row 4 of Table II, is
small.

The study of the prescattering diagrams may be
summarized as follows. Of the four sets only sets
1 and 3 are important. Set 1, which contains the
sequential diagram, gives a contribution which is
much smaller than the FSA value because of the

recoil effects. Set 3, which gives the largest contri-
bution, is purely field theoretical in origin. The
sum of all postscattering diagrams is -6% of the
first-order potential at both values of T .

V. ALL DIAGRAMS
As remarked earlier the sum of all postscattering

diagrams is identically equal to the sum of all pre-
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TABLE II. Decomposition of the prescattering (Sec. IV) contributions to the optical potential. For each energy the
partial contributions of 'S, S, and tensor correlations are listed. The last row gives the first-order optical potential.
All numbers are in 10 k /m

's
T =0

Tensor Total 's
T =140 MeV

S Tensor Total

Set 1 0.60
Set 2 0.18
Set 3 1.82
Set 4 0.23

0.75
0.22
2.06
0.31

0.24
0.06

—0.70
—0.16

1.58
0.46
3.18
0.38

1.92 +i0.26
0.18 —i 0.007
2.74 +i4.39

—0.026—i 0.26

1.26+ i 2.58
0.14+i0.002
2.94+ i 5.62
0.22+ i0.02

1.20+ i 1.90
0.08—i0.002

—1.39—i2.38
—0.43+ i0.04

4.38 +i4.74
0.40 —i0.007
4.29 +i7.63

—0.236—i0.27

Total prescattering
FSA for prescattering
First-order

5.61 Total prescattering
16.37 FSA for prescattering

—93.51 First-order

8.83+i 12.25
—58.20+ i 123.2

—144.30—i 227. 8

scattering diagrams. In FSA the intermediate
scattering [in the sense of Fig. 6(c)] gives a contri-
bution equal in magnitude but opposite in sign to
that of the postscattering or prescattering di-
agrams. The situation is radically altered when the
nucleon kinetic energies are taken into account.
From Fig. 6(c) it is'clear that both mN scatterings
takes place when there is considerable excitation
present. In sets 1 and 3, co —8 appeared as the ar-
gument of one of the h~ functions. This does not
happen in any of the intermediate scattering di-
agrams. Therefore, one expects the contribution to
be quite small.

The evaluation of the 48 diagrams of the inter-
mediate scattering type is somewhat tedious and
considerably time consuming because the integrals
for the delta mass variables do not factorize. We
have done the calculation for T =0 only. At this

energy, the pion propagators do not have poles and
so no subtraction is necessary. This reduces the
computational time. We obtain

24

U„(intermediate scattering; T =0)
n=1

k74' 10—2 (24)

About 90%%uo of the value comes from the s-wave
correlations. The value given in (24) is about 30%
of the contribution of the prescattering diagrams
and -2%%uo of the first-order optical potential. As
one approaches the resonance the relative contribu-
tion of the intermediate scattering contribution will
be even smaller. The factor hz(co —8) appearing
in the prescattering diagrams will increase, while
none of the h~ functions appearing in the inter-
mediate scattering diagrams will.

Taking 2% of the first-order optical potential as
an estimate of the contribution of the intermediate
scattering diagrams at T =140 MeV also we con-
clude that the full contribution of pion double
scattering by a correlated nucleon pair is —10% at
both energies.

In view of the smallness of the double scattering
contribution it is reasonable to expect that the con-
tributions of triple and higher order pion scattering
from correlated clusters will be negligible. To see
this it is sufficient to note that energy arguments
of the additional scattering amplitudes which occur
in the evaluation of these higher order processes
are either negative of order ——co, or considerably
reduced from +o~ because of subtraction of the en-

ergies of the excited nucleons.

VI. SUMMARY AND CONCLUSIONS

We find the FSA overestimates considerably the
contribution of pion double scattering by a corre-
lated nucleon pair to the pion-nucleus optical po-
tential. When the kinetic energies of the nucleons
and the deltas are taken into account the contribu-
tion of the sequential process is less than 2% of
the first-order optical potential. The FSA estimate
ranges from 25 —S0%. The large reduction is a
consequence of the strong energy dependence of
the m.N t matrix element. Thought of another way,
the reduction occurs because the n.N interaction is
sufficiently extended in time due to the 33 reso-
nance to vitiate the static correlations between two
nucleons. Because the first nucleon recoils during
the resonant scattering with a second nucleon, the
interparticle separation r &2 tends to become large.
The double scattering operat'or A (including recoil)
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becomes long ranged, and thus, has a reduced over-

lap with the defect wave function X. For this rea-

son, previous static treatments of the role of
ground state correlations in pion scattering come
into serious doubt.

The mN t matrix consists very generally of two
parts due to crossing symmetry, namely, the right-
and left-hand contributions. In pion-nuclear
scattering these two parts enter in quite different
ways necessitating in the present paper a separation
of the right- and left-hand cut contributions to t z
The rules for embedding the ~N t matrix into
pion-nuclear scattering have been given and the
field theoretical processes have been dealt with in a
systematic fashion. Because of the suppression of
the sequential processes, the field theoretic effects
gain in relative importance in correlated double
scattering. When all the effects are counted in
double scattering contribution to the optical poten-
tial is estimated to be —10%%uo. Thus, the LLEE ef-
fect also will be correspondingly reduced.
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APPENDIX

We will draw diagrams for the pion-nucleus t
matrix element. A Goldstone diagram consists of
directed lines for pions, nucleons, and other parti-
cles and vertices where three or more of these lines
join. If a potential theory for NN interaction is
used there will be nondirected horizontal lines of
specified character connecting two nucleon lines to
indicate potential interactions.

The type of lines used in this paper are

(i) Dashed lines for pions;
(ii) Upward solid lines for nucleons in unoccu-

pied (particle) states, downward lines for occupied
(hole) states;

(iii) Horizontal wiggly lines represent 6 ma-
trices. Single potential lines are never exhibited
separately.

(iv) In this paper a thin, directed, rectangular,
hatched box will represent an interacting mN sys-
tem. These are employed as a device to describe
the mN t matrix conveniently. It will facilitate the
handling of the energy of the amplitude in the
presence of excitation. This point is discussed
later.

All of our diagrams will have two external lines,
incoming and outgoing pion lines, for the sole pur-
pose of visual convenience. No numerical factor,
such as a denominator, is to be associated with
these lines.

We list below six rules for evaluation of a Gold-
stone diagram.

(1) Associate to each internal line an appropriate
set of quantum numbers (e.g., spin-isospin,
momentum). The energy of the line is determined

by the chosen Harniltonian and the quantum nurn-

bers. The energy associated with the external line
is the incoming energy co.

(2) Between successive vertices there is an energy
denominator. To determine this denominator we
draw for each diagram an auxiliary diagram, where
we remove the original external pion lines and then
replace them with a single line directed from the
exit point (last interaction point of external line) to
the entry point (first interaction point). This line
is directed upward or downward depending on the
time ordering of the first and last interactions. A
denominator is equal to the sum of energy of all
downward-going lines minus the sum of all
upward-going lines present in the interval.

(3) The rules for the vertices and 6 matrix in-
teractions are the usual ones.

(4) Form the product of all denominators and
matrix elements of interactions and sum over all
internal variables.

(5) The sign of any contribution of any diagram
is given by ( —1)"+ . h is the number of hole lines,
and l is the number of closed Ferrnion loops.

These rules have to be supplemented by a sixth
rule designed to handle situations where during the
course of interaction of a pion with a nucleon, oth-
er events are occurring elsewhere in the medium.
The rule becomes intuitively obvious upon review-

ing the method of handling a AN t matrix (a four-
point function) appearing as part of a larger Feyn-
man graph. In order to do the energy loop integral
it is convenient to write the t matrix as an analytic
function of the sum of the energies of the entering
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pion and nucleon lines. The role and treatment of
the nucleon poles, direct and crossed, are obvious
and need no elaboration. The right- and left-hand
cuts are handled by moving the interacting mN sys-
tem as a particle of continuous mass. In addition
to the preceding five rules we have the sixth rule
specifically for the thin, directed, rectangular,
hatched box is listed below.

(6) Assign an energy z+e to such lines. z is the
difference between the mass of the mÃ system and
that of a nucleon; z & m . e is the kinetic energy
of the system. If P is the total momentum,
e = —,P /(M+z}. Also assign a multiplicative

weight factor ( 1 lm ) Imt (z}, where t (z) is the nE.
scattering amplitude for total c.m. energy
8' =m +z. Specifically,

i/2, 3/2 p g2I, 2J( 8 ) cos52r, 2J( W) —1
Imt (z)=4m. 4(q k, k')~2r, 2J(a,p, k, k '),

I,J 2q
(Al)

q being the c.m. momentum for the total energy

a(p) and k(k ') are the initial (final) isospin
(a=1,2, 3) and momentum of the pions. These
rules assume that the baryons are nonrelativistic.

P21 2J is the channel projection operator. Thus, in
the static approximation

P33(a,P, k, k '}= (5~p —
3 rpr~)

X (3k k ' —cr k 'o" k ) . (A2)

The quantity P(q, k, k') is a form factor function
which relates the full-off-mass shell amplitude to
the on-shell amplitude. By definition P(q, k, k') =1
when q =k =k'. The function P(q, k, k') is not ex-

plicitly written in the expression in the main body
of this paper. The momentum integrals were cut
off at an upper limit of 10m, which represents an
approximate treatment of the off-shell function tI}.
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