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Energy dependence of the p- Ca optical potential: A Dirac equation perspective
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The energy dependence of a relativistic optical model potential consisting of a mixture
of Lorentz scalar and Lorentz vector components is determined from the analysis of
p - Ca elastic scattering experiments from 26 to 1040 MeV.

NUCLEAR REACTIONS Dirac equation based analysis of p- Ca
elastic scattering, E~ = 26 to 1040 MeV. Energy dependence of em-

pirical relativistic optical potential.

In this work new experimental results from the
IUCF' and TRIUMF for p- Ca elastic scattering
in the transition energy region (100—500 MeV) are
analyzed using a Dirac equation based optical
model approach. These results, in combination
with those from analysis at lower and higher
energies, allow an investigation of the energy
dependence of a nuclear optical model potential
within a relativistic framework.

The description of the nuclear scattering prob-
lem using the Dirac equation rather than the
Schrodinger equation is one of the necessary parts
of a relativistic description of the nucleon-nucleus
interaction. An optical model treatment appropri-
ate for use in the Dirac equation has been
developed and applied to the description of

nucleon-nucleus scattering over a wide energy
range. A critical feature of this model is the
consideration of the I.orentz transformation char-
acter of the potential, usually taken to be a mixture
of Lorentz scalar and Lorentz vector interactions.
Duerr considered such a model sometime ago;
and, during the past few years, relativistic models
have been applied successfully to the description of
both finite nuclei and nuclear matter. ' These
works generally use a one-boson exchange potential
(OBEP) description in obtaining an effective
nucleon-nucleon interaction which, in the simplest
case, includes only the exchange of scalar and vec-
tor bosons. In such a case the relativistic single
particle potential for treating the nuclear many-
body problem contains both Lorentz scalar U„and
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Lorentz vector, Uo, potentials.
The complex potentials used in this analysis of

p- Ca elastic data are written

and

Uo(r)= Vofo +info ~

U, (r)=V f,"+i@',f, , (2)

[ a p+P[m+ U, (r)]

+[Uo(r)+ Vc(r)] JP(r) =Eg(r), (3)

where Vc(r) is the Coulomb potential for protons
determined from the empirical nuclear charge dis-
tribution, rn the proton mass, and E the proton to-
tal energy in the c.m. frame. This equation is
solved by partial wave analysis to obtain the elastic
differential cross sections and analyzing powers.

As a starting point for this analysis of p-Ca
experiments, we consider a folding or Dirac-
Hartree construction of the real parts of Uo and -''

U, given by

Vo(r) =ReUo(")=f uo(
l
r —' '

I
po(r ')d r ', (4)

V, (r)=ReU, (r)= f u (
I
r r'

l )p (r')dr' (5)

The density po is found from a double folding of
projectile and target nucleons with the nuclear
matter density po. The baryon density po is taken
from an empirical formula of Negele and the
scalar density is approximated by p, (r)
=[p, /po]„po(r), where [p, /po]„ is the scalar-
to-baryonic density ratio in nuclear rnatter. The
effective interaction is approximated by
u (r)=tf (r), where f(r) is the appropriate meson
form factor and t is the volume integral of the ef-
fective interaction in nuclear matter. The density
ratio and the values of to and t, are taken from
Walecka's relativistic mean field theory of nuclear

with the form factors chosen to be two-parameter
Fermi functions [1+exp(r —c)/z)] '. Thus, taken
as a strictly phenomenological model, there are 12
adjustable parameters, the same number as for a
phenomenological Schrodinger-equation based opti-
cal model using Fermi functions for the complex
central potential and derivatives of Fermi functions
for the complex spin-orbit potential. In the rela-
tivistic model all spin dependent effects are impli-
cit in the Dirac equation. These potentials are in-

corporated in the Dirac equation (iii=c = 1)

matter. These potentials are parametrized in
terms of Fermi equivalent shapes as described in
Ref. 1. The vector and scalar form factor pararne-
ters, given by co ——3.474 fm, zo ——0.668 fm, c,
=3.453fm, and z, = 0.692 fm, are kept fixed in
the analysis. The strengths of Vo and V„as deter-
mined from Eqs. (4) and (5), were essentially suit-
able for representing experiment at the two lowest
energies, 26 and 30 MeV. For higher energies, the
strengths were treated as free parameters.

The imaginary parts of Uo and U, are also
pararnetrized with Fermi shapes or, at energies
below 50 MeV, derivatives of Fermi shape form
factors. Thus, the imaginary optical potentials
contain, at most, six free parameters. In general,
we have found that acceptable fits to experiment
could be obtained by allowing the real and ima-
ginary strengths and two of the imaginary georn-
etry parameters to vary.

One of the purposes of the present work is to in-
vestigate in a systematic way the empirical energy
dependence of the individual I.orentz scalar and
Lorentz vector potentials. An earlier work, which
also employed the Dirac equation, analyzed p- He
elastic scattering experiments at a number of ener-
gies above 500 MeV. The authors of Ref. 5 found
that the ratio R~, defined by

Jo f Vo(r)d r

f V, (r)dr

was well determined by their analysis. This
parameter is also well determined in the present
work where we obtain the parameter R& from an
analysis of p- Ca data at eight energies, from 26
to 1040 MeV. This ratio gives a clear signature of
the energy dependence of Vo and V, as well as
functioning as a characteristic parameter describ-
ing the mixture of different Lorentz character po-
tentials. Figure 1 shows this ratio as determined
from the p- Ca analysis at the eight energies con-
sidered. The energy dependence of Rx is approxi-
mated quite well by the expression Rg(Tp)
=a+bT&, with a= —0.798 and b = 0.260X10
The corresponding ratio from Ref. 5 for p- He is
also shown in Fig. 1, and again a linear energy
dependence is suitable. In this case, a =—0.814
and b =0.891 )&10 . In both cases, as shown in
Table I, the empirical values of R~ at zero energy
are in agreement with values obtained from
%alecka's relativistic mean field theory. However,
the energy dependence of Rii is greater for Ca
than for He.
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TABLE I. Values for the ratio RR determined from
relativistic mean field theory in Ref. 6 for two different
Fermi wave numbers and a binding energy of 15.75
MeV. The corresponding zero energy empirical values
are from Ref. 5 and this work.
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FIG. 1. Values of the ratio RR defined in Eq. (1)
from Ref. 5 for He and the present analysis for "Ca.

The Dirac-Hartree potentials calculated from
Eqs. (4) and (5) are energy independent. For Ca,
using mass m = 780 MeV and m = 560 MeV,
the potential strengths are Vo ——383 MeV and

V, = —470 MeV so that Rq ———0.8 independent
of energy. The energy dependence of this ratio as
obtained from the phenomenological analyses is
thus a measure of nonstatic corrections to the Har-
tree approximation which can be anticipated within

—the framework of the model. For example, recent

Hartree-Fock calculations by Jamion and
Mahaux yield an energy dependence for E.~ that
is in qualitative agreement with the empirical re-

sults for energies below the transition region where
the influence of absorption on the real part of the
potential appears to be of secondary importance.
Similar conclusions can be inferred from calcula-
tions by Muller.

We now turn to another aspect of the energy
dependence of a Dirac equation based optical
model. It has been shown' ' that the reduction
of a Dirac equation, which contains both U, and

Uo, to second order form, produces an equation for
which a Schrodinger equation equivalent optical

FIG. 2. The real part of the Schrodinger equivalent
central potential U,ff determined from the Dirac equa-
tion based analysis of p- Ca elastic scattering experi-
ments (Refs. 1, 2, and 49—55). The Darwin term is
omitted.

potentia1 may be defined. This Schrodinger equa-
tion equivalent potential, which contains both cen-
tral and spin orbit components, has a real part
which changes from attraction at low energies to
repulsion at high energies. In the transition energy
region the radial shape of this potential deviates
considerably from the Fermi-type shape usually as-
sociated with nuc1ear densities, even when the indi-
vidual Lorentz scalar and Lorentz vector potentials
have Fermi shapes. That an unorthodox shape
could be required to fit experimental data in this
energy region was noted by Elton and has been
confirmed by recent analysis using both relativis-
tic' as well as nonrelativistic treatments.

Figure 2 shows the real Schrodinger equivalent
central potentials found from the Lorentz scalar
and vector potentials determined from the p- Ca
analysis. In the transition energy region there is a
considerable deviation from the radial shape of the
nuclear matter distribution. The origin of this
wine-bottle-bottom shape lies both in the presence
of square terms in the Schrodinger equivalent cen-
tral potential and in its explicit energy depen-
dence. ' ' Quite similar energy dependence of the
optical potential is found for Brueckner-Hartree-
Fock (BHF) calculations, ' where the effect is
due to cancellation of direct and exchange terms in
the optical potential calculated in the local density
approximation. Recent calculations using
Fermi-hypernetted and single-operator-chain sum-
mation techniques also indicate that the nucleon-
nucleus optical potential would, in a local density
approximation, also have a wine-bottle-bottom
shape in the transition energy region.
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The volume integrals per nucleon, J~/3 and

Ji/A, of the Schrodinger equivalent central poten-
tials are shown in Fig. 3(a). The energy depen-
dence of J~/3 can be represented by the equation

Tp(Mev)

FIG. 3.{a) Values of the volume integrals of the real
and imaginary parts of the Schrodinger equivalent cen-
tral potential for Ca. The smooth line is given by Eq.
(7). The dashed line is to guide the eye. The dotted line
gives the Dirac-Hartree values. (b) Values of the
volume integrals of the real and imaginary parts of the
Schrodinger equivalent spin-orbit potential for Ca.
The smooth and dashed lines are to guide the eye. The
dotted line gives the Dirac-Hartree values.

JR(Tp)/A =C+8 InT~,

with C= —916 MeV fm and 8 = 150 MeV fm .
The energy, 452 MeV, at which J~/A passes
through zero, is higher than that found from a
simple Dirac-Hartree calculation, shown in Fig. 3
(a), and reflects the energy dependence of Up and

U, found in this work. A similar logarithmic en-

ergy dependence was also found by the authors of
Ref. 5 in their Dirac equation analysis of p- He
experiments. However, the energy at which the
real effective volume integral passed through zero
was 360 MeV, indicating the effect of target mass
on the energy dependence already noted in the dis-
cussion of Rz. Logarithmic energy dependence of
Jz/3 is also a characteristic of Schrodinger equa-
tion based analysis. Finally, we note that the en-

ergy variation of Jl /3 is reasonable and, as expect-
ed, its magnitude increases rapidly as the pion pro-
duction threshold is passed.

In Fig. 3(b) we give the values found in this
work for Kz and Kq, the Schrodinger equation
equivalent spin-orbit volume integrals divided by

. The energy dependence is smooth in contrast
to the rapid energy variation of both Ez and El
found from Schrodinger equation based analysis in
the transition energy region. We suggest that
this latter behavior in the nonrelativistic analysis is
due to the choice of Fermi or derivatives of Fermi
shapes for the phenomenological potentials. Figure
2, as well as theoretical calculations, suggests that
less restrictive radial shapes are appropriate in the
transition energy region.
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