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The single-step contribution to nuclear inelastic scattering is analyzed in the indepen-

dent particle model. We derive simple formulas for the single-step total cross section and

the response function, which are the two major ingredients in the theory. This descrip-

tion accounts for most of the cross section below an excitation energy of 40 MeV, seen in

proton induced reactions at 200 and 800 MeV.

NUCLEAR REACTIONS Calculated proton induced one step contin-

uum o.(E,E~), q(E,E„),g-(g) at 200 and 800 MeV protons.

I. INTRODUCTION

Inelastic scattering reactions are particularly in-

teresting at forward angles because the low
momentum transfer probes the collective response
of nuclei to external fields. However, the collective
cross section is obscured by a background which
we would like to understand better. One question
is whether this background arises primarily from
single or multiple collisions. In this work we will
examine the single step contribution to the cross
section. We consider the regime of excitation ener-

gies below 40 MeV in proton-induced reactions
with proton energy greater than 200 MeV, and we
will show that the single step contribution accounts
for most of the cross section at momentum
transfers larger than 0.5 fm '. The inclusive in-

elastic scattering has been previously studied by
Chiang and Hiifner. ' Our approach is similar in

spirit to this work.
The theory of the cross section will be based on

the distorted-wave impulse approximation which
allows the nucleon-nucleon cross section to be fac-
torized from the nuclear response. We express the
cross section in the form

d 0 do
dQdE dQ

N,gS (q„E) .

Here do/d0
~ ziv is the nucleon-nucleon cross sec-

tion at the same laboratory energy and angle. The
second factor in this equation, N, ff, is the effective
number of target particles which will be discussed

in Sec. II. The nuclear response to the projectile
scattering probe is S(q,E). This is defined by

g&gt I &, le) Ii(Ef

S(q,E)=

(1.2)

where 6'q is the projectile scattering operator, and

f; and Pf are occupied and unoccupied single-

particle states. Note that in the limit that d'e
~

lb; )
orthogonal to all the

~
lb; ) (no Pauli blocking), S

satisfies

I dES(q, E)=l .

We discuss the theory of S(q,E) in Secs. III and
IV. In Sec. III we review the Fermi gas model for
the response, which is used in Ref. 1. Our main
interest is the small momentum transfers, which
requires a better treatment of the nuclear surface
than is possible in the Fermi gas model. We
present the theory of S in a semi-infinite slab
model in Sec. IV. Finally, in Sec. V we present a
detailed comparison of these models with proton-
induced reactions at 200 and 800 MeV.

II. SINGLE STEP TOTAL CROSS SECTION

We define the cross section 0'"' for n collisions
between projectile and target particles in the nu-

cleus. The effective number of nucleons participat-
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ing in one-step reactions is then given by

~(&)
jeff = (2.1)

der( )/db

where o.
NN is the nucleon cross section used to cal-

culate the single step reaction cross section o'". In
the Glauber theory, cr("' is given by

(„) I d2b [X(b)]"
e x(b)

n!
(2.2)

g(b) = J dz p(r =')/z +b )o)v~ (2.3)

where exp[ —X(b)] is the attenuation factor and
0 I

I

2 5 4 5 6 7 8 9 IO
r (fm)

is the average number of collisions as a function of
the impact parameter b. We will parametrize the
nuclear density in terms of a Fermi function,

FIG. 1. The density and the contribution to the sin-

gle step cross section plotted as functions of radius and
the impact parameter. The vertical scale has arbitrary
units.

p(r) =po/(1+e" "'/') (2.4)

using the parameters of Ref. 6.
The inelastic background is primarily due to

o'", and we shall need to evaluate this cross sec-
tion carefully. It is a simple matter to compute
this numerically from Eqs. (2.2) —(2.4). In Fig. 1

we show for one case, Pb, the contribution to
o'" as a function of impact parameter. We see
that this is very much surface peaked, with the
maximum contribution coming from the vicinity
of the quarter density point. Numerical values for
0'" for various reactions of interest are tabulated
in Table I.

It is useful to estimate o'" analytically, both for
convenient formula, and to exhibit the dependence
on the parameters in the calculation. The estimate
is easy to obtain in the limit that the main contri-
bution is from the tail of the density distribution.
We can then expand the Fermi function to evaluate
the integral (2.3).

( b ) dz (r p e z +b / a +R / a+co Q 2 2

(R —b))la& —z l(2ab)~ ~NNPO

=~wxpoe'" "'v'Zebra—b . (2.5)

Since we will need a better accuracy, we expand
p(r) to second order, giving

Y(b)= rJ~~pov 2&bQ e

(R —b)/a+. . .1

Wz
(2.6)

We are interested in the region g(b)=1, which is
satisfied for the usual nuclear parameters with
b &R. This latter condition is required for the
series expansion to be valid.

We next evaluate the single step scattering cross

TABLE I. Single collision total cross section calculated with pp ——0.16 fm and a =0.55
fm.

&NN

(mb)
bp

(fm)

~(&)

Eq. (2.8)
(mb)

~(&)

Eq. (2.1)
(mb)

jeff

Ca
116Sn

208Pb

~Zr

3.92
5.86
7.13
4.92

176
252
301
243

215
305
355
330

5.4
7.6
8.9

13.2
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section o-"' using the approximate formula for
X(b), Eq. (2.6). In the integral for o'" we change
the integration variable from db to dX. Neglecting
the b dependence of X(b) outside of the exponential
factors, we have

within 15% with the numerical integration, and is
thus useful for simple estimates. With only the
first term in Eq. (2.8) the formula is 40% low.

X(b)db =a [—1 X(—b)/(o)vb(Pp2t rrab )

+ ]dl(b) (2.7)

III. THE FERMI GAS MODEL

The cross section 0'" then becomes

o(1) d2b y(b)e x(b)—
0

27lbpa f dX (b)[1+7(b)l(crab(Pp2't/nabp)

]e X(b)—

In the Fermi gas model, the response to the
operator e'~' can be evaluated analytically. The
wave functions in Eq. (1.2) are plane waves, which
we label by k for the occupied state and k' for the
unoccupied state. Momentum and energy conser-
vation reduce the six dimensional integral in Eq.
(1.2) as follows

=2irbpa [1+(o)((~pp2+rrbpa ) '+ . . ],
(2.8)

k k'
S(q,E)= g~ (—k

~

"& "~k') ~'8 +E-
N kk, 2m 2m

where again we have neglected the nonexponential
b dependence by replacing b by an average value

b0. The parameter b0 is roughly given by the con-
dition X(bp) =1. Note that the dominant term in
0'" depends mainly on the nuclear geometry and

only weakly on the nucleon-nucleon cross section.
In Table I the values of o'" are quoted, calculat-

ed numerically from Eqs. (2.1) and (2.2) for param-
eters relevant to proton scattering at 200 and 800
MeV. We also show the values obtained from the
approximate formula Eq. (2.8), which agree to

, f d'k, .
4qkF'

(3.1)

We defined the z axis along the direction of q, and

kq labels the xy component of the momentum of
the occupied state. The integration over kz in Eq.
(3.1) runs over occupied states only, ki
+k, &kz for E+k, =(q+k, ) with the addi-

tional condition that kr +(k, +q)'& kF'. The
evaluation of the integral (3.1) yields the imaginary

part of the Lindhard function.

if ~2qkF
~
)2mE+q

if ( —,q —mE) p k~ q2 .

3'
4qkF'

S(q,E)= 3[kF ( , q mE) /—q —] if —
~

2qkF
~

&2mE+q2,
F

(3.2)

P(q)= f S(q,E)dE,

1 — f q(2k„,

if q) 2kF . (3.3)

Considered as a function of E at a fixed value of q,
S(q,E) is nearly triangular for small values of q as
shown in Figs. 4 and 6. This is at variance with
the data.

The effect of the Pauli principle is to reduce the
energy integrated cross section by a factor P(q),

I

For example, for 800 MeV (p,p') scattering at 4.5'
the momentum transfer is about q = —,kF, giving a

1

blocking factor of P( —,kF) =0.37. However, Eq.
(3.3) is qualitatively incorrect. It predicts that the
total cross section for quasielastic scattering should
vary linearly with q in the forward direction and
vanish at q =0. Much of the data appears to be
independent of q in the forward direction. This is
particularly obvious in the (p, n) data which extend
to zero degrees. The Fermi gas model does not
give a good description of the low-momentum
transfer response. A better approximation is need-
ed, which explicitly takes into account the nuclear
surface.
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IV. THE SEMI-INFINITE SLAB MODEL

Vp
V(r)=

1+ez/a
(4.1)

We take the well parameters as Vp ———45 MeV
and a =0.75, following optical potentials for heavy
nuclei.

The most basic effect of the finite nuclear size,
the breaking of translational invariance, can be
studied in the semi-infinite slab model of the nu-

cleus. Other effects of finite size, for example, as-
sociated with interference between amplitudes from
different areas of the nucleus, will not be calculable
in the slab model. Interference effects will show

up as diffraction structure associated with particu-
lar shells. While this is important for the excita-
tion of collective states, for the higher inelasticities
we consider there appears to be no diffraction
structure.

To calculate the response of the semi-infinite
slab, we first must define the single-particle wave
functions. We take the surface to be at z =0, and
choose the wave functions to be eigenstates of the
semi-infinite potential well,

The scattering operator is not simple e'& " be-

cause of the absorption of the projectile in the inte-
rior. Most of the one-step reactions take place
when the projectile skims along the surface, as we

saw in Fig. 1, and it is reasonable to treat the ab-

sorption as a cutoff on the operator in the z direc-
tion. We take the scattering operator to be

8'(q, r) =e'~'/( I+e ' ')' (4.2)

This satisfies the condition that the contribution to
the scattering vanishes in the interior. The param-
eters zp and ap can be determined by requiring that
do'"Idb =2irbX(b)e '"', discussed in Sec. II, and

(q, r) '~ p(r) are proportional in the surface re-

gion.
The projectile is assumed to travel along the sur-

face when it interacts via a single-step collision.
The region of the nucleus that is important is a
ring in the equatorial plane perpendicular to the
beam axis. The angle P between the surface and
the momentum transfer is just the azimuthal angle
at which the projectile strikes the nucleus, and can
have any value. We add contributions to the
response for different angles P incoherently,

S( E)=f ~ f ~(g(k )( '"~""""~W()(P(k' )) ~'
(2ir) (2m )3(2m )

X5(Ei, Ei, E)l—f d k(—g(k, z)
i

d'z(z)
i
p(k, z)) . (4 3)

Momentum is conserved in the perpendicular direction, and this eliminates two of the integrals, say k„' and

k». The k,
'

integration is evaluated with the energy-conserving 5 function. Nothing in the integrand
depends on k„, so this integral can be evaluated from the limits imposed by the Fermi sphere. We thereby

obtain the following expression for the normalized response function

'Ir

S(,E)= f dP f dk, dk„
m3 o [(k,') —2mVO]

~
(g(k,z)

~

d'(q, z)
~

1('(k',z) )
~X

f 'dk, (kz —k, )(g(k,z)
~

8'~(q, z)d'(q, z)
~
f(k,z))

(4.4)

which can be evaluated numerically. In Eq. (4.4)
the x and y dependence of the wave functions and
operators has been treated analytically. The over-
lap involved is therefore only an integration over z.
The momentum transfer in the z direction is given

by q, =q cosP. The momenta k, of the bound
state g, and k,' of the scattering state f' are related

by energy conservation as

k,
' = k, +k„+2m(E+ Vo) —.(k, +q sing)

(4.5)

I

The single particle wave functions f and lb', solu-
tions of the Schrodinger equation with the poten-
tial (4.1), are normalized to one in the interior.
The integral over the occupied states in the
numerator of Eq. (4.4) is further restricted by the
conditions imposed on k,', for which we have con-
sidered two cases: (i) k,

' )0, which corresponds to
the knockout process in which the nucleon escapes
from the surface, and (ii) k' )0, corresponding to
the scattering of the knocked on nucleon to un-
bound states.
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V. AN ANALYTIC APPROXIMATION I.O

In comparing with the data, we have calculated
the integral (4.4) numerically, but it is also useful
to find an approximate analytic solution. Since the
scattering process is mainly a surface phenomenon,
it is dominated by the least bound occupied states.
In the external region the wave functions for these
states are given by

f(k, «) =f(k, )e e

where a=0.7 fm ' for 10 MeV binding. The pre-
factor f(k, ) can be parametrized to fit the
Woods-Saxon eigenfunctions. The form

I
O.I—

I
I

I
I
I

I
I
l
I
1

I
I

O.OI
0

I

0.5
I

I.O
I

l.5
I

2.0 2.5

f(k, )=Ak, e (5.2)

with A =0.24 fm, 8 =1.3 fm, and a=0.7 fm
reproduces the eigenstates at z =0, normalizing the
states to 1/fm in the interior. The unoccupied
states for the particle-hole excitation we will ap-
proximate by plane waves. Since the plane waves
form a complete set of states, the Pauli blocking is
lost in the approximation. We restore it by assum-

ing that the response can be factorized,

q (fm ')

FIG. 2. The blocking factor as a function of the
momentum transfer calculated in different models; the
dotted curve gives the blocking calculated in the Fermi
gas model, Eq. (3.3); the drawn curve is calculated using
Eq. (4.4); the dashed-dotted curve is calculated from
(5.5) using Eq. (5.6), while in the dashed curve C =1.7
fm has been taken.

S(q,E)=P(q)S„(q,E), (5.3)

P(q)=1 —C/(4a +q ), (5.5)

where P(q) is the blocking factor and S„ is the
response calculated with plane wave final states.
In general, the blocking factor P also depends on
the transferred energy, which is neglected in the
present treatment.

We estimate P(q) using

Xl Pole'q« IA'

g&&o I
&*(q,«)~(q «)

I fo&
'

where the summation over 1(0 and go runs over oc-
cupied states only. For the scattering operator, we
replace (4.2) by a step function d'(q, z) =e'e"0(z).

Then (5.4) may be evaluated with the wave func-
tions (5.1) and (5.3)

aA 2kF
C = exp(2kFB) 2kF — +4+8 g2

1

g2

(5.6)

In Fig. 2 we compare the blocking factor from Eq.
(5.5) with the exact blocking factor obtained by in-

tegrating Eq. (4.4) over E. Equation (5.5) is rather
inaccurate at q =0, due to the strong cancellation
between the two terms. The dashed curve in Fig.
2, which gives a good fit for q (1 fm ', is ob-

tained from (5.5) and (5.6) by increasing C by
15%. The dotted curve is the Fermi gas model. It
gives less blocking for q &0.3 fm ', and more
blocking for q (0.3 fm

We now consider the plane wave response S„.
This can be written as

S„(q,E)=

4ma "F f'«. )«F' —k. '—k, ')'"
dP dk, dk„

k,'[a +(k,' —qcosP) ]

I dk, (kF —k, )f (k, )

(5.7)

The limits of the k integration are determined by
the zeros of k,' or (kF —k, —k„)'« in the in-

tegrand. Because the integrand behaves quite dif-
ferently depending on the location of the zeros, it

I

is difficult to make a rigorous analytic approxima-
tion. We arrived at fairly simple formula by con-
sidering the two regions separately, and replacing
smooth functions in the integrand by average
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values. The result is

S„(q,E)=
H[a + (kp —q) ]

4o (~/» —4o

ko 3+qkF /2
(5.8)

IO

116$n(p p/}
800 MeV
Ex= 50MeV

where

and

kp ——, kF +—2m(E+Vp)

m/2 &f 2g (kp,
sin '(ko/2q) if 2q&k .

E

4J

Cy I

The range of validity of the approximation is
E& —Vp —, (kF /m—) and q-kp.1

0.2
IO l5 20

VI. COMPARISON WITH EXPERIMENT

A. 800 MeV (p,p')

At 800 MeV the elastic nucleon-nucleon cross
section is anisotropic, but can conveniently be
parametrized as

doww 2p do.

dQ, 2m dt

FIG. 3. The experimental (Ref. 5) angular distribu-

tion for 800 MeV (p,p') on "Sn at an excitation energy

of 30 MeV is compared with some calculations; curve F
gives the Fermi gas model prediction; curve I and II are
calculated from Eq. (4.4), where II gives the cross sec-
tion leading to unbound states and I that for pure
knockout. Curve A gives the analytic solution, Eqs.
(5.3), (5.5), and (5.8) using C =1.7 fm2.

=12 ' " '"s' mb/sr (6.1)

The transformation from center of mass to labora-
tory angles at small angles is given by

(6.2)

where y, is the Lorentz contraction factor for
the c.m. frame. The forward angle N-N cross sec-
tion at 800 MeV is thus

+NN —3.4[1—cos(2. 3981 b)]=70e mb/sr .
dQ), b

The total nucleon-nucleon cross section was taken
as o T

——40 mb, which is slightly less than o.T for
free nucleon-nucleon scattering to account for the
Pauli blocking. The calculated effective number of
particles is given in Table I. For the parameters in
the scattering operator, Eq. (4.2) we obtained
zp = —0.6 fm and ap ——0.4 fm.

In Fig. 3 the calculated angular distributions are
compared with the 800 MeV (p,p') data from
Moss et a/. The curve I corresponds to the solu-

tion of Eq. (4.4) in which it has been required that
a particle is knocked out from the surface, k,

'
& 0,

while for curve II the less restrictive condition is
imposed that the particle scatters to unbound
states. The quasielastic knockout process explains
only about half of the continuum cross section.
The data are well reproduced by curve II. For
semi-infinite matter, the difference between the
curves I and II corresponds to the single step cross
section leading to states for which the momentum
component parallel to the surface is large. For fin-
ite nuclei the momentum parallel to the surface
corresponds to angular momentum. Because of the
centrifugal barrier these states have a relatively
long lifetime and might eventually decay by parti-
cle emission. The angular distribution of the emit-
ted particle will be clearly distinct from that for
the direct knockout process. By measuring angular
correlations one could thus differentiate between
these two processes.
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In the analytic solution only the scattering to
continuum states has been considered, and it
should therefore be compared with curve I to
which it indeed gives a fair approximation. In the
analytic solution the blocking factor is calculated
from Eq. (4.15) using C =1.7 fm .

The predictions following from the Fermi gas
model are also given in Fig. 3. In this model the
cross section vanishes for angles smaller than 3.3'
which seems to be in contradiction with the data.
For angles larger than 7' the cross sections calcu-
lated in the Fermi gas model and the semi-infinite
slab model are comparable.

A typical energy spectrum is shown in Fig. 4.
This single step excitation to unbound states (curve
II) accounts for the measured cross section above
an excitation energy of 25 MeV. Only at the very

high energies, E F 45 MeV the major part of the
cross section is formed by direct knockout. It
would be interesting to study experimentally the
fraction of direct knockout as a function of energy
to better understand the total reaction strength.

B. 200 MeV (p, n)

cross section, the effective number of nucleons is
about a factor of 2 larger than for 800 MeV pro-
tons (see Table I). In the case of the (p, n) reaction
we are, ho~ever, interested in the effective number
of neutrons participating in the scattering process,

N ff(p, n) =N, &roz„ /(oz„+ozz ) (6.4)

which is about half as large as Nerf. Since the
charge exchange cross section at forward angles is

5
about —, of the 800 MeV cross section, we expect
that for the same momentum transfer the cross
section for (p, n) at 200 MeV is somewhat smaller
than for (p,p') at 800 MeV. Experimentally this is

1

indeed the case for q & —,kz. Owing to the smaller

total cross section the penetration depth of the pro-
ton in the nucleus is much larger and is repro-
duced by taking zo ———1.05 fm and ao ——0.7 fm in
the scattering operator Eq. (4.2). For angles larger
than 14' both the calculation II and the Fermi gas
model account for the observed cross section.

At angles smaller than 8' the calculations under-
predict the data. This seems to indicate that the
amount of blocking is considerably overestimated.
For zero blocking the cross section would be con-
stant at small angles. By decreasing the blocking,
however, the cross section at small energy losses

The formalism developed in this paper is, in

principle, also applicable to the continuum part of
the spectrum observed in the (p, n) reaction. In
Fig. 5 the experimental angular distribution ob-
served in 200 MeV (p, n) (Ref. 7) is shown. At 200
MeV the total proton-nucleon cross section is only

or ——25 mb/sr (Ref. 8) if we include the effects of
Pauli blocking. Owing to this much smaller total

lO

Zr (p, n)

200 Mev

E„=5Q MeV

E
IO

4JI3

'O

IJJ

b

0
0

E„(MeV)

FIG. 4. Experimental (Ref. 5) and calculated energy
spectrum for 800 MeV (p,p') on " Sn at 5 lab angle.
The curve labels have the same meaning as in Fig. 2.
Below an energy of 10 MeV the experimental spectrum
is truncated.

O.Z
0 10

1

l5 20 25

FIG. 5. Same as Fig. 2 for 200 MeV (p, n) on Zr at
an excitation energy of 30 MeV.
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Zr {p,n)

200 MeV

L

E
5—

LLI

b

20 40 60
Ex(MeV)

FIG. 6. Same as Fig. 3 for 200 MeV (p, n) on Zr at

12 lab angle.

will be overpredicted (see Fig. 6). Related to this is
the excitation of the Gamow-Teller (GT) reso-
nance. The operator exciting the GT does not
change the orbital angular momentum of the parti-
cles and so would be Pauli blocked in our treat-
ment. Experimentally, only a small fraction of
this strength has been located in peaks and the
remaining, about 40 mb/sr at forward angles,
could be hidden in the continuum part of the spec-
trum. This missing strength can easily explain the
experimental cross section at O'. The I.=0 angu-
lar distribution for the GT strength is, however,
strongly forward peaked and it is therefore not
possible to use this to explain the difference be-
tween experiment and calculation at all angles
smaller than 8'. A contribution from higher I.
transfer would be necessary. It would be interest-

ing to measure the background in an X =Z nu-

cleus to see if the lack of Pauli blocking for the
neutron excess is really responsible for the small

angle cross section. The forward angles cross sec-
tion will also be affected by the optical distortion
of the projectile wave function. Our treatment
deals with the absorption of the projectile but not
with the real part of the optical potential. To
study the effect of the distortion we compared dis-
torted wave Born approximation calculations for
the inelastic cross section with and without distor-
tion from the real potential. The effect on the ra-
tio of the zero degree to the maximum cross sec-

tion is inconsequential for 30 MeV energy loss. At
higher excitations (E„)50 MeV) a significant part
of the cross section could come from two or more
step contributions.

VI. SUMMARY AND CONCLUSIONS

We have calculated the single-collision inelastic

scattering cross section in the Fermi gas model and

the semi-infinite slab model. For large momentum

transfer, q & kF and E & 20 MeV, the predictions

following from these models are similar and agree

with experiment. For low momentum transfer the

situation is less clear. The sharp drop in cross sec-

tion, predicted in the Fermi gas at q (kF/2, is not
seen in the data. The semi-infinite slab model has
less of a drop at small q, and agrees with the 800
MeV (p,p') data. However, the model under-

predicts the 200 MeV (p, n) cross section.

The semi-infinite slab cross section can be divid-
ed into two parts, depending on whether the nu-
cleon is bound or free in the z direction. We found
that most of the strength comes from the z-bound
wave functions. In a spherical geometry, the z-
bound wave functions correspond to orbitals that
are below the centrifugal barrier. It is these centri-
fugally confined orbits that give the major contri-
bution to the collective state response, e.g., the gi-
ant quadrupole. We should therefore be cautious
in comparing our continuum cross section with the
experimental "background" cross section.

On the experimental side, the prediction that
most of the strength goes to centrifugally confined
excitations can be tested by looking for direct
knockout, e.g., (p, 2p). This should be weak for ex-
citation energies & 35 MeV.
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