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Degree of nonlocality of various exchange contributions to the nucleus-nucleus potential
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The degree of nonlocality introduced into the nucleus-nucleus interaction by the re-

quirements of the Pauli principle is discussed on the basis of the properly orthogonalized

equation of relative motion of the two nuclei, which is an equation for physical wave

functions with a direct probability interpretation. Exact calculations of the kinetic energy

exchange potential, the Coulomb exchange potential, and the pure nuclear exchange po-

tential are performed for the a-a system. Even in this simple example, a variety of very

different structures can be obtained for the nuclear exchange potential, depending on

which nucleon-nucleon interaction is chosen.

NUCLEAR REACTIONS Scattering theory, e-a calculated exact re-

normalized resonating group potentials, nonlocality functions for kinet-

ic, Coulomb, and nuclear contributions.

I. INTRODUCTION

If we neglect the influence of the Pauli principle,
then the potential describing the interaction of two
composite nuclei with rigid internal configurations
can easily be derived in a microscopic way by fold-

ing the nucleon-nucleon interaction Uz~ with the
internal single-nucleon densities pi, p2 of the nu-

clei. If uqz is local in the nucleon-nucleon separa-
tion, then this folding potential VI (often called the
"double folding potential" ) is local'.

VI(r)=fdrt fdr2pt(rt)p2(r2)uNiv(r r +t—)r.2

In a fully antisymmetrized theory such as the
resonating group method (RGM), where the indis-

tinguishability of all nucleons involved is treated
exactly, the nucleus-nucleus interaction contains a
direct contribution of the form (1) and very com-
plicated highly nonlocal exchange terms whose ori-

gin is in the exchange of nucleons between the two
nuclei. '

However, the equation of motion of the RGM
has the form of an eigenvalue equation in a
nonorthogonal basis and the RGM wave functions
of relative motion must not be interpreted as pro-
bability amplitudes. In the last few years there has
been an increasing awareness, that the effect of this
nonorthogonality must be eliminated by renormal-

izing the RGM wave function if a comparison
with wave functions and potentials of a conven-
tional Schrodinger equation is to be meaningful.
In contrast to the "nucleus-nucleus potential" ap-
pearing in the nonorthogonal representation of the
ROM, the potenfial in the orthogonalized represen-
tation need not a priori be highly nonlocal, in fact,
for purely harmonic nucleus-nucleus interactions it
is exactly given by the local folding potential (1).
This explains why, e.g., the elastic u-a scattering
data can be described by a conventional
Schrodinger equation with an attractive, energy
and angular momentum independent a-a potential,
although the influence of the Pauli principle is de-
finitely not negligible.

Using these insights it has been possible to
derive simple local nucleus-nucleus potentials
which approximate the potential in the orthogonal-
ized representation of the ROM for a number of
systems, ' but so far the "renormalized RGM
potentials" were never calculated exactly. The aim
of the present paper is to study the exact structure
of the nucleus-nucleus potential in the orthogonal-
ized representation of the ROM equation in order
to see whether or not the exact consideration of the
requirements of the Pauli-principle does in fact
lead to highly nonlocal nucleus-nucleus potentials.

The relevant formulas of the RGM and the tran-
sition to an orthogonalized representation of the
equation of relative motion are summarized brieAy
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in Sec. II. In Sec. III the structure of the contribu-
tions of kinetic, Coulomb, and nuclear potential
energy to the nucleus-nucleus interaction are dis-
cussed for the example of the a-a system. A dis-
cussion of the results and their implications is
given in Sec. IV.

II. NUCLEUS-NUCLEUS POTENTIALS

According to the formalism of the resonating

group method (RGM), the relative motion of two
nuclei with (rigid} internal states p](g]) and $2((2),
respectively, is described in the subspace of many-
nucleon wave functions of the form

H(r, r) y(r) y(r))A(~«) = . 0 0

in the basis of many nucleon wave functions

00( r ) =~le](ki)02(42)t](x —r )1

(4)

which span the subspace (2). Throughout this pa-
per the energy scale is chosen such that the inter-
nal energy of two separated fragment nuclei, which
is defined by the expectation values of the internal
Hamiltonians A ~, A 2 in the internal wave func-
«ons y], y2, is ««: E]g, ——(y] l

A ] l y] &

+ &t)]1~2 I 42& =0.
It is customary to write Eq. (3) in the form of a

Schrodinger equation by splitting the ROM Hamil-
tonian and overlap operators, H and A, into direct
and exchange parts:

+]]=~I0](k]HV42)0(x } I

where P is an unknown wave function of relative
motion and x is the separation of the centers of
mass of the two nuclei. The rest-antisymmetrizer
M accounts for all possibilities of exchanging nu-

cleons between the two nuclei. The requirement
that the full microscopic many-nucleon Hamiltoni-
an A be diagonal in the space spanned by the
wave functions (2) leads to an equation of motion
for the wave function (}]). In compact operator no-

tation this equation reads

HP=EAP,

where H and A are integral operators whose ker-
nels are matrix elements of the Hamiltonian A
and the unit operator:

where T„,i ———(fP/2LM, ) b, is the kinetic energy of
relative motion and VJ is the folding potential (1).
In (6) and (7) W and K are short ranged, Hermi-
tian, and highly nonlocal operators arising from
the exchange parts of the matrix elements (4).

Equation (3) for (I) may now be written as

8'+E E .

Equation (8), is however, misleading in that the en-

ergy dependence of the "potential" is trivially due
to the fact that the equation of motion (3) has the
form of an eigenvalue equation in a nonorthogonal
basis, which means that the "wave functions" ()()

cannot be interpreted as probability amplitudes.
We can remove the effect of this nonorthogonal-

ity by introducing renormalized wave functions

A ]/2y

for which the equation of motion reads '0 s

AH, ,]]Q=Ef,

(10)

with the Hermitian and energy independent collec-
tive Hamiltonian of relative motion H„]] defined

by

(12)

For uniqueness A ' may be chosen to be the Her-
mitian positive semidefinite square root of the
RGM overlap operator A.

The equation of motion in the correctly orthogo-
nalized representation (11) contains a projection
operator A which annihilates the so-called "redun-
dant states. " These are short ranged states of rela-
tive motion forbidden by the Pauli principle; they
are eigenstates of the RGM overlap operator A

with vanishing eigenvalues. Matrix elements of the
collective Hamiltonian H„~~ containing one or two
redundant states are not determined by Eq. (12}
and do not enter into the equation of motion (11).
The solutions of Eq. (11) are automatically orthog-
onal to all redundant states (except for E =0).

Assuming H,,]] in Eq. (11) to be given by the
direct part of the RGM Hamiltonian leads to the
equation

(T„i+Vj+ W+EK)P=EP,

which looks like a Schrodinger equation with a lo-
cal direct potential V~ and a highly nonlocal, expli-
citly energy dependent nonlocal "exchange poten-
tial"

H =T„)+Vy+8', r

A( T„i+Vg)1(), (13)

3=1—E, (7) which is the original version of Saito s orthogonali-
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ty condition model (OCM) (Ref. 11), and has been
quite a successful approximation of the full RGM.
Replacing V~ by a more general effective nucleus-
nucleus potential V,~~ leads to a generalization of
Saito's OCM

(14)

H =A 'i (T„i+V,rr)A 'i

Resolving Eq. (15) for V,rr yields

V ff —A 1/2~g —1/2 T

where the inverse operator A ' obeys

(15)

(16)

and is only defined in the space of nonredundant
states. Following Ref. 13 the natural decomposi-
tion of V,ir into direct and exchange parts is (in
the space of nonredundant states):

V,g ——Vg+ V,„, (18)

so that the correct definition of the exchange part
V,„ofthe nucleus-nucleus potential is

which has been shown to be a very good approxi-
mation of the full RGM in a number of cases,
even if V,rr is assumed to have a very simple local
structure. ' A further improvement of the
OCM is given by Schmid's fish bone model, '

which includes a nonlocal potential with a struc-
ture similar to the structure of the exchange contri-
bution of the kinetic energy operator to the
nucleus-nucleus interaction. For an RGM based
on purely harmonic nucleon-nucleon forces, the
simple OCM (13) is exactly equivalent to the full
RGM.

The generalized OCM equation (14) is exactly
equivalent to the full RGM equation (3), if the ef-
fective potential V,ii obeys the factorization equa-
tion

nucleus-nucleus interaction; using the fact that
M M ( =M ) is proportional to W, the exchange
contributions are usually decomposed in a seeming-
ly natural way into a sum of contributions ori-
ginating from one-nucleon exchange, two nucleon
exchange, etc. ' ' However, the nonorthogonal
representation of the equation of relative motion is
a poor basis for physical interpretation.

In the correctly orthogonalized equation (14)
[containing the exact effective potential (16)], we
can still clearly distinguish between direct and ex-
change contributions. The folding potential V~ is
still the direct part of the nucleus-nucleus poten-
tial; the exchange contribution is given by V,„de-
fined by Eq. (19). It is now no longer obvious that
the exchange potential (i.e., V,„)must necessarily
be highly nonlocal. Also, there is no obvious
decomposition of V,~~ into a sum of contributions
from one-nucleon exchange, two nucleon exchange,
etc. If orily some of the permutations in M are in-
cluded in the bra state on the right hand side of
Eq. (4), then the same perinutations must be in-
cluded in the ket'; otherwise the corresponding
overlap operator defined by Eqs. (4) and (5) need
no longer be positive semidefinite and the whole
procedure of renormalization leading to Eq. (14)
becomes meaningless. On the other hand, includ-

ing, e.g., only the permutations exchanging one nu-

cleon between the two nuclei in both bra and ket in
Eq. (4) means that the inatrix elements will also
contain terms conventionally interpreted as two-
nucleon exchange contributions and even direct
contributions.

It has been shown that the full exchange poten-
tial V,„ in the properly orthogonalized equation
(14) can be approximated quite well by a local po-
tential in a number of examples, ' ' but so far
V,„has never been calculated exactly. In the fol-
lowing section we discuss the various contributions
to V,„ in the simple and much studied a-a system.

V,„=A( V,rr —Vg )A, (19)

with the effective potential of Eq. (16) and the
folding potential of Eq. (1). Strictly speaking, ma-
trix elements of V,„containing redundant states
are not determined uniquely; in Eq. (19) they are
made to vanish by the projectors A.

In the nonorthogonal representation (3) and (8)
of the equation of relative motion, the infiuence of
the Pauli principle appears to be clear: Neglecting
antisymmetrizat'ion leads to the simple local fold-
ing potential and the inclusion of exchange effects
is responsible for the nonlocal terms in the

III. EXCHANGE CONTRIBUTIONS TO THE
NUCLEUS-NUCLEUS POTENTIAL.

The RGM Hamiltonian H defined by Eq. (4)
contains contributions T, Vc, and VN coming from
the microscopic many-body operators for the kinet-
ic energy of relative motion, the Coulomb potential
energy, and the pure nuclear potential energy,
respectively. Correspondingly, the effective poten-
tial (16) and the exchange potential (19) can be
written as a sum of contributions from kinetic,
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Coulomb potential, and nuclear potential energy,
i.e.,

T C
Vex Ve + Ve + Ve

With Eqs. (16) and (19) we have:

V =A(A ' TA ' T —i)A

(20}

(21)

V,„=A(A' V A ' —V )A (22)

V =A(A '
VNA

' —V )A

where Vy and V~ are the Coulomb and nuclear
parts of the folding potential (1), respectively.

In the following subsections the various ex-
change contributions (21)—(23) are discussed for
the a-a example. The potentials are calculated ex-
actly using numerical techniques developed by
Fiebig and Timm. ' ' The internal states of the o.
particle are described by (Os} harmonic oscillator
wave functions with fico=17.83 MeV. The redun-
dant states are oscillator states of relative motion
with principle quantum numbers N =2e+l less
than four. The nonredundant eigenstates of the
RGM overlap operator A defined by Eq. (4) are the
other oscillator states; the corresponding eigen-
values JM~ depend only on the principle quantum
number X and are given by

Vx = I 4( , )"—+34—,0 . (24)

(23)

The most natural representation of the potentials
(21)—(23) is in the basis of eigenstates of A, i.e., in
the harmonic oscillator basis. In order to illustrate
how local or nonlocal certain contributions are we
also use coordinate representation. In the partial
waves I =0 and 2 the projectors A in Eqs.
(21)—(23) introduce a substantial nonlocality,
which is spurious in the sense that the structure of
the potential is only relevant, in the space of non-
redundant states Auniq. ue definition of the po-
tential in coordinate representation is possible for
the partial waves l & 4, where there are no redun-
dant states.

A. The "kinetic energy exchange potential"

=~i, i'~m, m'O'N &In' I Trei I Nn'im & (25)

The matrix elements of the kinetic energy part T
of the RGM Hamiltonian have a particularly sim-
ple form in the basis of (spherical) oscillator states

P„i (r), which are eigenstates of the RGM overlap
operator:

where X is the smaller of the numbers 2n +l,
2n'+l .A simple formula of the form (25) holds's

for all systems of two SU3-scalar clusters if the
corresponding microscopic many-body operator (in

this case, kinetic energy) separates exactly into con-
tributions acting only on the internal coordinates
of the respective nuclei and a relative motion part
acting only on the relative distance coordinate x
[see Eq. (2)]. In Eq. (25), only the diagonal
(n =n') and first nondiagonal (n =n'+ I) matrix
elements are different from zero:

(kn, i I T-| I 0n, i & = —,~(2&+1+—,),
(26)

fico[—(n +1)(2n +21 +3)/8]'~~ . (27)

('(('n, 1 I
Ve'n

I rtn+l, l & (V P2n+l~P2(n+1)+I

X (0n, l I Trel I In+1, l &

(29)

The exchange potential V„has a highly nonlo-
cal structure in coordinate space. However, its
magnitude is very much smaller than the direct
part T„~. The reason for this lies in the factor

Fx =+Piv ~ON+2 (30)

which is quite small. From Eq. (24) we have

F4 ———0.106, F6———0.024, F8 ———0.006, etc., in
the a-a case. The sign of the matrix elements of
V,„ is positive in the present case, but this can be
changed by redefining the oscillator basis states.
As an operator, V,„is indefinite and can neither be
said to be attractive nor repulsive. The statement
that the kinetic energy exchange potential is very
weak and nonlocal can be generalized to all sys-
tems in which the nonvanishing eigenvalues p„ I of
the RGM overlap operator A are, for fixed I, slow-

ly varying functions of n. This is in fact a typical
property of the eigenvalue spectru~ of A, particu-
larly in heavy systems, where the eigenvalues p„ I
approach the limit unity (from below or above)
very gradually.

(All matrices are independent of and diagonal in
the quantum number m which is dropped from
now on. )

From Eqs. (25)—(27) the kinetic energy ex-
change potential (21) can easily be given analytical-
ly in the harmonic oscillator basis (2n +l )2):

(28)
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B. The Coulomb exchange potential

Numerical values of the diagonal matrix ele-

ments ($„1 ~
V,„~ $„1) are plotted in Fig. 1 against

N =2n +I for partial waves l =0 to I =6 in the
u-a system. The nondiagonal matrix elements are
smaller in magnitude and have alternating signs.

In comparison with the direct Coulomb poten-
tial, which varies between 1 MeV and about 2.5
MeV for u-a separations between 6 and 2 fm, the
matrix elements of V,„ in Fig. 1 are small. The
potential is predominantly attractive since all ex-
pectation values in oscillator states are negative.
For fixed values of N =2n +l the matrix elements

depend weakly on l and their magnitude decreases
with increasing I.

In order to illustrate the behavior of V,„ in coor-
dinate space, we have extracted from the nonlocal
expression V,„(r, r') in each partial wave a "po-
tential function"

We use the convention in which radial matrix ele-
ments are defined by

(PI )
V[A')= J dr I dr'A(r)V(r, r')4«) .

Figure 2 shows the potential function (31),in the
partial waves I =4 and I =6. The potential func-
tion is predominantly attractive and very much
weaker than the direct Coulomb potential Vf.
Figure 3 shows the nonlocality function (32) for
l =4 and l =6 for various separations r. The sim-

ple, short ranged structure of D, indicates that the
approximation of the exchange potential. by a local
potential or by a nonlocal potential of simple struc-
ture, such as has been used in simple phenomeno-
logical models, ' can be reasonable in the correctly
orthogonalized version (14) of the equation of rela-

tive motion. Such a simple ansatz would be entire-

ly inconsistent and wrong if used for the exchange
term appearing in the nonorthogonal representation
(8) of the equation.

s s
U (r) = V r+ —r ——,dsex

&
ex

and [for U,„(r)@0)a "nonlocality function"

D, (s)= V,„r+ ,r — /Uc (r)—, —

which is normalized by

J D, (s)ds =1 .

(31)

(32)

C. The nuclear exchange potential

The form of the nuclear exchange potential V„
depends of course on the nucleon-nucleon interac-

3-

10
I

~~)~
~w'~~'I~

~r.r~Y//a+

15
I

2 .

-0.1-
L=

r tfm]

L=2

-0.5

FIG. 1. Diagonal matrix elements of the a-a
Coulomb exchange potential V,„ in the harmonic oscilla-
tro basis.

FIG. 2. Potential functions (solid lines) derived from
the a-a Coulomb exchange potential in the partial
wavers l =4 and l =6. The dashed line is the direct
Coulomb potential V~.
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tion uN~ on which the microscopic treatment of
the nucleus-nucleus system is based. For a purely
harmonic nucleon-nucleon interaction

with the parameters

V~
———81.72 MeV, a ~

——2.38 fm . (36)

Vj(r)=Vt exp ( —r /at) (35)

uN~(r ) =mao r !2(A)+A2),

the exchange potential V,„precisely cancels the ki-
netic energy exchange potential V,„, so that in this
case the simple version (13) of the OCM equation,
in which the nucleus-nucleus potential is assumed
to be merely the folding potential (1), is exactly
equivalent to the full RGM (see Ref. 8 and the
Appendix of Ref. 6). This is true for all two-
nucleus systems.

In the following we discuss the nuclear exchange
potential V,„in the a-u system for three different
nucleon-nucleon potentials, which have been used
extensively in microscopic studies of nuclear struc-
ture and nuclear scattering involving light nuclei.

First we assume uzi to be the potential which
was used by Thompson et al. (with the parameter

y =0.92), which is quite close to a Serber force. In
this case the folding potential V& is a Gaussian

The diagonal matrix elements of V,„ in the oscil-
lator basis are displayed in Fig. 4 for the partial
waves I =0 to l =8. The nondiagonal matrix ele-
ments of V,„are smaller in magnitude than the di-
agonal matrix elements of the same row or column
and have alternating sign. The angular momentum
dependence of V,„ follows the same pattern as for
V,„discussed in Sec. III B.

Although the direct potential (35) and (36) is+
purely attractive, the negative sign of all (diagonal)
matrix elements in Fig. 4 shows that the exchange
potential V,„ is also at least predominantly attrac-
tive. This shows that an attractive direct potential
need not necessarily be associated with a repulsive
exchange potential.

In coordinate representation the nuclear ex-
change potential contributes together with the ki-
netic energy exchange potential (and the Coulomb
exchange potential) to the nonlocal part of the
nucleus-nucleus interaction. In the following we
discuss the behavior of the sum of kinetic and nu-
clear potential contributions

10

~~O«0
~igPI.r rg~

/e

15

s trml

-5- L=

-10-

FIG. 3. Nonlocality functions (32) derived from the
a-a Coulomb exchange potential in the partial waves
I =4 [(a) solid line corresponds to r =1.65 fm, dashed
line to r=2.56 fm] and 1=6 [(b) solid line r =2 fm,
dashed line r =3.4 fm].

FIG. 4. Diagonal oscillator matrix elements of the
nuclear exchange potential V,„based on the nucleon-
nucleon interaction of Thompson et al. (Ref. 20).
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TN T N
ex Ver + Vex (37)

in coordinate space. This quantity vanishes identi-
cally for the purely harmonic nucleon-nucleon in-
teraction (34).

Figure 5 shows the potential functions U e (r)
defined in analogy to Eq. (31) in the partial waves
I =4 and l =6. The potential functions are small in
magnitude compared with the folding potential

Vf . The nonlocality functions D, , defined in

analogy to Eq. (32), are shown in Fig. 6 for I =4
and two different values of r. In the region where
the magnitude of the potential function is large (1
fm & r &2 fm) the nuclear exchange potential (in-

cluding kinetic exchange contributions) appears to
be will represented by an almost local potential in
which the nonlocal kernel V,„(r, r') is different
from zero only in a narrow region of up to about 1

fm from the diagonal. The degree of nonlocality
becomes larger for larger a-a separations (=3 fm)
but the magnitude of the potential is already quite
small here.

The results summarized in Figs. 4—6 are modi-
fied considerably if we replace the Gaussian

nucleon-nucleon interaction of Thompson et al.
by the interaction Vl of Volkov ' (with a Majora-
na exchange parameter M =0.6). The spatial part
of this interaction is a sum of two Gaussians, and
hence, the resulting folding potential (1) contains
two terms of Gaussian form (35) with the parame-
ters

V& ———91.25 MeV, Vq ——+35.69 MeV,

a& ——2.44 fm, az ——2.08 fm . (38)

The diagonal oscillator matrix elements

(P„~ ~
Vex

~ P„l ) derived from the Vl force (see Fig.
7) are negative for 2n +I & 8 and positive for
2n +l ~ 8. This indefinite property of the operator
V,„ is reflected in the potential functions U,„(r)
(shown in Fig. 8), which are positive at short
separations and mainly negative at larger separa-
tions. The structure of the nonlocality function
(Fig. 9) now depends sensitively on the separation
r In the .region of positive (repulsive) potential
functions the nonlocality is small, while the struc-
ture of the potential is substantially nonlocal in the
region where the potential function is negative.

The nucleon-nucleon interaction 81 of Brink
and Boeker also consists of two Gaussian terms.
The corresponding folding potential is given by

Vi =+447.52 MeV, Vp ———190.27 MeV,

a&
——1.99 fm, ap ——2.33 fm, (39)
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and has the peculiarity of being predominantly
repulsive. This repulsive direct potential is largely
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FIG. 5. Potential functions (solid lines) derived from
the a-a kinetic plus nuclear exchange potential Ve„de-
fined by Eq. (37) on the basis of the nucleon-nucleon in-
teraction of Thompson et al. (Ref. 20). The dashed line
is the corresponding folding potential (1).

FIG. 6. The nonlocality function derived from the
a-a kinetic plus nuclear exchange potential V,„on the
basis of the nucleon-nucleon interaction of Thompson
et al. (Ref. 20) for l =4 and r =1.34 fm (solid line) and
r =2.87 fm (dashed line).
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FIG. 9. Nonlocality function derived from the a-a
kinetic plus nuclear exchange potential (based on
Volkov's V1 nucleon-nucleon interaction) for I =4 and
r =0.88 fm (solid line) and r =1.8 fm (dashed line).

L=2

L =0.~

FIG. 7. Diagonal oscillator matrix elements of the
a-a nuclear exchange potential based on Volkov's
nucleon-nucleon interaction V1.

20-

compensated by a very strong attractive exchange
potential V,„, as is shown in Fig. 10, where the po-
tential function Ue„(r) derived from the B l
nucleon-nucleon interaction is plotted for I =4 and
I =6. The degree of nonlocality is quite small in
this case, as is illustrated by the nonlocality func-
tions shown in Fig. 11.

Finally, Fig. 12 displays the sum of the direct
folding potential and the potential function derived
from the nonlocal exchange potential V,„ for
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FIG. 8. Potential functions (solid lines) derived from
the a-a kinetic plus nuclear exchange potential based on
Volkov's V1 nucleon-nucleon interaction. The dashed
line is the corresponding folding potential (1).

FIG. 10. Potential functions (solid lines) derived from
the a-a kinetic plus nuclear exchange potential based on
the 8 1 nucleon-nucleon interaction of Brink and Boeker.
The dashed line is the corresponding folding potential
(1).
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V1

Gaus

sfrmj

FIG. 11. Nonlocality functions derived from the a-u
kinetic plus nuclear exchange potential (based on the 81
nucleon-nucleon interaction) for l =4 and r =1.3 fm
(solid line) and r =2.7 fm (dashed line).

I =4. The three curves correspond to the three
different nucleon-nucleon interactions discussed in
this section. If the nonlocality function were a del-
ta function, these curves would represent the exact
a-a potential (neglecting Coulomb contributions)
to be inserted in the orthogonalized representation
of the equation of relative motion.

Except for small separations (less than ca. 2 fm)
all three potentials are quite similar. This is re-
markable considering how different the underlying
nucleon-nucleon interactions and the corresponding
folding potentials [cf. Eqs. (36), (38), and (39)] are.
It is consistent with the observation that all three
forces yield a reasonable description of the a-a
scattering data and of the resonances forming the
ground state band of Be if used in the framework
of a completely antisymmetrized theory.

FIG. 12. The respective sums of the e-u folding po-
tential (1) and the potential function U,„derived from
the kinetic plus nuclear exchange potential V,„ in the
partial wave l =4 for the different nucleon-nucleon in-
teractions: 8 1, V1, and the Gaussian N —N interaction
of Thompson et al. (Ref. 20).

contributions which cannot be consistently approx-
imated by local potentials or by nonlocal potentials
of simple structure. Such a general statement can-
not be made for the exchange potentials in the
correctly orthogonalized equation of relative
motion.

The kinetic energy exchange potential is in gen-
eral an indefinite (i.e., neither attractive nor repul-
sive) highly nonlocal potential with matrix ele-
ments which are small in comparison with the ma-
trix elements of the direct kinetic energy operator.
In the a-u example, the Coulomb exchange poten-
tial was shown to be weak and predominantly at-
tractive with a short ranged nonlocality of simple
structure.

The results of Sec. III C show, however, that a
variety of different structures can be obtained in
the exchange potentials based on different
nucleon-nucleon interactions, even in such a simple
system as o.-a:

IV. CONCLUSION

The nucleus-nucleus potentials discussed in this
paper are potentials in the correctly orthogonalized
representations (11) and (14) of the equation of re-
lative motion and can be directly compared with
potentials appearing in phenomenological models
based on a Schrodinger equation of relative motion
of the two nuclei. In contrast, the "potentials" ap-
pearing in the nonorthogonal version (8) of the
equation of relative motion have no direct physical
interpretation. In these unphysical "potentials" the
exchange of nucleons between two nuclei (resulting
from the requirements of the Pauli principle) leads
to highly nonlocal, explicitly energy dependent

A purely harmonic nucleon-nucleon interaction
(34) leads to an exchange potential which exactly
cancels the kinetic energy exchange potential.

The Gaussian nucleon-nucleon interaction of
Thompson et a/. yields an attractive direct
(=folding) potential and a weak, predominantly at-
tractive, and almost local exchange potential.

The Vl nucleon-nucleon interaction of Volkov '

yields an attractive folding potential and a weak,
indefinite exchange potential of considerable nonlo-
cality.

The 81 nucleon-nucleon interaction of Brink
and Boeker yields a repulsive direct potential and
a predominantly attractive, almost local exchange
potential. In contrast to all other examples, the ex-
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change potential is not weak but is of the same or-
der of magnitude as the direct contribution in this
case.

From these examples it is clear that the influ-

ence of the Pauli Principle on the structure of
nucleus-nucleus potentials is very complex and
depends very sensitively on the choice of the
nucleon-nucleon interaction.
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