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A new class of approximations to the optical potential, which includes those of the
multiple-scattering variety, is investigated. These approximations are constructed so that
the optical potential maintains the correct unitarity properties along with a proper treat-
ment of nucleon identity. The special case of nucleon-nucleus scattering with complete
inclusion of Pauli effects is studied in detail. The treatment is such that the optical po-
tential receives contributions only from subsystems embedded in their own physically
correct antisymmetrized subspaces. It is found that a systematic development of even the
lowest-order approximations requires the use of the off-shell extension due to Alt,
Grassberger, and Sandhas along with a consistent set of dynamical equations for the opti-
cal potential. In nucleon-nucleus scattering a lowest-order optical potential is obtained as

part of a systematic, exact, inclusive connectivity expansion which is expected to be useful

at moderately high energies. This lowest-order potential consists of an energy-shifted

(tp)-like term with three-body kinematics plus a heavy-particle exchange or pickup term.
The natural appearance of the exchange term additively in the optical potential clarifies

the role of the elastic distortion in connection with the treatment of these processes. The
relationship of the relevant aspects of the present analysis of the optical potential to con-

ventional multiple scattering methods is discussed.

NUCLEAR REACTIONS Approximate nuclear optical potential.
Pauli principle in nuclear reaction theory. Multiple scattering approxi-

mations. Optical potential for nucleon-nucleus scattering.

I. INTRODUCTION

Although the optical potential (OP) was intro-
duced to describe elastic nucleon-nucleus scattering
more than three decades ago, it has never been

quite adequately described in nuclear reaction
theory until very recently. ' The main obstacle
has always been the introduction of the Pauli prin-
ciple in a satisfactory manner. For example, in the
multiple scattering formalisms of Watson ' and
others, the OP is defined only after sufficient ap-
proximations are introduced to reduce the problem
to one which has the same form as the case
without projectile-target antisymmetry so that it
has been impossible to compare the exact and ap-
proximate optical potentials. Evidently, it is now

possible to rectify this and our principal objective
is to do this for a class of approximations includ-

ing those of the multiple scattering type which we

call nonresonant.
The %atson and Kerman-McManus-Thaler

(KMT) formalisms have several intrinsic shortcom-
ings when nucleon identity is taken into account

(Appendix A). Not the least of these is the genera-
tion of optical potentials which include elastic flux.
On the other hand, the theory of Refs. 1 and 2
possesses some serious apparent inadequacies of its
own especially with regard to the convincing
development of practical approximations. For ex-

ample, it is not clear how one can recover (tp)-like
approximations with "dressed" or energy-shifted
two-nucleon transition operators. Also exchange
terms appear whose physical significance is un-

clear.
In this article we develop, under what seem to be

plausible assumptions, an approximation sequence
for the antisymmetrized OP based on the theory of
Refs. Il and 2, which possesses all of the practical
advantages of the Watson and KMT formalisms,
but is free of their disadvantages. In particular, the
absence of elastic flux in the OP is preserved
throughout our approximation sequence. Also, we

give a physically motivated statement of the
impulse/closure approximation, which is used to
obtain a definitive prescription for the energy-
shifted two-nucleon transition operators with
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correct recoil-preserving kinematics and we demon-
strate how the heavy-particle exchange potential
appears in the low-order OP in a natural manner.
We give similar prescriptions for the contributions
of two- and higher-nucleon correlations. We are
not aware of any previous treatment of the OP for
nucleon-nucleus scattering with all of the preceding
attributes.

The theory of the OP introduced in Refs. 1 and
2 is distinctive in three respects:

(1}A new definition of the antisymmetrized OP
is proposed in Refs. 1 and 2, which is consistent
with the two-body description of elastic two-
fragment scattering. This definition explicitly in-
corporates the dependence of the OP upon the
choice of off-shell extension for the multichannel
transition operators. The recognition of this
dependence is the key ingredient missing from pre-
vious work.

(2) A specific choice of off-shell extension is
shown to lead to an OP without elastic unitarity
cuts. This guarantees, e.g., that the OP is real
below the inelastic threshold although the unitarity
property is, in general, important at all energies.

(3) A set of dynamical equations is obtained for
determining the OP in a consistent manner as well

as for constructing approximations which satisfy
property 2.

All other methods for the antisymmetrized OP
proposed before or since Refs. 1 and 2 fail to satis-
fy at least one of properties 1 —3; the original mul-

tiple scattering theories, ' e.g., fail on all three
counts. It is emphasized in Ref. 1 that property 1

is formalism independent, while properties 2 and 3
represent constraints, which sharply delimit the
ways one can go about formulating the problem.
For instance, properties 1 and 2 can be realized us-

ing the methods of conventional nuclear reaction
theory. However, with such techniques it seems
difficult to satisfy property 3 because the dynami-
cal equations in this case are Lippmann-
Schwinger-type equations, which possess unsatis-
factory solution characteristics in contrast to the
connected-kernel equations of Refs. 1 and 2. It is
not easy to construct approximate OP operators
which possess the correct unitarity properties using
Lippmann-Schwinger dynamical equations.

Several arguments are presented in Refs. 1, 2,
and 7 in support of the choice of the Alt.-
Grassberger-Sandhas (AGS)s off-shell extension in
connection with the OP for elastic two-fragment
nuclear scattering. The more frequently used prior
off-shell extension, e.g., is known to yield unwanted

elastic singularities in the OP. Subsequently,
some distinctive features were claimed for the OP
based on the prior off-shell extension and the defin-
ition of Refs. 1 and 2.' After a number of further
analyses, ' "" it appears that the prior off-shell
extension possesses only one noteworthy feature,
viz. , it leads to an approximation sequence for the
OP, wherein the lowest-order term is the same as
in Ref. 5. However, this may not be a desirable
quality (see Appendix A). There are now many in-
dications (Refs. 1,2,7—9,11—13) that the AGS
choice is the appropriate one for describing the nu-

clear OP, and, therefore, we adhere to this choice
throughout this article in accord with Refs. 1 and
2.

II. ANTISYMMETRIZED OPTICAL POTENTIAL

Our treatment of the OP is based upon the an-
tisymmetrization techniques of Bencze and Red-
ish'" and on sets of connected-kernel scattering in-

tegral equations which possess a multiple-scattering
structure. The antisymmetrization formalism we

employ is reviewed in Refs. 2, 7, 8, 15, and 16,
while the relevant connected-kernel techniques are
developed in Refs. 2 and 15—18. In this section
we review the relevant aspects of this work.

The antisymmetrized transition operator for elas-
tic scattering, T(p), is related to the OP operator,

F;P,(p), by the 'two-body integral equation

&(p) =~, ,(p}+~, ,(p)Gl)(zU'~&(p) . (2.1)

Here p refers to the equivalence class of two-
cluster partitions a,p, A,, . . . , which are related to
each other by permutations. The amplitude for the
elastic scattering of the two composite fragments
which correspond to any one, say p, partition con-
tained in P is

(2.2)

&Z~PZ(k)&= ~Pt)(k)&, (2.3)

(Qp(kz)
~

'r(P)
~
Pp(k;) &,

where
~ Pp( k ) & is the two-fragment ground-state

wave function with relative momentum k, which is
an eigenstate of the channel Hamiltonian H+. The
projector onto the space spanned by I ~ Pt)(k ) & I is

denoted as Pp. Also Gp(z) =(z H&)
' and we-

suppose that z =E+i 0, as is appropriate for
scattering. We remark that both T(p) and W,P,(p)
depend on the choice of p, but matrix elements of
the form (2.2) do not. ' Finally, we require that
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where R& is the antisymmetrizer (internal to the

fragments) with respect to all permutations which
map P into itself.

In Refs. 1 and 2 it is shown that P",~,(P) satis-
fies the dynamical integral equation

PAP.
The operators

8 —=PpB (P)Pp,

C=PpC(P)Pp,

(2.8)

(2.9)

, ) = gA'p5p"—
gp

p&B

(2.6)

is ubiquitous in the AGS theory of the antisym-
metrized OP (Refs. 1,2,7 —9,11—13,15). We re-

mark that the projected operator,

~,p, (P)=8 (P)+C(P)~,p, (P) . (2.4)

The detailed structures of the operators 8(P) and
C(P) are presented in Ref. 2. In Appendix B we
show that all of the subsystem scattering implicit
in 8 (P) and C(P) takes place only in the properly
antisymmetrized subspaces, and that 8(P) and

C(P) are explicitly free of P-class elastic unitarity
cuts. The remarkable aspect of these attributes is
that they are easily maintained for a large class of
approximatioris. Thus, we can construct approxi-
mate operators &,z,(P), which possess no elastic
unitarity cuts correponding to any of the Pauli
equivalent channels PEP. The unitary content of
W,~,(P) then reflects only the flux passing into ine-

lastic channels, which is generally agreed to be a
characteristic of a properly constructed OP formal-
ism. By way of contrast, we note that with con-
ventional dynamical equations for W,~,(P), even

with the favorable unitary characteristics for the
AGS off-shell extension, it is very dificult to main-
tain the correct unitarity structure of F",z,(P) ex-

cept for special approximations. ' ""
In the application of (2.4) one is only interested

in matrix elements of W',„,(P) of the form (2.2) or,
equivalently, the operator V=P&1&,~,(P)P& Since.

C(P)Pp C(P), ——

(2.4) can be reduced to an integral equation for F~.

Given the input B(P) and C(P) the solution of the
resultant single-vector variable integral equation is
relatively trivial. It is easily shown that PPC(P) is

a connected operator, so [C(P)] is connected and
in all cases we can regard (2.4) as a connected-
kernel equation.

The nonorthogonality term'

can be written in the respective forms (Ref. 2, Ap-
pendix 8)

B=.J "Gp '+Bo,

C= —.. ) +Cp .

(2.10)

(2.11)

The preceding segregation of the linear. ("depen-
dence is nontrivial in that Bp and Cp are dynami-
cal while. k is not. That is, in the limit of no in-

terfragment interactions Bp and Cp vanish but. f'
does not. Evidently

T=/~+X GpT,

where

(2.13)

T=PpT(P)Pp . (2.14)

III. NONRESONANT APPROXIMATIONS

Let us first clarify the role of, f" in the 1' in-

tegral equation (2.12) by taking the nondynamical
limit Bp——Cp ——O. In this case, / '

is simply
(1+, 1') ', /; which when inserted into (2.13)
yields the correct nondynamical limit, l 'G& for
T." This indicates the interrelationship between

, l
'
terms in B and C and shows that whatever ap-

proximations we make should reside in Bp or Cp.
Next let us, for example, suppose that we can

neglect Co. (This is, in essence, what we will even-

tually take to define a class of so-called non-
resonant approximations. ) Then

(2.12)

In the next two sections we propose some specif-
ic methods for generating approximate solutions of
(2.12). The structures of 80 and Co are such that
it is not obvious how multiple-scattering approxi-
matioris, e.g., can be generated. Even more mys-
terious is the role of the nonorthogonality term .V,
particularly when one wants to use f~ to obtain the
scattering amplitude from

.V=Pp. i" 1"=(1+.i:)-'8 . (3.1)

= g A'p5pgpPp
PEA

(2.7) If (3.1) is employed in (2.13) we obtain the approxi-
mate integral equation

is a sum of bounded, connected operators, P&P&, T=, f: Gp '+Bo+BoGpT (3.2)
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In practice one solves (3.2) for the half-on-shell
matrix elements (P&( k')

~

T
~
P&(k) ). Because M

is a sum of bounded, connected operators, we have
half-on-shell '

where

Tp ——(1 K—) 'Bp,

so that

(3.13)

and

~KGp
'

i Pp( k ) ) =0

(1 BD—Gp) '~Gp '
~
Pp(k)) =0,

(3.3)

(3.4)

with

TD =P 0+ l~pGpTp

&0——(1 C0) —'Bp .

(3.14)

(3.15)

unless, of course, (1 BDG—I))
' does not exist,

which we suppose is not the case. Equivalently,
the OP model wave function P& ~

P&+'(k)), which

is related to T, in general, by the half-on-shell rela-
tion

T
~ Pp( k ) ) =P"P

p ~

fp~+ '( k ) ), (3.5)

will, in the approximation (3.1), be generated by
the effective OP, B0. From (2.13), (3.5), and (3.1)
it follows that

(3.6)

which supports our assertion. What this means is
that we can regard (3.1) as equivalent to working
with the effective equation

Tp =Bp+BpGpTD (3.7)

We keep in mind that BQ is explicitly free of all P-
class elastic unitarity cuts (Appendix B).

Next we generalize the preceding argument. If
(1 —C) ' exists, then F is given by

F =(1—C) 'B . (3.8)

Manipulations similar to those leading to (3.2)
result in the (exact) integral equation for T:

T= VGp '+BQ+[BpGp+Cp]T . (3.9)

T=(1 K) '(BP+. & GI)—'),
where

(3.10)

K =CQ+BpGp (3.1 1)

In the process of passing to (3.9) we seem to have
lost the explicit two-body structure for the T equa-
tion which motivated the introduction of the OP in

the first place. Let us examine how we can recover
it. Evidently, the solution of (3.9) is

If (1—K) ' exists, thena, gain since ~ is a sum of
bounded, connected operators, we have half on
she112'

T
i Pp(k)) =TD

~
Pp(k)), (3.16)

C0 0. (3.17)

Then BD is the effective OP and the scattering am-
plitude is determined from (3.7).

Now C0 is derived from the operator
[C(P)+~], which is very highly clustered.
Such highly correlated dynamics among all of the
nucleons comprising the projectile and target is ex-

pected to be important at relatively low energies
and may be associated with compound-nucleus-like
resonance behavior.

We can elaborate upon this association of full

clustering, or the completely connected part of
1~,&,(P), and compound resonances in the following
manner. It is easy to show using the results of
Ref. 7 that 1,"~,(P) satisfies the quasi-Lippmann-
Schwinger equation

and so for all practical purposes we may regard P p

as the effective OP. Again we remark that BD and

CD are explicitly free of all P-class elastic unitarity
cuts and so is P 0 except for possible spurious
singularities associated with the inversion in (3.15).

The preceding formalizes what is immediately
transparent if one were to use (3.9) in an explicit
calculation of the elastic scattering amplitudes.
Namely, one would write (3.9) as a half-on-shell
equation and drop the ~G& ' term. The resul-

tant equation is then easily placed in the form of a
two-body Lippmann-Schwinger equation provided
F 0 is identified as the effective potential.

In the present article we wish to consider a sim-

ple class of approximations, where we can apply
the preceding considerations. Our principal ap-
proximation is that

is the (connected) kernel of (3.9). Thus

T=T0+ (1 K) '.:Y'Gp—(3.12)

&",p, (P)= V~+Dp+ V~Gpgpk, p, (P), (3.18)

where
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DP= g 9FPSpI) QI)GP
PEf)

(3.19)
IV. LO%'-ORDER MULTIPLE SCATTERING

APPROXIMATIONS

and"

V~=(1+.&) '( V~+. VGI) ')RP .

(3.20}

(3.21)

With standard manipulations one obtains from
(3.18) the quasi-Feshbach form

~~op«&) = ~e +DI)+ ~e Qp(GI}
' —Qy V. QI})

'

XQI)(V, +DI)) . (3.22)

Evidently the D~ terms in (3.22} are of no physical

consequence. ' It has been shown ' ' that the
discrete (fully clustered) eigenstates of
(GI)

' —Q V,~QI})
' correspond to the Feshbach

resonances for the elastic scattering of two nu-

clear fragments. Thus, these real-axis pole singu-
larities reside entirely within the fully connected
part of P",~,(P). It is consistent, then, to ignore
the fully connected parts of P,~,(P) if we are in

physical circumstances, where we expect resonance
behavior to be unimportant. We are aware of the
fact that there may be fully-clustered parts of BD
and CD which have nothing to do with resonances,
and which may be important at medium energies.
At present there is no compelling way of identify-

ing physically important processes with such struc-
ture.

The possible close connection of C(P) to reso-
nance behavior is also indicated by (3.8). Since
C is compact we know that the singularities of &
associated with the discrete spectrum of C will pos-
sess factorizable residues. We have not investigat-
ed the relationship of these singularities to the
Feshbach resonances present in P . ' '

We remark that the resolvents of the kernels of
the integral equations satisfied by A~(P) (see Ap-

pendix B) may possess pole singularities. These
poles would then appear in both BD and CD, and it
is possible that their effects in each would cancel
out [cf. (3.8)]. In any case such singularities would
also be associated with the fully-clustered parts of
Bp and CD and we are specifically interested in
those situations where such effects are not impor-
tant. The class of approximations which is defined

by neglecting C0 (3.17) as well as the fully-

clustered parts of BD we refer to as nonresonant.
We investigate some special cases of this type of
approximation to the OP in the next section for
nucleon-nucleus scattering.

Our development up to this point holds for two
arbitrary nuclear fragments. However, the case of
nucleon-nucleus scattering has been most extensive-

ly investigated under those circumstances for
which we expect the nonresonant assumption to be
valid. We refer here to moderately high incident
nucleon energies so the elastic nucleon-nucleus
scattering is largely diffractive and the dominant
elementary reaction mechanism is an impulsive
direct interaction. Somewhat more specifically, we
confine ourselves to incident nucleon energies from
one to two orders of magnitude greater than the
single-nucleon binding energies. We refer to this as
the "medium energy" range.

If one is primarily interested in the description
of diffractive effects the dominant effects of the
Pauli principle are relatively simple at medium en-

ergies. The physical reasons for this are clear.
One has several (and for heavy nuclei very many)
elastic scattering channels which are related by
permutation symmetry. These are the Pauli
equivalent channels. The salient fact is that these
channels communicate via nucleon exchanges. As
a consequence for low-momentum transfers the ef-

fects of the indistinguishability of these channels
are likely to be greatly suppressed when compared
to the difFractive scattering within one (any one) of
these channels. Thus the major effects of the Pauli
principle involve the fewest nucleon exchanges so
that the dominant effect of identity is simply the
exchange symmetry associated with each two-
nucleon scattering. However, higher-order Pauli
effects are expected to be important in the back-
ward scattering hemisphere, where they become
competitive with or dominate the "direct" scatter-
ing processes.

The preceding physical picture underlies the
widely used prescription of Takeda and Watson.
However, the analytical development of this
prescription is not without ambiguity, particularly
in regard to the identification of the so-called
"target-exchange" terms which are presumed to be
negligible.

It is reasonable to conjecture that the segregation
of the major Pauli effects from the minor ones will
be difficult if one adopts a standard multiple-
scattering point of view. The reason for this is
that from such a standpoint one is attempting to
describe an intrinsically multichannel problem us-

ing a formalism and physical picture which is
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unambiguous only for single-channel situations.
The channels referred to here are the various
Pauli-equivalent elastic channels. However, an ap-
proach such as in Refs. 1 and 2 in which Pauli-
equivalent channels are treated symmetrically
throughout would appear to offer considerable ad-
vantages for the development of physically
motivated approximations. A signature of the
symmetrical treatment of these channels is an ap-
proximate OP which possesses no p-elastic unitari-

ty cuts.
The results of Refs. 2 and 17 offer an alternative

to the standard multiple scattering picture, which
may be more appropriate in dealing with the an-
tisymmetrized OP. We refer here to the clustering
ideas discussed in Ref. 17 in corinection with the
new dynamical equations proposed there. We next
develop a specific example of these ideas as applied
to the antisymmetrized version of these equations
found in Refs. 1 and 2.

The nonresonant approximation of Sec. III is
essentially equivalent to the assumptions (see Ap-
pendix B)

A~(p) 5t) ~,
c(p)

(4.1)

(4.2)

Our objective in this section is to consider some
low-order approximations to (4.4) in the special
case of nucleon-nucleus scattering, where we take
the canonical partition to be p=(1) (2 N). Be-
cause of its parametric energy independence and

If (4.1) and (4.2) are valid, then we obtain using
(B19) and (B23}

P,p,(p) P Ms+ M ' +M(p)GI}

+ V [I—P~(P)]—~W,p,(P) .

(4.3)

The term ~(p)GI} ' in (4.3) is converted into

~Gp in the OP formalism. The significance of
this last quantity is discussed in great detail in the
preceding section, where it is shown that it is effec-
tively "recycled" out of consideration. Similar re-
marks apply to the kernel term ( —~}W,~,(p).
The fully-connected term V P~(p) will be

dropped as part of our nonresonant assumption al-
though it does not present serious calculational dif-
ficulties. Thus our effectiue nonresonant OP is
simply

(4.4)

highly unclustered structure the interaction V is a
necessary component of any low-order approxima-
tion to the nonresonant OP. Now

VP ——g hP; V; b 1},. ,P (4.5)

(4.6}

where l and j refer to some arbitrary, but definite,
target (p) nucleons and Ã& J is the 1,j exchange
operator.

We see then that V is the pickup or heavy-

particle exchange, term. We learn that such terms
appear linearly in the nucleon-nucleus OP. The
consequence of this is that some of the distortions
which are associated with the ultimate contribution
of the pickup to the scattering amplitude are taken
care of automatically by the OP formalism. The
appearance and the significance of the pickup term
has often been a point of some ambiguity in inves-
tigations of nucleon-nucleus scattering.

Since Nfip =1, we have from (B36)

~Ms = g %ti g ' 8'~'~(a )R& .
tiEt) a est)

(4.7)

Thegroperties of the a-connected cluster terms
W~' (a) are reviewed in Appendix B. Physically,
W~'~(a} consists of all those scatterings which be-
gin and end with a two-nucleon interaction exter-
nal to P and P, respectively, which can be grouped
into the cluster a. It represents a selective summa-
tion of the elementary multiple scatterings, each of
which is represented by the two-particle transition
operator

ts ——Vi +V; Gpt (4.8)

where Go ——(z —Ho) ' is the free-particle propaga-
tor, and Hp is the N-particle kinetic energy. ' The

where V; is the two-nucleon potential acting be-
tween the two clustered nucleons in the (N —1)-
cluster partition i'. For example, i' may refer to
the partition (12) (3) (4) (N) so Vi ——V~i2~ in

this case. In (4.3), b,&,
——1, if i is contained in p

and is zero otherwise. Also, b,p; ——1 —h~;. If we
combine (4.5) and the expression (B9) for V we

find using the antisymmetry of the target wave
functions that

&(()I)(k')
I VP I 41}(k)&

= —&i J&/,J&l, i

X(N—1)(N—2) &Pti(k')
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lowest-order approximation to (4.7),

( P Ms)Lp= g Rpg kp t tt'Ap .

pffft

(4.9)

set of two-cluster partitions u such that a EP.
Then we can write

y ' WP'P(a) = y y 6,WP'P(a)

is appropriate only in a low-density situation.
For moderate energies and any but the lightest nu-

clei it is unlikely that (4.9) will be a good approxi-
mation because the interactive effects of the residu-
al nucleus are not negligible. ' ' It is easy to
show that

((I}p(k')
{ ( Ff Ms )] Q { y p( k ) }

=(N —1)(((}p(k') {
t

{ Pp(k)), (4.10)

or

a a

+ g g b~, WP'P(a}, (4.12)
a ag

g'WPP(a)= gtPP

+ g g '6, WP'P(a), (4.13)
C gg

where

t (1 g ] l)5] lt(] j) (4.11}

where

I I =V~I+VIG Va (4.14)

is the antisymmetrized form of (4.8). Results simi-
lar to (4.10) realize also for the dressed and
energy-shifted two-nucleon transition operators en-

countered later.
We now develop a more sophisticated approxi-

mation sequence to P"Ms of the general type sug-t),I]—.-

gested in Ref. 17. In an impulsive situation for
elastic scattering the parameter of smallness is the
average single-particle binding energy compared to
the energy of the incident nucleon. A simple
hierarchy of impulsive approximations is then
suggested via the successive "ionization" of clusters
of the target particles, where only these ionized nu-

cleons interact with the projectile. The term ioni-
zation means that the nucleon is dynamically free
of the residual target nucleons, but it does imply
that the latter are bound together in all intermedi-
ate states. The projectile interaction with the ion-
ized nucleons is made unambiguous if we require
that it be described by a fully connected subampli-
tude. For one ionized target nucleon the require-
ment is trivial. If we are considering two ionized
target nucleons the interactions with the projectile
are represented by a fully connected three-to-three
amplitude. The dynamics of un-ionized nucleons
are entirely arbitrary. As a consequence we term
this decomposition of MMs, the inclusive connec-It p

tivity expansion.
First, let us recall that a partition b is said to be

contained in another, a, if b can be obtained from a
by subdividing one or more of its clusters. We
denote this situation as b Ca, where we include the
possibility of equality. If b (fa then b is not con—Mtained in a. The relevant component of MMs is
the connectivity expansion in terms of the opera-
tors WP'P(a } [cf. (B14)],where a (fP,P. Choose a

We exploit (4.13) shortly.
If we "ionize" particle j (relative to p) then the

corresponding "residual" partition is

r(l,j)—= (l,j)(2, . . . , j—l,j +1, . N), (4.15)

I
r(1,j) +r(1,j)+ r(l, j) (4.17)

where E,(1 j) is the kinetic energy operator corre-
sponding to the center-of-mass (c.m. ) motion of the
residual nucleus, and Hr(1 j) is the internal Hamil-
tonian.

We observe that [cf. (4.7)] t„p()pj) is going to
operate to the right on 8&. However, we see from

(B4) that

Rp ——R„[l,j]Rp, (4.18)

where R„[1,j] is the antisymmetrizer on the sub-

space of the states of the residual nucleus (but not
1 and j). Since R„[1,j] commutes with both H„(]1)
and V()J), we can absorb R„[1,j] into the Green's
function in (4.16), which, therefore, involves only
physical residual nucleus states.

Suppose we insert into the Green's function in

which has two clusters. One cluster, (l,j), refers to
the (connected) interaction with the projectile (1),
while the other serves as a reference for all of the
dynamical states (bound and continuum) of the
residual nucleus. As the first step in the inclusive
connectivity expansion we identify o. as the set of
all r(i,j). Obviously,

t, () 1) bp ()I) V(]J) I 1 + [——E K] KJ ——V()J—) —H„(]1)
PP

+i 0] '
V(]J) )hp(). )

. (4.16)

Here Hr(1 j) is the Hamiltonian of the residual nu-

cleus and
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(4.15) a complete set of states which are direct
products of the eigenstates of E~+E&+V~ij),
E„[&j), and H, [»). The subsystem dynamics,

which are represented by the sum over the physical
eigenstates of H, ~~ j), present the real problem asso-
ciated with the dressed two-nucleon operator (4.16).
Except for few-nucleon targets or some especially
simple model for H,

~ & j), approximations are re-

quired to handle (4.16) in practical calculations.
One such approximation, which is consistent with
the impulsive nature of t„~~&~~), is to suppose that
closure can be imposed with respect to the eigen-
states of the residual nucleus. This mathematical
prescription amounts to the physical assumption
that we can set

&n —&0 (4.19)

for all n, where n labels the energy eigenvalues, e„,
of H, [i j), and n =0 denotes the ground state. Ap-
proximation (4.19) corresponds to the situation,
where in comparison to the large initial projectile
c;nergy there are only relatively small differences
among those (internal) energies of those states of
the residual nucleus which play a significant role in
the irgpulsive two-nucleon collision.

Assuming (4.19) we obtain from (4.16)

tr( 1,j)—~ii, (lj )tD( liJ)kl) ()j) i
PP (4.20)

where

tD(1,j)= V()j) I 1+[E ep K l
—Kj——V(—l 1)

Kr(l, j)+(0] V(lj) I

(4.21)
Evidently, tD(l, j) is a two-nucleon transition
operator with three-body kinematics and with a
parametric energy shifted by the ground-state ener-

gy of the residual nucleus. It is important to
recognize that we have executed a closure approxi-
mation in such a way that the recoil motion of
both the struck nucleon and the residual nucleus

are correctly represented. Now

2P
+r(1,j)

r(1,j)

where P refers to the total momentum of the recoil
nucleus and M is its mass. In the limit of very
large M the Green's function in (4.21) reduces to
the commonly used form

(4.22)

[E ep —K, —Kj ——V()j) +i 0] (4.23)

~Ms —(N —1)(ptt(k )
I tD I yI)(k )»

where

(4.24)

tD ——(1—g') J)5) jtD(l,j) (4.25)

is the antisymmetrized two-nucleon transition
operator with three-body kinematics .

We can extend the argumentation which led to
(4.13) to obtain an exact inclusive connectivity ex--aB
pansion for MMs. We make two preliminary ob-
servations. If a (I:p or a (fp, then t~ ~=0 Also, .if
P=(1) (2, . . . , N —1), and a (I:P, then

a —(li ) . ( . ) (4.26)

that is, the projectile 1 is always included in a
cluster containing at least one other particle.

Now the partitions (4.15) codify all the terms of
various connectivitites W ' (a), which enter into
the two-particle-connected portion of the inclusive
connectivity expansion. Thus, it is clear that the
three-particle-connected part corresponds to the
partition (i (j),

In general, however, the use of (4.23) represents an

improper treatment of recoil.
We obtain an apparently more realistic low-order

approximation to &Ms by using tD(l,j) instead of
t; in (4.9). We find using the same techniques that
are used to obtain (4.10)

r ( 1ij)—:( l,i,j)(2, , i —l, i + 1,...,j —1j + 1,.. .N), (4.27)

which also has two clusters Howeve. r, here ( l, ij ) refers to a connected three-particle interaction, while the
other cluster refers to the states of the (new) (N —3)-particle residual nucleus in the same undifferentiated
manner as with (4.15). Then [cf. (4.13)]

(a) =g t„('(,) + g g ' [~ (l 1) a 1 y ~„(it) a IV ' (a) +. g g ' [Z„()j) ] y S„() ) IV ' (a)
an't) i iQj alaI) tAJ a(st)
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where

[~r((ij),a ]sym ~r()ij),a, i &j ~

~r( 1ji),a, j &i (4.29)

~r( li), a 1 ~r( li), a

and, e.g., withi &j,

~r(1ij),a~r(1i), a ~r(1i,j),a ~

where r(li, j) is the three clust-er partition

«(li,j)—= ( li)(j)( . ) .

(4.30)

(4.31)

(4.32)

With the aid of (4.29)—(4.32) the second term on
the right side of (4.28) reduces to

g g'[~.(ig). l.yÃ, .()n. ~ ' «)pp

(AJ a(ap

r(iij) g tr(ii,j)PP PP
l (J &AJ

(4.34)

f —(lt ' )( ' ) (4.35)

Also note that C =1 for any two-cluster partition
a. Thus it may seem that we have merely written

The right side of (4.33) represents a collection of
amplitudes whose ( lij ) parts are fully connected.
The terms t„~p 1) subtract off the ( li) and (1j)
disconnected parts of t,P(]PJ). Note that while the
last operator does not contain a (ij } disconnected
piece, it does contain intermediate (ij } interactions.
Thus (4.33) represents the fully connected interac-
tion of the projectile with a fully correlated but
ionized pair of target nucleons. In this way of
developing approximations to the OP, (4.33) corre-
sponds to the two-nucleon correlation contribution.
One can again introduce a closure approximation
on the residual nucleus which then yields a correc-
tion to (4.24) consisting of an antisymmetrized con-
nected three-nucleon transition operator with four-

body kinematics, and with a parametric energy
shifted by the binding energy of the (X—2)-
particle residual nucleus.

One can continue on from (4.28) in a similar
fashion, although the higher-order terms are prob-
ably of marginal practical significance. An ap-
parently more elegant way of characterizing the en-

tire procedure is to begin from the identity (B29):

WMs ——g'Catt 'p, p ~ p, p

f
We note that all two-cluster partitions f2 tI. P, have
the form

out an f2-biased version of (4.34). However, (4.34)
contains contributions from IV@~(a) with a Ep
and in our formulation such terms are treated
separately. An inclusive connectivity type of ex-
pansion is obtained for 8'MP'sP if the expansion on
the right of (4.34) is grouped according to each f2
such that there are no ( li . .

) disconnected parts.
The counting coefficients Cj. supply the correct
number of terms so that this can be done. One can
use these combinatorial groupings in 8'MP'sP to iden-
tify their counterparts in the expansion (4.12) and
thus obtain an exact statement of the inclusive con-
nectivity expansion for P Ms. For all practical

—
tt, tt

purposes our previous arguments suffice.
The W@~(a), a EP, terms, of course, contribute

to P" ', although without their elastic discontinui-
ties [cf. (B34}—(B36)]. The contributions to the
OP of the excited states of the target nucleus are
contained in fE' ' . These excited states appear

'

only in the various channels PEP, P+P, which
are Pauli equivalent to p. The contributions of a
few of these (discrete) states may not be particular-
ly difficult to calculate. The reason for this is that
if )(, EP, then [cf. (B12)]

(4.36)

The eigenstates,
~

A, '), of H)„, which correspond to
bound states of the target nucleus give rise to the
A,-connected contributions:

VgG)(
~

A.') (A,
'

~
Vg x

——VgG)(
~

A, ') (A,
'

~
Vg . (4.37)

Effects of the target excited states appear in

Ag(p) for all pE p. Again the evaluation of the
contributions from the excited bound states of the
target is relatively easy. For example, in the ap-
proximation

W (y)G() g Vy i
y')(y'i Gy

y'

(4.38)

the kernels of the integral equations (B6) take on a
very simple separable structure.

The preceding analysis indicates an interesting
aspect of the present dynamical equations approach
to the OP. Namely, if one were, for example, to
approximate all the two-cluster terms W (y)GO

by finite sums of separable terms as in (4.38) the
inversion of (B6) yields Ag(p) with analytical

structure reminiscent of, but by no means identical

to, the so-called Feshbach form of the OP. A
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where (A =N —1),

~NR( k '
~

k ) =~ & PI}(k ')
I

&D
I NI}( k ) &

—A(A —1)(pI}(k')
~

VFx ~QI}(k)&,

(4.40)
and Vqx is the two-nucleon exchange potential

VEx =8'& J V((J), (4.41)

where 1 denotes the incident nucleon and j and l
refer to two distinct target nucleons. Equation
(4.39) is written in the total c.m. system so that

Efg fP( k )
(p)

2p
(4.42)

difference of pivotal importance between the
Feshbach-form generated approximations and those
that we have just discussed, is that we avoid ex-
pressing the problem in terms of eigenstates of un-

physical projo:ted Hamiltonians such as Ql)HQI}.
We do not pursue the question of the effects of

the excited target states. If these contributions are
a comparatively unimportant part of (4.3) then we

can neglect the term N ', which is also consistent
with our neglect of other highly clustered pieces of
F,„,(P). It is useful to summarize our results by
concluding this section with the final two-body in-

tegral equations for the elastic scattering amplitude
T(k'

~
k), which are to be solved in our (conjec-

tured) lowest-order nonresonant (NR) approxima-
tion to F',~,(P) for nucleon-nucleus scattering:

T(k'
(
k}=1~gR(k'

~

k)

&JR(k I
k")T(k'

I
k)

(d k")
E—E"+t 0

(4.39)

not a nucleon or a nuclear fragment. In such a
case one has merely a single partiton P comprising
the entire P class; that is, P=P in all of our sums
over the channels Pauli equivalent to the incident
channel P. In this instance our approach also
possesses some distinct advantages, namely all of
the dynamics involving subsystems of the target
nucleons are carried out on the physical, antisym-
metrized subspaces, Also the progressive cluster-
ing sequence which is represented by the (exact) in-

clusive connectivity expansion yields a systematic,
unitarity-preserving series of approximations to the
optical potential, which take into account the an-
tisymmetry of the target nucleus in a consistent
manner. We remark that even in this well-worked
example, the manner of our deduction of the
lowest-order approximation to the OP as the
energy-shifted two-particle transition operator with
three-body kinematics (the pickup term vanishes)
is essentially new.

One of the important innovations by KMT is
the exploitation of the simplifications which result
from the explicit treatment of target antisymmetry.
An associated difficulty, however, is that quasi-
two-particle operators appear, which are defined in
terms of the symmetrized Green's functions R~G~.
(See Ref. 5 and Appendix A.} This complicates the
justification of the replacement of such operators
by true two-particle amplitudes. We emphasize
that this last remark holds whether one chooses to
formulate the impulse approximation via the Wat-
son or KMT prescriptions (Appendix A). When
applied to the case of projectile-nucleus scattering
our approach seems to handle these problems in a
comparatively straightforward manner, while still
preserving the simplicity of the final result.

where p, is the reduced mass and e(P) is the target
binding energy. The parametric energy, E, has a
similar decomposition so that the energy denomi-
nator in (4.39) is simply

(2p, /I )( k —k' ' +i 0) (4.43)

if k is the incident relative wave vector. We also
emphasize that tD refers to an antisymmetrized
two-nucleon transition operator with three-body
kinematics.

This section has been confined entirely to
nucleon-nucleus elastic scattering. The approxima-
tions proposed here as well as all of the work of
the preceding sections also holds for the case of
particle-nucleus scattering, where the projectile is

V. SUMMARY AND DISCUSSION

Our principal results can be summarized as fol-
lows:

(1) We have proposed a class of nonresonant ap-
proximations to the completely antisymmetrized
optical potential for elastic two-fragment nuclear
scattering based upon a consistent set of dynamical
equations. This sequence of approximations
preserves the elastic unitarity properties which cus-
tomarily provide the motivation for the introduc-
tion of the optical potential. Namely, the optical
potential is presumed to account for the flux only
into the inelastic channels.

(2) We have shown in the special case of medium



710 K. L. KOWALSKI 25

energy nucleon-nucleus scattering how our non-
resonant approximation contains multiple-
scattering-like structure. Specifically, we show in

detail on the basis of some reasonable physical as-

sumptions, that the lowest-order optical potential is
the sum of an antisymmetrized, energy-shifted
two-nucleon transition operator with three-body
kinematics, plus a heavy-particle exchange (or
pickup) amplitude. The appearance of this ex-

change term in the optical potential clarifies the
role of distortion in connection with this part of
the elastic scattering amplitude. [See Eqs.
(4.38)—(4.42) for our final results for low-order
nucleon-nucleus scattering. ]

(3) We have shown how the machinery
developed in Refs. 1 and 2 is to be used in connec-
tion with realistic problems. A major aspect of
this is the interpretation of several mysterious
terms which appear in the dynamical equations of
Refs. 1 and 2.

(4) Besides the favorable unitarity characteristics,
our general development as well as the various ap-
proximation sequences we have proposed are for-
mulated so that all intermediate-state subsystem

propagation takes place only in the appropriate an-

tisymmetrized subspaces.
(5) It is pointed out that the special case of

particle-nucleus scattering is contained in our resu-
lts. In this instance, where there is no projectile-
nucleus antisymmetrization, our results are also
distinctive in their preservation of the correct reali-

ty properties of the optical potential, as well as en-

suring that all of the dynamics involving subsys-

tems of the target nucleons is carried out on the
physical, antisymmetrized subspaces.

Some of the preceding results appear to be com-
plex renditions of conclusions which have already
been drawn using seemingly simpler conventional
methods. Our impulse approximation tD seems a
case in point. There are, however, some significant
distinctions. Most importantly, we begin from the
optical potential appropriate to the physical situa-
tion and approximate it. The conventional formal
approaches first approximate the physical prob-
lem to a point to where a definition of an approxi-
mate optical potential is obvious. As a conse-
quence, the statement, development, and possible
improvement of our approximations are quite dif-
ferent than previous treatments. Also, the fact that
we work with sets of scattering integral equations
with well-defined inversions plays an important
part in our method of approximation as do the de-
tailed structural characteristics of the constituent
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APPENDIX A: PAULI PRINCIPLE IN
MULTIPLE SCATTERING THEORIES

If we ignore the projectile-target antisymmetriza-
tion, the the lowest-order KMT expression for the
OP is, for scattering in the single elastic channel
P(=P) with R~P~ Pp, ——

Ui AToi(1+PpGpTo~)—— (Al)

where A is the number of target nucleons,

TOJ =Voj+ Vg&R pGpTOJ, (A2)

operators.
We discuss (Appendix A) several aspects of the

conventional multiple scattering treatments of the
nucleon-nucleus OP which we believe are pertinent
to assessing our work. One of these questions is
the choice between the versions of the impulse ap-
proximation proposed by Watson et al. ' ' and by
KMT. ' To the extent that a comparison is
possible our results appear to be more in accord
with the Watson approach rather than that of
KMT. We compare some recent versions' " of
the KMT and Watson formalisms, which include
the full effects of the Pauli principle with the
present approach. The principal difFerences, at
least for the low-order approximation, lie in the sa-
tisfaction of the unitarity constraints on the optical
potential. The theory of Refs. 1 and 2 as applied
in this article is the only one in which these con-
straints are satisfied at all stages.

Finally, the results of this article lend further
support to the proposal of Refs. 1 and 2 that the
AGS off-shell extension be considered the ap-
propriate one for dealing with nuclear scattering
problems of any type, but especially in connection
with considerations of the optical potential.
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and Upj is the two-particle interaction between the
projectile, 0, and a typical target nucleon j.
Equivalently, we have

where

'TUJ =UoJ+voJRpGpQproJ (A4)

Since wpj. possesses no Pp space discontinuities,
U& has no elastic unitarity cuts. This demon-
strates the well-known equivalence of the first-
order Watson and KMT version of the OP before
the approximation of ~q~ or Tp&, respectively, by
two-particle transition matrices. ' When this
last step is taken, however, the Watson OP retains
its elastic unitary character, while the KMT OP
picks up elastic cuts.

Things change when incident nucleon antisym-
metrization is even only minimally taken into ac-
count. We quote the low-order result of Ref. 10
corresponding to (A 1):

U
&

AToJ(1+——PpG pToJ )

where

(A5)

ToJ' =UoJ( 1 —8 oJ )( 1 +RpGpToJ ) (A6)

and 8'p is the projectile-target nucleon exchange
KMT ~ KMT

operator. Unlike Uj™,the operator U~ does

possess elastic unitarity cuts. This situation per-

sists when Tpj is approximated by antisymmetrized
two-nucleon transition operators. Although Eqs.
(AS) and (A6) are obtained in Ref. 10 using (as in

Ref. 3) the prior off-shell extension, a possible
equivalence to the Watson case such as (Al) —(A4)
is no longest obvious. It appears then that for
nucleon-nucleus scattering the justification for the
Takeda-Watson prescription is in general dif-

ferent for the Watson and the KMT formalisms.
This observation is pertinent to the comparative
calculations for nucleon-nucleus scattering, which

are carried out in Refs. 33 and 37. The presence in~ KMT
U& of elastic unitarity cuts (in contrast to
U~ ) is a strong signal that Pauli effects are not

being handled correctly in (A5), and represents the
major deviation of a KMT-type approximation se-

quence from one of the type developed in Sec. IV.
Since there are intrinsic differences in the im-

plementation of antisymmetry between the KMT
and Watson approaches, a comparison of their dis-

tinctive approximation characteristics is most easi-

ly done when the projectile s identity with the tar-

get nucleons is ignored. [Equations (A 1)—(A4).] If

UKMT

where

i =UoJ +UoJ( Go —PpGp }r(2)

(A7)

(A8)

For any of the usual two-particle approximations
Pp~(Go

' —Gp )+0, e.g., and thus we have an intro-
duction of P~-space components in much the same

we let tpj' denote some particular two-particle tran-
sition operator, then the KMT ( UxMr ) and Wat-
son (Ufy) approximations to U~ are dis-

tinguished by the replacements Tp~~ tq~' and

7pj ~ tpj, respectively. It should now be clear in
what sense our results . (4.39)—(4.43), resemble the
Watson formulation.

Although the differences between U~ and UKMT
are of the ( I/A) type, they can be competitive with
Pauli effects for large momentum transfers, where
diAractive mechanisms are no longer dominant.
Also UKMT possesses a discontinuity across the
elastic unitarity cut for all energies, while U~'
does not. We discuss next two not entirely dynam-
ical arguments which have been used to motivate
the use of UKMT rather then U~.

It has been asserted that the KMT formulation
is designed to avoid the double-counting error (dce)
implicit in the replacement of 7 pj by Tpj, where it
is assumed that only the latter operator can be sen-

sibly approximated by t pj'." One of the reasons
for supposing that there is such a dce follows from
the approximation to QpGp in (A4), which is im-

plied by the replacement 'Tpj ~ toj . For example,
suppose the operator QpGp is approximated by its
fully disconnected part Go. Then, since PpGo@0
and GoPp@0, one has seemingly reintroduced
some of the Pp space back into the intermediate
states by truncating the connectivity expansion for

,QpGp. However, there is nothing manifestly in-

consistent about making such a "Qp-space violat-
ing" approximation to QpGp, as long as the result
is still continuous across the elastic unitarity cut.
The only significant aspect about PpGp in the
theory of the OP is its generation of the elastic uni-

tarity cut, but the OP formalism is designed to
take care of this cut properly despite approxima-
tions to the OP. Thus, the judgment of the eA'ec-

tiveness of a particular truncation of QpGp as an

approximation depends entirely upon how well one
has approximated the OP and not on naive Pp-
and Qp-space assessments for a single channel P.

In view of these remarks it is interesting to note
that if Gp

' is the Green's function appearing in

tpj', then
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way as in the Watson case. Moreover, we see from
(A8) that part of the elastic-unitarity-generating
part of G~ has been reintroduced back into the OP.
Thus, in any reasonable approximation the KMT
prescription always leads to an OP which possesses
an elastic unitarity cut along with an apparent dce
peculiar to itself.

Another, basically nondynamical, argument is
often used to introduce the KMT approximation
scenario. This argument begins from the observa-
tion that on the R p-projected space the exact elas-
tic transition operator, TEz, satisfies

TEt =ATpj+ (A —1 )Tp GpRpTFL (A9)

where we continue to neglect the identity of the in-
cident nucleon. The (A —1) factor has its origin in
the fact that the Foldy-Watson multiple-scattering
series is arranged so that successive scatterings
from the same target nucleon are forbidden. The
approximation (A7} yields an operator TEL which
satisfies

TFL =A&p& + (A —1 )&pj Pp GRETEL .(a) (2) (2) (a) (A10)

The multiple scattering series generated by (A10)
appears to be consistent with the omission of suc-
cessive scatterings from the same target nucleon in
virtue of the (A —1}factor. A loophole in this ar-

gument is that the definition of what one refers to
as a "scattering" has changed in the passage from
(A9) to (A10). Namely, the propagation between

successive scatterings is governed by G& in (A9),
but by P~G~ in (4.25). However, while Tpj in-

volves Gp, the two-particle operator toj
' is defined

in terms of Go
' and not PpGp. This mismatch

produces quite legitimate self-scattering terms. Evi-

dently, consistency in the representation of the ele-

mentary projectile-target-nucleon scatterings is
necessary for a meaningful counting argument.

The preceding problems of conventional
multiple-scattering theories persist or are enhanced
when full antisymmetry is imposed. We have al-

ready commented on a few of these difficulties.
Picklesimer" has found a KMT-type approxima-
tion sequence in the AGS case which is identical to
that of Ref. 10 through terms of order
(1+.&) '. V. The arguments of Ref. 11 do not
seem to provide any criteria for preferring the prior
over the AGS off-shell extensions in this regard.
However, the formalisms of Ref. 10 and Ref. 11
share a common feature: they yield order by order
antisymmetrized OP s which possess elastic unitar-

ity cuts. In the AGS case, this violates the origi-

nal purpose for introducing that off-shell extension
as well as the constraints the OP must satisfy in
this case. '

In summary, we see that with or without Pauli
effects a KMT approximation sequence is really an
algorithm for constructing an effective interaction
for elastic nucleon-nucleus scattering rather than
an optical potential, where the latter is dis-
tinguished from the former by the absence of elas-
tic flux. For this reason, the theory of Refs. 1 and
2 does not lend itself to KMT-type approxima-
tions. On the whole, the arguments which present-
ly exist in the literature for preferring a KMT to a
Watson approximation sequence do not appear to
be very compelling.

APPENDIX B: ANTISYMMETRIZED FORMS

then we have the product rule '

The quantities appearing in (B2) are the antisym-
metrized sums

M' =N,- g g A M'
gEt

(B3)

with similar definitions for M" and T' . Here,
a,b,c refer to canonical partitions and the normali-
zation constants, N& g, are defined in Ref. 2. We
note that ~,=R,-~, .

Let S denote the permutation group on N ob-
jects. The subgroup SfCS consists of all permuta-
tions which leave f unchanged. It is easy to show
that iffCa, then SfCS„' evidently S, can be
decomposed into cosets of Sf yielding results
analogous to those of Ref. 14. It then follows that

RfR, =R,Rf ——R, ) (B4)

where, e.g., Rf is the antisymmetrizer with respect
to Sf.

We follow the notation of Ref. 2 and use the
results of Refs. 2 and 15—18. However, the con-
tents of this Appendix represent new results which
are required in support of the arguments in Secs.
II—IV.

If a, b,c... refer to partitions, of the N particles
the operators M', E",and T'b are label
transforming, ' and if

(Bl)



25 NONRESONANT APPROXIMATIONS TO THE OPTICAL POTENTIAL 713

The quantities Ax(13), which appear in 8(P) and C(P) satisfy the connected-kernel equations'

Ag(P)=5~ g+ g [W ' (y)GO —VrGyPy5(yEP)]ADP) . (85)

In the preceding equations V~ refers to those interactions external to partition a but internal to partition P
and 5(yEP)=1 if yEP and is zero otherwise. The kernels in (85) are free of 13-class elastic unitarity cuts'
if Py includes the ground states of Hy W.e can transform (85) into an explicitly antisymmetric form with
the aid of the product rule (82):

Ag(P)=5a f+ g [W (7'')Go V—~G+ 5~y]R Af(-P) . (86)

Here

&a,z=&a,&Rx

W ' (j}=Na~ g 9P W ' (y)R
ad&

V~ =Nf„~ g 8'gV~R- .
A, Ek

(87)

(88)

(89)

position

WMr'g~ ——7W'g+ g Wr'~(A, ),
A, Et)

where for example, it is easily verified that

W g= g ' Wy'~(a)
ag

(813)

(814)

Now

W (y)GO ——(V-G )-, (810)

WPPs
——g' Wy'~(a), (811)

where the prime denotes the omission of the
single-cluster partition,

where [d'], denotes the a-connected part of the
operator P. We see then that only the physical
elastic singularities of W ' (y)GOR-, namely those
defined on the completely antisymmetrized subsys-
tem space projected out by R, enter into the ker-

y&

nel of (86}. Also, it is precisely these P-class
singularities which are subtracted off by

V&GgP-5&~. This is an important point be-

cause an Ry symmetrized Projector P&in (85) does
not subtract off the wrong-symmetry P-class elastic
singularities of W ' (y)GO. Once the explicitly an-

tisymmetrized form (86) is reached, however, we

see that only the physically relevant states and
their corresponding singularities are involved.
Now we see that (86) is a connected-kernel integral
equation (see Theorem 3 of Appendix A, Ref. 2}
whose kernel is manifestly free of all P-class singu-
larities.

Now

is label transforming.
The combination of operators

~~i4' +sg I W"(~)—VÃ.P.Vll
A, Et)

(815)

Wr ~(A, ) =. ~~(A, )+ VgGgPg VP, (816)

one of which, ~'~(A, ), contains no A,-channel elas-
tic unitarity cuts. P~ denotes the unsymmetrized
(US) projector onto the ground states of H~ includ-
ing those of improper symmetry. A short calcula-
tion using the product rule (82) yields

N~y g %y g VgGgPg VPRg
rGP A.E$

= V PGP(PBusRP)(vl)B, (817)

where

appears in 8(P} [cf. Eqs. (5.1 la} and (5.16) of Ref.
2]. This expression contains no P-c1ass elastic
singularities provided Pq includes the ground states
of H~. We then have a situation similar to that
encountered with (86). That is, it is not manifest
that we are dealing only with physical singularities
corresponding to antisymmetrized subsystem states
and indeed we are not until we antisymmetrize.

We can split Wy'~(A, ) into two pieces,

Wr P(~) (Vr 8+ VrGVP) (V')~=Ng 1, g 9t'gVg~R (818)

(812)

and G is the full Green's function. Let us make
the following label-transforming-invariant decom-

Since P& ——Pp R& we see that only properly an-

tisymmetrized eigenstates enter into the pole term
in (817).
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We next use the form (816), the result (817), and
the product rule (82) to obtain from Eqs. (5.11a)
and (5.16) of Ref. 2 the manifestly antisymmetrized
form:

&(p)Rp Q——A1(p)[~Ms+ ~1' l

1I"Ms N——1y g A~yW'ppgRI),

1/'1'~ =N~ g 9Py1M'~R
yap

(821)

(822)

Here

(819)

, l"(P)= g AP5pI)RP,
p&8

(820)

+~(P)GI) '+ VP~ —QA1V/P~(P) .
The properties of 11 1Ms and 1/ ~', which are con-
sidered below, and in Sec. IV are such that the
manifestly antisymmetrized form (819) also
represents an expression for 8(P)R&, which is ex-

plicitly free of all P-class elastic unitarity cuts.
Similar methods can be utilized to obtain a man-

ifestly antisymmetrized form for C(I3). One finds
from Eqs. (5.19) and (5.22) of Ref. 2 that

C (p) =—
IM+ [NI)(AI) —1)+ g A1(p) W~' (a )Gp5,- Its l)Na ]RPp j, (823)

where

W1' 9)=N&s g 9tyWy' (a, )R,

and we note the appearance of the full antisym-
metrizer R. Again we emphasize that (823)
represents a form of C(P), which is manifestly free
of all P-class unitarity cuts.

We next investigate

WMs ——N1 p g 9FyWMsRI) .pl) yP

r~f
First we note that

(824)

(825)

(826)
f

where tj'~ is given by (4.14) and 6 ' is the inverse
of the matrix h, ~, which has elements h, ~

——1 if
b Ca and zero otherwise. Now iff has more than
one cluster

Thus

WM1's N~ fi g——Sly g' Cl Vj' RI)
y~I)

+ g M~ y( V')y (831)

//1y= g 9PyVIC~GgRy,
y&$

(832)

which we see involves propagation only in the an-
tisymmetrized subsystem spaces. This property is
not explicit in some of the relations which follow.

It is shown in Ref. 2 that the part of Wy ~(a)
designated as &[(Wy'~(a)]i, which possesses a
discontinuity across the A,-elastic cut is

The aspect of (831) we wish to point out concerns
the structure of

X'(~ ')..J=CI

where

Cf —( 1} (yif 1)i

(827)

(828}

~l W'~«)l~= VN'iP~"'VA. ,i.

Therefore, the operator [cf. (816)],

mls(X) = Wy I'(X) V&G,P,"'Vg, —

(833)

(834)

(829)

and nf is the number of clusters corresponding to
the partition f. We then learn from (826) that

W4s= g'CyrI'
f

= g' Cg Vy'~+ g'My g Vj~,
f f

then

M1' =N~fi g Sly g ~'~(A, )RP .
yE'P AEP

(836)

contains no A,-channel elastic unitarity cuts. If we
call

(835)

A

Myf ——Vf CfGf . (830) In the form (836) we do not have explicit antisym-
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met on the cluster subspaces corresponding to~' (A, ), A,+P. The same is true for

M~&z —
N& I) g %y g ' Wy'~(a)R~ .

yE$' a 6P
(837)

However, if in (826) we use the expression (812)

for Wyl'(A, ) it is clear that ~l' involves propaga-
tion and projectors only in the properly antisym-
metrized subspaces. That is, only the R&P& projec-
tors, e.g. , enter into (836) rather than the unphysi-

cal, unsymmetrized projectors P~, as seems to be
indicated by (834) [cf. (817)].
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