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With the aid of an on-line isotope separator the decay of ' 'Dy to levels in ' 'Tb was

investigated in a series of heavy-ion bombardments of rare earth targets. These data al-

low us to identify the sl&2, d3~2, d5~2, and g7/2 proton orbitals in ' Tb, a nucleus with one
proton beyond the 64 Gd&2 core.

RADIOACTIVITY '" Dy, measured E~, I~, yy coinc; ' 'Tb deduced

levels, J .

There is a growing body of evidence for the ex-
istence of an energy gap at Z=64, after the g7/2
and d5&2 proton orbitals have been filled. This gap
was initially proposed on the basis of a-decay stud-
ies. First, in the rare-earth region a plot of Q vs

N revealed (for example, see Ref. 1) a discontinuity
at Z=64 indicating an increased stability for that
proton configuration. Second, a-decay reduced
widths for N =84 isotones were shown to reach a

minimum at ' Gd, once again suggesting a closure
at Z=64. More recently, in-beam y-ray studies '

have found ' Gd to be an unusual even-even nu-

cleus in that it has a 3 first-excited state. This
feature places it in a class of other exceptional nu-

clei, such as ' 0, Ca, and Pb, and indicates that
82 neutrons and 64 protons represent a doubly
closed-shell structure. Because of this, nuclei near

Gd are of interest.
One nucleus, ' Tb, is especially interesting since

its low-lying states should be describable in terms
of a proton added to the ' Gd core. They should

provide us with information about the underlying

spherical proton structure in an isotope located al-

most halfway between two major proton shells.

Up to now, however, the only available low-

excitation information ' is that ' Tb has two iso-
mers: a 1.9-min, high spin, probably h»&2 state
and a 1.6-h, low-spin state whose assignment has
been assumed to be d&~z. (High-spin states built
on the h»~2 level, with excitations above 1.2 MeV,
have been investigated in beam. ) The —, assign-

ment was based on considerations ' of the level's

decay properties and spins of neighboring nuclei.
However, the ground state spin of ' 'Tb has been
measured to be —, and a recent study of the decay
of the ' Tb 4.1-h level concludes that its assign-

s + 5+
ment is —, rather than —, . In addition, the a-
decay rates of the low-spin isomers in ' " Ho
(Ref. 10) and in ' ' 'Tb (Ref. 11) indicate that the
low-spin species in ' ' ' 'Tb have the same spins
and parities. Thus, there is reason to believe thatl+
the low-spin isomer in ' Tb is —, rather than

5 +
2

Besides in-beam y-ray studies, one way to inves-

tigate ' Tb is via the decay of ' Dy. The high-
spin, h»~z neutron state in ' Dy was identified'
with the use of a He gas-jet transport system in a
series of '"N + ' 'Pr irradiations at the Oak
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Ridge isochronous cyclotron (ORIC). This state at
750.7 keV deexcites to the s&&2 ground state by
emitting 678.7-keV M4 and 72.0-keV M1 transi-
tions through an intermediate d3/2 level at 72.0
keV. It also presumably P decays to the ' Tb
h &&&2 level; however, transitions in ' Tb from nei-

ther the 750.7-keV level nor the ground state could
be identified' because of the complexity of the y-

ray spectra observed.
To aid in the identification, we investigated the

y-ray decay properties of ' Dy by producing it in
the ' Nd(' C,7n) reaction at an incident energy of
—127 MeV and mass analyzing it with the on-line
mass separator RAMA at the Lawrence Berkeley
Laboratory 88-inch cyclotron. Because of the low
overall efficiency' of the RAMA system for rare
earth elements (- 0.1%) and the relatively small
reaction cross section, counting statistics were

poor. This was further aggravated by the high p-

ray background near the focal plane of the separa-
tor, where the radioactive samples had to be col-
lected and assayed. Nevertheless, in addition to
the background y-ray peaks seen at both masses
148 and 149, we were able to observe at A = 147
the 678.7-keV ' Dy y ray, transitions from 1.9-
min ' Tb (Refs. 5,6) and three new y rays of
100.7, 253.4, and 365.3 keV. The energies of the

100.7- and 253.4-keV y rays are essentially the

same as those of two intense transitions seen in
'~ Dy decay. ' The correspondence in energy (and

atomic number) explains much of the difficulty we

had encountered in our gas-jet experiments. '

These had been done at a ' N incident energy of—
142 MeV, i.e., at about the peak of the
' 'Pr(' N, 8n) excitation function. However, be-

cause of the much larger (' N, 6n) reaction cross
section the amount of ' Dy produced at this ener-

gy was still sufficient to cause complications.
To reduce the interference due to ' Dy we made

new singles and coincidence y-ray measurements at
—157 MeV, once again utilizing a gas-jet system

at the ORIC. Figure 1 shows the spectra observed

in coincidence with the three newly identified
A =147 y rays; it is evident that they are in cas-
cade with one another. There is also a peak at—
106 keV in Figs. 1(a) and 1(b), which is due to the
106.3-keV y ray'" in coincidence with the 100.8-

and 253.4-keV ' Dy transitions. By comparing
the 106-keV intensities in Figs. 1(a) and l(b) with

those in ' Dy coincidence measurements, ' we es-

timate that —12% of the 100.7-keV and —6%
of the 253.4-keV y-ray intensities are due to ' Dy.

The E x rays seen in Fig. 1 are terbium x rays.
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This information and the fact that the three transi-
tions decay with an 80-sec half-life mean that they
do not follow ' Dy, 59-sec and ' Tb, 1.9-min,
decay but rather are transitions from ' Dy . In
the heavy-ion reactions used the high-spin isomer
is produced with the much larger cross section, so
that the bulk of ' Dyg originates from ' Dy
isomeric decay and the observed 80-sec half-life is
the result of a second order, parent-daughter, decay
curve.

Before discussing levels in ' Tb (see Fig. 2) we
should note that dysprosium K x rays in our spec-
tra cannot be due to electron-capture decay; in-

stead, they arise from the internal conversion of
the ' Dy (primarily the 72.0-keV) transitions. It
was therefore possible to deduce the K-shell can-
version coefficient for the 72.0-keV transition from
its intensity and the E x-ray intensity in the spec-
trum gated by the 678.7-keV y ray. The coeffi-
cient was found to be 5.2 + 0.5, so that the 72.0-
keV y ray is mainly Ml with an E2 admixture of
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FIG. 2. Decay of ' Dy to levels in ' Tb.
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FIG. 1. Gamma-ray spectra observed in coincidence
with the 100.7-, 253.4-, and 365.3-keV transitions as-
signed to the decay of ' 'Dy .
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about 4%,"as expected for a transition connecting

d3/2 and s, /2 levels (Fig. 2).
In ' Eu the lowest five levels' are represented

by the ds/2 g7/2 611/2, sl/2, and d3/2 proton orbi-
tals. These ' Eu states are below 1.05 MeV with
the level-energy trend' indicating further compres-
sion in ' Tb. The cascading 100.7-, 253.4-, and
365.3-keV transitions associated with ' Dy decay
must connect four of these levels. They must be
the positive parity orbitals because the three y rays
are in prompt coincidence. The transitions are
placed in the cascade (see Fig. 2) based on relative

photon intensities, 253.4 keV (100), 100.7 keV (24
+ 5), and 365.3 keV (26 + 5), and on the fact that

the transitions should be mainly M1 with a small

E2 admixture. When conversion is taken into ac-
count the following total intensities are obtained:
253.4 keV (100), 100.7 keV (65 + 14), and 365.3
keV (25 + 5). From the y-ray decay pattern (no
cross-over transitions are observed) and the short
half-lives of the excited states, we conclude that
the spin sequence of these four levels must be
monotonic. A g7/2 assignment for the 1.6-h level

is ruled out because the M2 transition then expect-
7 + 11

ed between the —, and —, states is not compati-

ble with the half-lives of either the 1.6-h or the
1.9-min 1somers. Thus the 1.6-h level is the s1&27+ 5+ 5+
state and the level sequence is —,

1 + . The electron-capture decay of the 1.6-h

isomer needs to be reexamined in the light of the
information we have obtained.

7 +
The —, state cannot be fed directly from the

Dy ground state. It must therefore be po-

pulated by transitions from higher-lying ' Tb lev-

els which are fed by either ' Dy or ' Dy decay.
7+

This feeding to the —, level is apparently frag-

mented because we were unable to observe any oth-

er ' Tb y rays in our singles and coincidence spec-
tra.

The level order in ' Tb is very different from
those in odd-Z N= 82 nuclei with Z & 63, where

the g7/2 and d5/2 orbitals are below the s1/2 d3/2,
and h11/2 states. One must remeInber, however,
that the g7/2 orbital is a hole state for Z )59 and

that the d5/2 orbital becomes a hole state in '" Tb.
With this in mind, we show in Fig. 3 the systemat-
ics of single proton levels for N=82 nuclei. Hole
states are indicated as having negative energies and
the ' Tb s1/2 orbital is shown as being at zero ex-

citation. One then sees that the ' Tb levels are
not discontinuous with respect to the energies of
the s1/2 d3/2 d5/2 and g7/2 orbitals in the lower-

Z isotones. The indication is that the two hole
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FIG. 3. Energy systematics of single-proton states in

odd-Z %=82 isotones from '"I to ' Tb.

TABLE I. Calculated and observed level energies

(MeV) in ' Tb.

Calculation' Experiment

11—
2

1+
2

3+
2

5 +
2

7+
2

0.03

0.08

0.29

0.00

0.36

0.00

0.11

0.30

0.27

0.63

x +0.253

x +0.354

x +0.719

'Energies are taken from Ref. 18. Values in the left-
and right-hand columns were calculated by using a state
dependent and a conventional pairing force, respectively.

states are more tightly bound in ' Tb, but to
understand fully the influence of the Z=64 gap on

the quasiparticle energies the investigation should

be extended to ' Ho. We have not shown the
Tb h 11/2 state in Fig. 3. However, from ' Cs to
Eu this orbital lies below the d3/2 and s1/2

states, with all three levels dropping by similar
amounts of energy as Z increases. Also, the h11/2
state in ' 'Tb is at 99.6 keV, ' while e-decay stud-

ies (see, e.g. , Ref. 11) indicate this state to be at—
40 keV in ' Tb. For these reasons the 611/2 orbi-

tal is expected in ' Tb to be low in excitation,
close to the s, /z orbital (it is arbitrarily shown in

1 +
Fig. 2 below the —, level).

We compare our results in Table I with level en-

ergies calculated by Chasman. ' In his calculations
two types of pairing forces were used: a conven-

tional one and a state dependent one. The energies

calculated by using the conventional pairing force
are more consistent with our ' Tb level scheme.
This set predicts the s1/2 leve1 to be the lowest pos-
itive parity state, reproduces the experimental level
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sequence if the order of the close-lying d3/2 (0 30
MeV) and d5~2 (0.27 MeV) orbitals is reversed, and
places the g7~z state at a relatively high excitation
energy. Chasman, ' contrastingly, concluded on
the basis of available information ' that the state
dependent pairing force predicted a more accurate
level sequence. Finally, we note that, in agreement
with the discussion in the previous paragraph, both
sets of calculations locate the h»~z orbital at a
very low excitation energy in ' Tb.
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