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Self-consistent description of heavy nuclei. I. Static properties of some even nuclei
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Hartree-Fock+BCS calculations of 15 even nuclei within and around the actinide re-

gion have been performed with. the Skyrme SIII effective force. A careful optimization
of the two parameters of the truncated expansion basis has been made for each nucleus.
The iterative process has been carried out as far as to yield an excellent numerical conver-

gence of quadrupole Q2 and hexadecapole Q4 moments (better than 0.1% for Qq and 1%
for Q4). Total binding energies have been reproduced up to -2 MeV. Charge radii have

been found in agreement with experimental data to —1%, whereas the error on Q2 and

Q4 moments (for A (240) were less than 5% and 25%, respectively. Single particle
Hartree-Fock energy spectra are discussed and will be compared with experimental data
in a subsequent paper. Finally, the deformation energy curves of two nuclei ( Th and

Pu) are displayed.

NUCLEAR STRUCTURE 15 heavy even nuclei from Ra to 104
studied within Hartree-Fock+BCS using Skyrme SIII force. Binding
energies, charge radii, quadrupole and hexadecapole moments, single

particle energies calculated. Numerical convergence assessed.

I. INTRODUCTION

Hartree-Fock+ Bardeen-Cooper-Schrieffer (BCS)
calculations using phenomenological effective in-
teractions of the Skyrme type have been very suc-
cessful in describing many nuclear static properties
for spherical, ' transitional, and well deformed
nuclei. ' In this paper we will extend such cal-
culations to very heavy deformed nuclei, i.e., for
nuclei within and around the actinide region.

As pointed out in Ref. 2 there exists an infinity
of Skyrme forces (defined by five parameters for
the central part of the force) yielding correct nu-

clear matter saturation properties. However, the
amount of velocity dependence characterizes com-
pletely such a force. The Skyrme SIII force which
we will use here, corresponds to an effective mass
in nuclear matter which is equal to about 4 of the
nucleonic mass. Such a value seems consistent,
particularly with the properties of the giant iso-
scalar quadrupole resonances, ' and is needed for a

phenomenological reproduction of the single parti-
cle level density in deformed nuclei. ' The latter
property will be used in a subsequent paper, ' here-
after referred to as II, where a systematic estima-
tion of the spectroscopic properties of odd actinide
nuclei will be achieved by coupling the quasiparti-
cle states determined in this work with a rotational
core fitted to even-even neighboring nuclei.

In view of the wealth of publications dealing
with Hartree-Fock+ BCS calculations using
Skyrme effective forces (for a comprehensive dis-
cussion of their results see, e.g. , Ref. 15), it is not
necessary to present here any technical details
about the method in use. We will instead insist
now on some specific features of the present calcu-
lations. We have performed Hartree-Fock+ BCS
calculations of ground state properties for 15 nu-
clei ranging from Z =88—104 (see Fig. 1). The
Hartree-Pock single-particle states have been ex-
panded on an axially symmetrical harmonic oscil-
lator basis including about 13 major oscillator
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FIG. 1. Heavy nuclei whose ground state properties
have been calculated in this work (figured in hatched
boxes).

shells. For each nucleus we have determined (see

Append!x A) the basis parameters b and q (with
the notation of Ref. 3) yielding the lowest total en-

ergy. These optimal parameters are listed in Table
I. The sensitivity of various observables with
respect to these parameters is discussed in Appen-
dix A, from explicit calculations of a specific ex-

ample. The nonlinear variational equations are
solved iteratively. Starting from a standard
Woods-Saxon ansatz for the Hartree-Fock mean
field, it has been found necessary, as discussed in
Appendix A, to perform 50 interations to extrapo-
late safely the converged values of quadrupole Qz

and hexedecapole Qz moments with an accuracy
&O. l%%uo for Q2 and & l%%uo for Q4. Pairing correla-
tions have been included through a simplified BCS
approximation consisting in the imposition of de-
finite values to the neutron and proton pairing
gaps. These values, determined from the systemat-
ics of odd-even binding energy differences, are
listed in Table I. As was done for the basis
parameters, the influence of a small variation of
these gaps around the values in use is discussed in
Appendix A. For the nucleus Th we have per-
formed constrained Hartree-Fock calculations ac-
cording to the method discussed in Ref. 3. In this
case, optimal basis parameters have been exactly
determined for three points in the deformation en-

ergy curve (for the spherical point and at the pro-
late and oblate local minima); otherwise they have
been deduced from a linear (in Q2) interpolation or
extrapolation. Along this curve, pairing correla-
tions have been taken into account within the ap-
proximation of a constant pairing matrix element
6 assumed to be deformation independent (for a
critical discussion of this approximation see, e.g.,
Ref. 5).

In Sec. II, calculated total binding energies will
be compared with experimental ones. The defor-
mation energy curve of Th will be presented.
Finally, the calculated single-particle energy spec-
tra will be discussed. Section III will be devoted to
a survey of calculated nuclear densities. Radii and
quadrupole and hexadecapole moments will be
compared with available experimental data and the

TABLE I. Basis parameters (b and q with the notation of Ref. 3) and neutron and proton
pairing gaps (h„and A~I). The parameter q is dimensionless, b is expressed in fm, and
the gaps are given in MeV.

Nucleus

224R

"'rh

232U

234U

236U

238U

238pu

240pu

244p

Cm
Cm

252Cf

258Fm
260104

0.507
0.498
0.494
0.487
0.486
0.485
0.485
0.514
0.489
0.489
0.483
0.483
0.488
0.477
0.513

1.15
1.13
1.22
1.22
1.24
1.28

- 1.28
1.23
1.25
1.25
1.27
1.27
1.20
1.35
1.275

0.76
0.77
0.75
0.69
0.68
0.64
0.60
0.60
0.57
0.30
0.59
0.02
0.62
0.62
0.60

0.95
0.97
0.95
0.87
0.86
0.91
0.85
0.74
0.76
0.78
0.98
1.04
0.87
0.87
0.85
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results of previous theoretical estimates. As al-

ready noted we will discuss in Appendix A the ac-
curacy and the convergence of our calculations,
whereas Appendix 8 will shortly specify the way in
which standard P2, P4 deformation parameters have
been extracted out of our wave functions.

II. ENERGIES

Total binding energies as resulting from our cal-
culations must first be corrected for truncation ef-

fects. The corresponding lack of binding energy

may be evaluated for the size of the basis in use (13
shells) and for some spherically symmetric solu-

tions where exact solutions' of the Hartree-Fock
equations are available. One finds 7.75 MeV for

Pb and 8.50 MeV for 2~Pu. Upon assuming

this truncation effect to vary linearly with A and to
be deformation independent, one can approximately

correct our calculated Hartree-Fock energies.

These energies, however, are merely intrinsic ener-

gies and thus contain a spurious rotational energy

which in the pure rotational limit is found equal to

fi—intrinsic —'p+ 2I ~ &'intrinsic ~
intrinsic

Both the expectation value of the square of the an-

gular momentum J and the moment of inertia I
have been calculated recently' for 6 Hartree-Fock

solutions and within the Inglis Cranking formalism
(for I). Whereas the rotational hypothesis is fully

justified for nuclei such as U and for "transi-
tional" nuclei such as Ra or even Th, Eq. (1)
is only meant to provide us with a rough estimate.
In Table II, we compare uncorrected, corrected for
truncation, corrected for 0+ projection, and experi-
mental' energies. Without correcting for the
spurious rotational energy one notices a systemati-

cal lack of binding of -4 MeV. Roughly half of
it can be accounted for by the correction of Eq. (1).
As a conclusion, whereas for magic nuclei the cal-
culated and experimental binding energies agree
within —+0.5 MeV, for well deformed nuclei the
Skyrme SIII force leads consistently to an underes-

timation of -2 MeV.

In Fig. 2 we have plotted the deformation energy

curve of the Th nucleus. In the same figure we

have also given the deformation energy curve of
Pu (taken from Ref. 19 for the prolate part and

Ref. 20 for the oblate part). For the sake of com-

parison between these two curves, we have chosen

Q2A
~ (where A is the nucleon number) as the

deformation parameter. The Th curve exhibiting

a prolate-oblate energy difference of -4.5 MeV

and a spherical barrier (versus the prolate mini-

mum) of -6 MeV is a typical example of deforma-

tion energy curves at the beginning of a nuclear

rigid deformation region. The Pu nucleus in

turn appears as a good example of a rigid rotor

TABLE II. Calculated binding energies (in MeV). Calculated binding energies resulting

from our calculations, corrected for truncation effects and corrected also for 0+ projection
effects are compared with available experimental data (Ref. 18). In the 104 case the ener-

gy listed as an experimental one is deduced from systematics.

Binding
energies

Calculated
(N =12)

Corrected for
truncation

Corrected for
0+ projection

Experimental

224Ra

"Th

232U

234U

236U

238U

238pu

240pu

244p

2~Cm
248Cm

252Cf
2s8F

260104

—1708.1
—1743.8
—1754.8
—1753.2
—1766.0
—1777.8
—1788.9
—1790.3
—1800.5
—1823.2
—1823.9
—1847.7
—1868.4
—1900.3
—1906.7

—1716.2
—1752.1
—1763.1
—1761.5
—1774.4
—1786.2
—1797.4
—1798.8
—1809.0
—1831.8
—1832.5
—1856.4
—1877.2
—1902.2
—1915.7

—1717.8
—1754.0

—1788.1

—1834.4
—1858.4

—1911.5

—1720.3
—1755.2
—1766.7
—1766.0
—1778.6
—1790.4
—1801.7
—1801.3
—1813.5
—1836.1
—1835.9
—1859.2
—1881.3

—1918.0
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FIG. 2. Deformation energy curves for the ' Th and
Pu isotopes. The deformation parameter is the mass

quadrupole moment Q divided by A '~', where A is the
nucleon number. This parameter has been chosen in
such a way as to allow a direct comparison of deforma-
tion properties for nuclei with different 3 values.

(high prolate-oblate energy difference and high
spherical barrier), which provides an a pnori justi-
fication of the core plus quasiparticle coupling cal-
culations performed in II. Consistent with the pre-

—5/3vious remarks one notices that values of Q2A
for both the prolate and the oblate minima are
smaller for the Th nucleus than for the Pu
nucleus.

The evolution of the neutron and proton single
particle spectra as a function of the deformation is
shown in Figs. 3 and 4, 'respectively. The spherical
neutron level sequence obtained with the Skyrme
SIII force may be discussed in terms of those ob-
tained in more phenomenological approaches con-
sisting in the assumption of a central Hartree-Pock
mean field as being a Woods-Saxon potential, a21

folded Yukawa potential, or a modified harmonic
oscillator. ' ~ In what follows we compare our
Fig. 3 with Fig. 11 of Ref. 21, Fig. 1(b) of Ref. 22,
and Fig. 4 of Ref. 24. The first two wells have
been determined for the Pu nucleus. Their re-

suiting spectra compare mell with ours; they indeed
11yield similar spacings (1.5 MeV) between the 1i —,

15 9and 1j —states. However, they produce 2g—2
11 2

states very close to the 1i —, states, contrary to our
calculations (where the 2g —', state lies just in the

11 15middle of the li —, and lj —, states). The results
of Ref. 24 are in slight disagreement with ours

11since they predict almost degenerate li —, and 1j15 9
states and a 2g —, state lying about 1.5 MeV

lower (assuming the harmonic osillator frequency
to be given by fun-41 A '~3 MeV (Ref 30.). In
the calculations of Ref. 24 the hexadecapole (and
more generally multipole other than quadrupole)
deformation parameter e4 is set equal to zero. The
inclusion of a more realistic value (e4- —0.04) is
not expected to dramatically change the level or-
dering as can be seen from Fig. 2(f) of Ref. 23.

The proton spectrum of Fig. 4 agrees very well
with the one given in Fig. 10 of Ref. 21. A quali-
tative agreement is also obtained when comparing
our Fig. 4 with Fig. 1(a) of Ref. 22 and Fig. 3 of
Ref. 24. Indeed, the energy difference between the9 7 . 13lh

z and the (2f —,, li —, ) states is found to be
—1 MeV in both phenomenological approaches in-
stead of -3 MeV in our case, and similarly for the

1 3spacing between the (3s —,, 2d —, ) and (2f z,
li —, ) states where we obtain 6 MeV instead of—
4 MeV in Refs. 22 and 24.

As already observed the deformation depen-
dence of the Hartree-Fock single-particle energies
is very similar to what is obtained in more
phenomenological approaches as in the Nilsson
modified oscillator model. Therefore, the spherical
level ordering is the most important a priori feature
for discriminating between difFerent mean fields. A
better and a posteriori criterium consists indeed in
comparing the deformed single-particle spectrum
with available spectroscopic data on odd nuclei
once the pairing and rotation-particle coupling ef-
fects have been properly taken into account. For
the results of such a comparison we refer to II.

The results presented in Figs. 3 and 4 corre-
spond to the Th nucleus. When changing slight-
ly the number of neutrons and protons at a given
deformation, one generally observes only small
changes in the relative ordering of levels. Howev-
er, if one is interested in the ground state single
particle sequence, one has to take into account the
variation of the mean field deformation when going
from one nucleus to another. This is exemplified
in Figs. 5 and 6 for the ground state neutron and
proton spectra, respectively, of seven nuclei (22 Ra,
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232Th 236U 240P 244Cm»Cf and l O4)

The recent spectroscopic data on odd fission iso-
rners undoubtedly constitute a challenging testing
ground for any theoretical estimate of deformed
mean fields. At such exotic deformations (p2
-0.6) one is testing nuclear properties very far
from those which have been used to make a
phenomenological adjustment of the six effective
force parameters. However, it turns out that
using the quasiparticle states deduced from our
self-consistent solutions. In Fig. 7, we compare the
Hartree-Fock single particle spectrum obtained
with the Skyrrne SIII force for the Pu fission
isomer, and those stemming from three pheno-
menological approaches. For the spectroscopic

properties under study in Ref. 25, the correct loca-9— 5 +tion of the —, and the neighboring —, single par-
ticle states has been found essential. In this
respect, one sees in Fig. 7 that the phenomenologi-
cal approach of Ref. 22 compares very favorably
with our results, and thence, with experimenal
data.

III. DENSITIES

In this section, we will present our calculated
nuclear densities through some of their mom. ents
(radii and quadrupole and hexadecapole moments).
The actual charge distribution a priori differs from
the point proton distribution by the proton form
factor. Upon assuming the latter to be of a mono-



576 J. LIBERT AND P. QUENTIN 25

~ p (Mev)

—4—
5/2

7/2—5—
1/2

3/2

7/2 13/2+~

-40 -30
3/2+, 1/2+ 9/2-

—20
I

-10
1/2 1/2+

'I0

3/2 1/2 I11 2 9/2 52 132

20 30
1

40

FIG. 4. Same as Fig. 3 for protons.

2= . 2 2
~charge rpoint charge +~proton (2)

polar character, it can be shown ' —as we will

shortly recall in Appendix 8—that the two distri-
butions, however, have the same multipole mo-
ments, but difFerent radii. The latter are given by

where q is the deformation parameter, ~ is the har-
monic oscillator frequency, and ro is the radius
liquid drop constant. For Pu, where q=1.2S
(see Table I) and with ra= 1.2049 fm (Ref. 29 ) and
fico=41A '~3 MeV (Ref. 30), one gets

where rproton —0 64 fm and rpoint charge is obtained
from the calculated proton density p(r) by

5r 0.0005,
T

(5)

1
rpoinr charge = d r P(r )r

For such heavy nuclei the bad treatment of the
center of mass motion affects only slightly the re-
sults of the integral in Eq. (3). Indeed, upon as-
suming pure harmonic oscillator wave functions
one gets a corrective term for the charge radius

poinr charge ) giVe by

5r 2(fi /2m), &3 2+q
2~~ 5r3

yielding an overestimation of the radius by =0.003
fm.

Charge radii values corrected as specified in Eq.
(5) have been listed in Table III (no corrections for
the neutron charge form factor or for relativistic
Coulomb effects ' have been taken into account).
As compared with experimental available data
our results are found too large by 1.2 —1.4% as
was previously observed in medium and heavy
spherical and deformed nuclei (see Table V of Ref.
15).
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In Table III we have reported quadrupole and
hexadecapole moments of the calculated charge
densities. They correspond to the following opera-
tors (with usual notation):

E
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FIG. 6. Same as Fig. 5 for protons.
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They are compared with intrinsic Q2 values de-
duced from a systematic evaluation of 8(E2)
data and with intrinsic Q4 values deduced from
(

I IM (E4)
~ I ) Coulomb excitation measurements.

Our calculated Qq values are slightly underestimat-
ing the data but reproduce very well their overall
trend. The agreement with Q4 experimental values
is also very good up to A -240. For the heavier
elements so far experimentally studied, our calcula-
tions are unable to reproduce the dramatic decrease
of Q4 to about a zero value.

In order to make contact with the experimental
means of determining deformation properties (such

/
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FIG. 7. Neutron single particle energies calculated
for the Pu nucleus at the fission isomeric state. Each
level is labeled by its 0 value as in Figs. 3 and 4. Our
results are labeled by SIII. Other results come from the
following phenomenological approaches: Ref. 21 for A,
Mosel and Schmitt, Nucl. Phys. A165 13 (1971) for B,
and Ref. 22 for C.
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TABLE III. Comparison of calculated and experimental moments of the charge distribution. Radii r are expressed in

fm, quadrupole moments Qz in b, hexadecapole moments, Q4 in b2. For the experimental data see Refs. 32—34 for r,

Q2, and Q4, respectively.

Nucleus &calc &exp Q
cele

Q
exp Qcalc

Q
eXP

224R

'"rh

232U

234U

236U

238U

"'Pu
240Pu

244Pu

244Cm

'4'Cm
252Cf

258F

260104

5.766
5.850
5.867
5.884
5.895
5.907
5.920
5.944
5.952
5.973
5.991
6.009
6.045
6.091
6.128

5.787

5.847

5.78
8.57
9.10
9.71
9.88

10.07
i0.30
11.14
11.13
11.22
11.82
12.00
12.04
12.06
12.84

6.25+0.22
9.00+0.06
9.62+0.05
9.95+0.60

10.47+0.05
10.80+0.07
11.12+0.07
11.27+0.08
11.58+0.08
11.70+0.08
12.11+0.08
12.28+0.08

0.69
1.11
1.09
1.20
1.10
0.99
0.92
1.22
1.08
0.87
0.92
0.71
0.57
0.25
0.21

1.09+0.15
1.22+0.15

1.40+0.20
1.30+0.22
0.83+0.22
1.38+0.25
1.15+0.28
0.03++0'80

0.0 +—o.6

as hadron or electron scattering and muonic atom
x-ray spectroscopy) one is forced to extract out of
computed Q2, Q4 values standard deformation
parameters pz, p4 a la Bohr-Mottelson. In order to
do that, one has to introduce as an intermediate
step a sharp-edged liquid drop defined by a radius
parameter ro [which we will take, as before, equal
to 1.2049 fm (Ref. 29)] and the two deformation
parameters p2 and p4. The latter, which are the
unknown quantities, will be fixed by demanding
that the drop should have the same Q2, Q4 mo-
ments as our self-consistent solutions (see Appen-
dix B for details). The non —sharp-edge character
of this solution does not influence the results if one
assumes the nuclear surface diffuseness to be pro-
duced by convoluting a step function with a mono-
pole form factor—see again the discussion of Ap-
pendix B. Now, one could a priori ask whether it
makes sense at all to compare data coming from
hadronic scattering and electron scattering or
Coulomb excitation experiments since one is prob-
ing in one case the matter density and in the other
case only the charge density. As a result of the
present work as well as of all previous similar
theoretical estimations of the same kind, no signifi-
cant difference between the two densities has ever
been found.

Our results for the p2 and p4 deformation
parameters of the mass distributions have been
plotted in Figs. 8 and 9, respectively. The trend of
the quadrupole deformation parameter is typical of
the opening of a permanent deformation region up

p
Mass
2

0.25—
CF

104

0.20—

0.~5 — R~

I

230
I

240
I

250
I

260 A

FIG. 8. Calculated ground state quadrupole deforma-
tion parameter of the mass distribution.

to plutonium isotopes. From curium to Z = 104
isotopes, the calculated plateau is characteristic of
a mid-shell situation. The hexadecapole deforma-
tion parameter varies with A as expected from
what is known in the rare-earth region. ' The p4
value reaches a maximum near thorium isotopes
(which is very similar to what is found for samari-
um isotopes) and then regularly decreases to cross
the p4 ——0 axis near californium isotopes (which
play thus for actinide nuclei the role of erbium or
yterbium isotopes).

As done in Table IV, when comparing calculated
p4 values with experimental values one is
struck by the apparent inconsistency of the latter.
Even limiting oneself to hadronic scattering only,



25 SELF-CONSISTENT DESCRIPTION OF HEAVY NUCLEI. I. . . 579

0.10—

Ro

0.05—

—OX)5—

CF

~ 0

Frn 104

I

230
. I

240
I

250
I

260 A

FIG. 9. Calculated ground state hexadecapole defor-
mation parameter of the mass distribution.

one observes that upon varying the nature or the
energy of the projectile one produces completely
different results. A possible explanation, supported

by a detailed analysis or our self-consistent wave
function in the U case, might lie in the fact
that the P4 deformation parameter varies consider-

ably in the nuclear surface. Since the penetrability
of the hadronic probe depends on its nature as well

as on its energy it has been possible to qualitatively
correlate higher P4 values data in U to more
peripheral scattering experiments.

In Table V we compare our calculated Q2 and

Q4 moments for the four uranium isotopes under

study here, with similar results obtained in other
self-consistent calculations ' or in more pheno-
menological approaches ' ' using the Strutinsky

method to determine the equilibrium points of de-

formation energy surfaces. Since only P2 and P4
values have been given in Refs. 22 and 47, we have
deduced Q2 and Q4, values in these cases through
the already discussed sharp-edged density model
(with re =1.2049 fm). All theoretical estimations
of Qz values are in good agreement between them
(and with experimental data). Calculated Q4
values are also similar, with the exception of the
consistently too high values of Ref. 46. It should
be noted that all the other theoretical ap-
proaches ' * have been as unsuccessful as ours
in reproducing the low Q~ values of Ref. 34 for
nuclei with A )244. In the U case the two self-
consistent calculations of Refs. 44 and 45 per-
formed with effective forces which are very dif-
ferent from ours yield, however, strikingly similar

Q2 and Q4 moments.

IV. CONCLUSIONS

The phenomenological effective Skyrme SIII
force has been essentially fitted on the saturation
properties of some magic nuclei. However, it has
been shown that this force was able to reproduce
the static properties of the deformed nuclei of the
rare earth region. The aim of the present work
was mainly to see if such a reproduction would be
also obtained in the next region of rigid deforma-
tion, i.e., in the actinide region.

Before attempting an answer to such a question,
one should first carefully study technical problems
related to the numerical solution of the Hartree-
Fock variational equations. This is why special
care has been devoted to optimize the parameters
of the truncated expansion basis as well as to
guarantee a good convergence of the iterative nu-
merical process. The latter is particularly impor-

TABLE IV. Comparison of calculated P4 deformation parameters with those deduced from various hadronic scatter-

ing (a-a', p-p', n-n') experiments, muonic atom x-ray measurements, inelastic electron scattering data, and Coulomb
excitation experiments. Experimental references should read as follows: (a): Ref. 36, (b): Ref. 35, (c): Ref. 37, (d): Ref.
38, (e): Ref. 42, (f): Ref. 40, (g): Ref. 41, (h): Ref. 39, (i): Ref. 34. The n-n' results published in Ref. 42 were obtained by
setting P6——0. With P6———0.005 these authors got recently (private communication) a similar agreement with the ex-

perimental data for the same P2 value but with P4 reduced to the values quoted in the Table under the label e'.

Nucleus Theoretical a-a n-n I p-atoms Ie-e Coul. exc.

0.100 0.049+0.010' 0.050+0.015' 0.071+0.003' 0.035
0.06' 0.001+0.0128

0.101+0.003" 0.118+0.018'

234U

236U

238U

0.094
0.078
0.066

0.047+0.010'
0.043+0.010'
0.028+0.003'
0.06 +0.1'

0.044+0.004 0.057+0.003' 0.013
0.017+ ' ' 0.04' 0.001+0.012g

0.129+0.023'
0.113+0.026'

0.087+0.003" 0.055+0.027'
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TABLE V. Comparison of calculated quadrupole Qz and hexadecapole Qq moments ex-
pressed in b and b, respectively. Our results are compared with those obtained in various
other approaches: (a): Ref. 46, (b): Ref. 47, (c): Ref. 22, (d): Ref. 44 (e): Ref. 45. For the
case of Refs. 22 and 47, the moments have been deduced from published P2 and P4 parame-
ter values assuming a liquid drop radius constant ro ——1.2049 fm (Ref. 29).

Nucleus
Q2

Present work
Q2

Other calc.
Q4

Present work
Q4

Other calc.

232U 9.71
8.5'
89"
9.5'

1.20
1.2'
1.0b

1.3'

234U 9.88
91'
94
9.8'

1.10
1.2'
1.0b

1.2'

236U 10.07
98'

10.1
10.0'

0.99
1.3'
1.0b

11

23SU 10.30
10.4'
10.2'
10.0'
10.4d

10.4'

1.4'
0.9'
1.0'
1.0d

09'

tant for the precise determination of multipole mo-
ments. We have carried through the iterations in
such a way as to determine results with an accura-
cy of -O. l%%uo for Q2 moments and —l%%uo for Q4
moments.

Calculated binding energies (typically equal to
1800) have been reproduced up to -2 MeV. The
deformation energy curves of two nuclei ( Th and

Pu) have been compared and found to be typical
of a beginning of a shell and of a mid-shell de-

formed nucleus. Single-particle Hartree-Fock ener-

gy spectra have been displayed and will be dis-
cussed in II.

The agreement of charge radii with experimental
data has been found to be excellent; the relative er-
ror has been shown not to exceed 1.4%%uo. The trend
of the variation with respect to the numbers of
neutrons and protons of the Q2 and Q4 moments
has been very well reproduced. The absolute (rms)
errors are 0.52 b for Q2 and 0.19 b for Q4. In the
latter case we have only taken into account iso-
topes with A &240. Indeed, for Pu, Cm, and

Cm we have systematically overestimated the Q4
value when compared with the single piece of ex-
perimental evidence available so far. For these nu-

clei as for the others, our results are, however, glo-
bally consistent with those of many different theo-

retical approaches. We are therefore led to the
conclusion that Hartree-Fock+ BCS calculations
using the Skyrme SIII effective force do reproduce
most of the available experimental data concerning
the static properties of very heavy nuclei.
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APPENDIX A:
BASIS PARAMETER OPTIMIZATION,

NUMERICAL ACCURACY,
AND CONVERGENCE PROBLEMS

The axially symmetrical oscillator basis is entire-

ly specified by two oscillator frequencies co& and co,
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or equivalently by two parameters b and q:

q =coj /co, , h =+m co/A',

where

CO= {COfCOz )

A careful minimization of the total energy with
respect to b and q has been performed for each
ground state solution. It is interesting to quantita-
tively determine how much the expectation values
of operators other than the Hamiltonian could
depend on a slight variation of b and q around
their optimal values. This is exemplified in Table
VI for the quadrupole and hexadecapole moments
and the radii of the charge distribution of the

Pu ground state solution. For a relative varia-
tion of b of -4% the total energy varies by -1
MeV, whereas the charge radius is changed by less
than 1%. The quadrupole and hexadecapole mo-
ments on the contrary may vary significantly (up
to —1% for Q2 and to —15% for Q4). Now, for
relative variations of q of —12/o one gets similar
changes for energies and charge radii, whereas Q2
and Q4 are very much modified —up to -9% and
22%, respectively. If a variation of the energy of
1 MeV corresponds only to a 0.1%%uo change, it turns
out, however, that through the parameter optimiza-
tion process, the total energy is determined with an
accuracy better than 100 keV, which leads to an
upper bound for the theoretical error bars due to
the basis parameters choice of a few tenth of 1%
for Qz and of 1% for Q4. Charge radii are then
calculated within +0.001 fm error limits.

Neutron and proton pairing gaps in use here
have been determined from systematics of odd-

even binding energy differences. Not to mention
systematical errors due to their extraction from a
numerical finite difference treatment of available
lowest quasiparticle energies, the very concept of a
pairing gap constant for each single particle state
carries already a signigicant amount of simplifica-
tion. It is therefore adequate to evaluate the varia-
tion of the total energy and of some charge distri-
bution moments when arbitrarily changing the
pairing gap values by + 0.2 MeV. As shown in
Table VII for the Pu ground state solution such
a modification does not yield very significant
changes in the energy (

~

b,E
~

(300 keV), the
charge radius (

~
hR,

~

(0.001 fm), the charge
quadrupole moment (

~
EQ2

~
/Q2 (0.4%), and the

charge hexadecapole moment (
~
&Q4

~

/ Q4 (2%).
If one retains 200 keV as a reasonable upper bound
for the error on pairing gaps, one thus sees that the
corresponding uncertainties are typically of the
same order of magnitude as those associated to the
parameter basis optimization process.

Hartree-Fock+BCS variational equations are
solved iteratively from a standard %oods-Saxon
ansatz at the first iteration. The numerical conver-
gence of the iterative process is exemplified on Fig.
10 for the total energy and the charge radius of the

Pu ground state solution. One sees that the en-

ergy is converged up to 10 keV and the radius up
to 0.001 fm already at the 35th iteration. Now, the
charge quadrupole Q2 and hexadecapole Q4 mo-
ments are converging far less rapidly as seen on
Fig. 11 from the example of the U ground state
solution. It takes about 50 iterations to get Q2
within —1 fm and Q4 within 20 fm . All ground
state properties presented in this work result from

TABLE VI. Variation hE of the total energy E (expressed in MeV), hr, of the charge ra-
dii r, (expressed in fm), EQ2 of the charge quadrupole moment Q2 (expressed in b), and EQ4
of the charge hexadecapole moment Q4 (expressed in b~) when changing the basis parameters
around their optimal values. The notations (b,q), (b—+,q), and (b,q+—) refer to calculations
performed with b=0.514 fm ', b +—= b+0.020 fm ', q=1.23 and q

—+= q+0.02.

(b,q) —1790.3 5.947 11.13 1.216

~Q4

(b ,q)
(b+,q)

(bq )

(b,q+)

1.2
1.4

1.5
0.4

0.000
—0.008
—0.017

0.001

—0.01
0.16

—0.99
0.35

0.035
0.180

0.267
0.020
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TABLE VII. Same as Table VI for a variation of the neutron A„and proton hp pairing
gaps around their values as determined from odd-even binding energy differences. The nota-
tions (h„,Lp), (6„+—hp), and (6„,Ap+) refer to calculations performed with 6„=0.60 MeV,
6„—+ = 5„+0.20 MeV, hp = 0.74 MeV, and Ap

—+= hp+0. 20 MeV.

rc

(~„~p) —1790.28 5.947 11.131 1.2157

(~„,~p)
(6„+,hp)
(~„~p )

(~„~p+)

0.23
—0.30

0.21
—0.28

—0.001
0.000

—0.001
0.001

0.030
—0.025

0.000
—0.020

0.0116
—0.0145

0.0116
—0.0157

at least 50 iteration calculations.
As a conclusion of the three studies presented

above, it turns out that numerical errors due to the
choice of optimal basis parameters and of pairing
gap parameters are of a comparable magnitude.
They are far smaller, however, than the discrepan-
cies between calculated and experimental values.
Moreover, the numerical errors associated with the
convergence of the iterative solution of the varia-
tional equations are negligible with respect to the
two above mentioned sources of uncertainty.

APPENDIX B:RADII AND QUADRUPOLE
AND HEXADECAPOI. E MOMENTS OF SHARP

EDGED AND DIFFUSE DISTRIBUTIONS

We will first prove the following theorem:
Given a distribution p(r) and a monopole form

factor f(r ), the convolution product of p( r ) by

f(r) has all its multipole moments identical to
those of p(r). The multipole moment Q~o of the
distribution p( r), corresponding to the operator

(BI)

E (MeV) rc (Frn )

- 0.04

h, Q2
( f'rn2)

0
(frn& )

0

---= 0.03

- 002
—10— —-1 00

0.5-

0.01

0

—20— ——200

—30— —-300

0

I

25
I

50
I

N.
if.

FIG. 10. Convergence of the charge radius r, and the
total Hartree-Fock+BCS energy E as a function of the
number of iteration N;„ from a standard Woods-Saxon
initial ansatz for the central mean field. These calcula-
tions have been performed for the Pu nucleus. Radii
and energies are relative to their values at N;, =5.

FIG. 11. Convergence of the quadrupole (Qq) and
hexadecapole (Q4) moments for the charge distribution
as functions of the number of iteration E;,. The calcu-
lations have been performed for the U nucleus. We
give here moments relative to their values at N;, =5.
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is given by

Qio —fd r p(r)qio(r) . (82)

5io = fd r f (r)qio(r),
4n.

(83)

Given a monopole form factor f ( r ) normalized to
unity:

from the quadrupole and hexadecapole moments

(Q2 and Q4) of our symmetric self-consistent wave
functions, standard Bohr-Mottelson P2 and P4
parameters. The method in use consists in finding
a sharp-edged liquid drop having the same quad-
rupole and hexadecapole moments as our self-
consistent solution. The liquid drop is defined by
its radius

one defines the multipole moment Qio of the con-

voluted distribution ps f as
R =Ro(P;)g(cosO, P;), (813)

Q&o
—f fd r d r' p(r ')f (r —r ')q&o(r) .

Now qio(r ) may be expanded on functions

q&„(r—r '):

qio(r)= g A„(r ')qq„(r r'), —
@=0v= —p

(84)

(85)

g (cosO, P; ) =1+ g P; Y;o(0) .
i =2,4

The volume conservation imposes that

(814)

where the function g is defined as usual in terms of
the deformation parameters P2, P4 and of the angle
0 between the radius and the symmetry axis by

in such a way as to obtain, after changing one in-

tegration variable and performing the correspond-

ing integration,

+1
Ro(P ) =Ro(0) ' 2/ f du [g (u, P; )]3

' 1/3

, Aoo{r ')
Qi.o —fd'r'p{ r ')

4~
From Eq. (85) one gets from letting r = r '

Aoo(r ')
Qio(r ')=

4m

and therefore,

Qi.o =Qi,o

(86)

(87)

(88)

(815)

where the spherical radius Ro(0) is assumed to be
proportional to A ', A being the nucleon number.
Consequently, the liquid drop model under con-
sideration depends on the three parameters P2, P&,
and ro. The value of the latter defined by Ro(0) =
roA'~, is taken from Ref. 29 (ro=1.2049 fm),
whereas P2 and P4 are determined from calculated

Q2 and Q4 by solving the following nonlinear sys-
tem of two equations:

which proves the theorem.
One defines the rms distribution radius R of the

distribution p(r) by

[Ro(P;)l' +i
Qp= 5~, f duPp(u)[g(u, P;)]'

[Ro(0)]
(816)

(89)R'fd" p(. )= fd'r ~r ~'p(r),

and similarly R for the convoluted distribution by

and

[Ro0; l' 9

[Ro(0)]i 16m

' 1/2

R 2 ~2+R2 (811)

where o is defined as the rms radius off(r),

R fd r p{r)=f fd r d r'
~

r
~

p(r')f(r —r'),
(810)

where the normalization integral in the left-hand
side of Eq. (810) is the same as in Eq. (89) due to
the normalization of f. Upon writing

~

r
~

as

~

r —r'~ + 2r '. (r —r ')+ r', one gets

(817)
+1

y f duP4(u)[g(u, P;)]',
where ~ is the norm of the considered density
(i.e., the total number of nucleons, protons, etc,
. . .) and P2, P4 usual Legendre polynomials. An
alternative method (which has not been considered
here) would have been to determine the three
parameters ro, P2, and P4 from self-consistent radii
r and Q2, and Q4 moments by solving Eqs. (816)
and (817) together with

o =fd r ~r ~f(r). (812)

%e will now briefly describe the calculations
which have been performed in order to extract,

[Ro(P )l 3 +'r2= —„'—„f du [g(u, P;)] . (818)
[R (0)]
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