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We delineate the conditions of interaction and density in extended Bose systems under
which the single permanent of plane waves yielding the lowest energy expectation value
deviates from the zero-momentum condensate. A potential U(r) independent of relative
orbital angular momentum L does not favor abnormal occupation at any density, provid-
ed its Fourier transform is non-negative. However, abnormal occupation can occur for
simple reasonable choices of U(r), in particular, a repulsive square barrier. Considering
L-dependent interactions, truncation of the partial wave expansion of the potential will or-
dinarily promote abnormal occupation in some density region. Several specific examples
of abnormal momentum distributions are studied, and numerical results are given for po-
tentials relevant to alpha-particle matter and liquid He.

NUCLEAR STRUCTURE Infinite alpha matter, Hartree-Pock
method, abnormal occupation of plane wave orbitals.

I. INTRODUCTION

The normal starting point for the microscopic
treatment of an infinitely extended quantum system
consists of a "vacuum state" in which the particles
fill the lowest-momentum orbitals consistent with
their Bose or Fermi nature. Thereafter, correla-
tions due to the interactions between the particles
are introduced, either by perturbation theory' or by
correlation-operator approaches (including varia-
tional and coupled-cluster methods). In the
process, an interacting ground state is built con-
taining admixtures of excited states of the nonin-
teracting system in which the momentum distribu-
tion deviates substantially from the normal one. In
the case of weakly interacting particles, the ampli-
tudes of these admixtures will be small, and the
normal "vacuum" provides an appropriate starting
point. However, it is by no means clear from ihe
outset that such is the case when the particles in-
teract strongly, as in the following systems of great

current interest: nuclear matter, neutron-star
matter, finite nuclei, and the helium systems. It
may well provide advantageous —either from the
practical standpoint or as a reflection of some
underlying physical structure —to start with a vac-
uum corresponding to abnormal occupation of the
given single-particle states.

It is our aim in the present paper to reach, by
example, a better understanding of the conditions
under which an abnormal vacuum is preferred in
extended systems of identical spinless bosons, in-

teracting through short-range potentials having fin-
ite matrix elements in a plane-wave basis. Some
preliminary results of this work have been reported
in Ref. 7. In Sec. II we formulate the problem of
the determination of the optimal permanent of
plane-wave orbitals in an independent-particle
description of such systems (determination of an
"optimal vacuum"). Five simple forms of abnor-
mal occupation are proposed for examination. Sec-
tion III is concerned with two-body interactions
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v,J, which are independent of relative orbital angu-
lar momentum I.. Abnormal occupation of any
sort is excluded for a potential of this type if its
Fourier transform is non-negative. However, ab-
normal occupation is shown to occur for some
quite reasonable choices of U,J, most notably the
repulsive square barrier. In Sec. IV we consider
I.-dependent potentials, and note that truncation of
the partial wave expansion of U,J will ordinarily
lead to abnormal occupation in some density re-

gime. Numerical results are presented for certain
interactions relevant to alpha-particle matter and
liquid helium, based on the simple choices of ab-
normal momentum distribution specified in Sec. II.
Section V addresses in general terms the signifi-
cance—physical versus merely technical —of the
theoretical phenomenon of abnormal occupation in

strongly interacting quantum systems.

II. FORMULATION OF THE PROBLEM

We consider a nonrelativistic system of E identi-
cal bosons of mass m interacting pairwise via po-
tentials u;J. Thus the Hamiltonian of the system is
written

g2 N N

H =r+U = — gV; +QUJ,
27tf j j g(J.

where t and U are the total kinetic and potential en-

ergy operators, respectively. We seek to determine
the optimal independent-particle wave function 4
in the subspace of symmetric functions, that is, the
function 4=40, which gives the expected energy

en as permanents of orthonormal single-particle
wave functions P,

whcI'c Pl is thc occupation number of orbital A.
Two constraints delimit the set In J, namely, the
n~ can assume only positive-integral (or zero)
values

n~—=0, 1,2, ..., X, (2.4)

(2 5)

The general Hartree-Bose problem so formulated
may be decomposed, for conceptual purposes, into
two parts: (i) the determination, for a given
single-particle basis IP ], of the optimal set I n

of occupation numbers and (ii) the determination of
the optimal choice of single-particle basis, I /~ I.
We do not propose to solve ihe full problem here;
rather, we shall examine only the first aspect of it,
in nontrivial special cases of physical interest.
Other facets of the general Hartree-Bose and
Hartree-Fock problems are being addressed in a
number of parallel investigations (see, e.g., Refs.
8 —14). Here we restrict attention to the plane-
wave choice of single-particle wave functions,

P =Pz ——V '~ e'"', these being normalized and

satisfying periodic boundary conditions in a cube of
volume V. At an appropriate stage in the subse-

quent analysis we shall pass to the thermodynamic
limit, i.e., N, V~~ with the density p=N/Vcon-
stant. It is to be noted that the chosen wave func-
tion 4 will then describe a uniform (liquid or gase-
ous) phase of an in6nitely extended system.

The evaluation of (2.2) is now straightforward:

its absolute minimum value. Without loss of gen-

erality, the independent-particle wave functions
over which the variation is performed may be tak- while, for E ~& 1 (cf. Ref 15), .

(2.6)

(u) =—g (1——,5-„-„)ngn-„(k,kp
~

u)2 ) k)k2+k2k)),
klk2

(2.7)

where
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By convention, normal occupation in a Hartree-
Bose description of a many-boson system means
that all the particles are put in the orbital with
lowest single-particle energy. In our case this im-

plies

n-=N5--
k k, o (2 9)

i.e., all the bosons reside in a zero-momentum con-
densate. With (2.9) we have, trivially, in the case
that u)2 ——u(r)2},

reason why it should remain optimal when interac-
tions are present. It is in fact the main purpose of
this article to present and study a number of ex-
amples in which choices of the set [nk J different
from (2.9}—corresponding to abnortnal occupa-
tion—lower the energy per particle relative to the
normal value. The following special choices of ab-
normal distribution will be considered. All contain
a zero-momentum condensate with occupation
number gN, where 0 & g & 1.

(t ) =0, (u }= —,Npv(0),

where

v(q)—= Jd re 'q'u(r) .

(2.10)

(2.11)

(i) Single wing (SW)

-„=N[(5-„-,+(1 g)5-„-„—],
(ii) Double wing (DW)

(2.12)

We observe that v(0) must be taken positive (or
zero), otherwise collapse would ensue for suRicient-

ly large p (which can be considered a variational
parameter), even though the energy is extensive.

While the normal distribution (2.9) certainly
minimizes the kinetic energy, there is no a priori

1n-„=N[ g5-„-+—,(1—g)5-„-„
7 p

+ (' —&)5k, k]

(iii) Spherical shell (SS)

(2.13)

n-=N(5--+ [8(kp+cr k) —8(kp ——o.—k)], kp &0, o~0+,2&p(1 —g) 1

k k 0 I 2
0

(2.14)

(iv} Bose sphere (BS)

n-„=N)5k 0+8(ks —k), ks &0,

(v) Gaussian (G)

(2.15)

of [n k I are subject to the two constraints

(2.4) —(2.5) mentioned above, which become

nk ——0, 1,2, ..., N, (2.17)

81T ( 1 — )p —k 2/k
nk ——N$5k 0+ e ', kp&0.

k 0

(2.16)

kz

ky

These choices are depicted in schematic fashion in

Fig. 1.
Several comments and caveats on the use of

(i) —(v) are in order before we proceed. The total
momentum of the many-body state associated with
(i) is clearly nonzero, a defect which may be
repaired by going to (ii). There remains in (ii) a
preferred axis kp (or —kp), however, for the in-
teractions to be assumed, the energy expectation
value in cases (i) and (ii) turns out to be indepen-
dent of this axis. For choice (iii) the issue of a pre-
ferred orientation in momentum space is obviated.

%'ithout closer inspection it would appear that
each of (i) —(v) contains two parameters, g and kp
or kz, which may be varied independently to
minimize (H }. Recall, however, that all variation

RMAL
SPHERICAL SHELL

GLE-WING

BOSE SPHERE

LIBLE WING

GAUSSIAN

FIG. 1. Schematic representation of various abnor-
mal occupations investigated in this paper, compared to
the normal one.
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Jd knk ——1.
(2m) p

(2.18) (u) = , N—pv(0)+ g n], n], v(
~
k] —k2~ ) .2y k) k

k )Qk2

~e remark that (2.17) and (2.18) are satisfied by
construction for all choices except (iv) [where
(2.17) is satisfied but (2.18) must still be imposed
explicitly] and (v) [where (2.18) holds but (2.17)
cannot strictly be met]. The remedy is simple in

the Bose sphere case: (2.18) implies k]] and g are
related by

p=ks /6]r (1—g), (2.19)

III. L-INDEPENDENT POTENTIALS

In this section we derive some general and some
specific conclusions with regard to the occurrence
of abnormal occupation in the presence of certain .

simple radial potentials. If ul2 is the same in all

states of relative orbital angular momentum L, we

have

(k]k2
~
u]2

~
k]k2+k2k] }

=V '[v(0)+v(
~
k] —k2

~
)] . (3 1)

Accordingly, the potential energy expectation value
(2.7) can be rewritten as

so that there remains only one independent varia-
tional parameter. [If we desired a further integral
parameter n could be introduced as a factor of
8(ke —k), then p=nks /66(1 —g). However, the
optimal choice turns out to be n= 1.] In the Gauss-
ian case, nonintegral values of n k are of course
inevitable, so the use of this distribution is not
rigorous. The seriousness of the violation of con-
straint (2.17) may, however, be alleviated by taking
the amplitude C=8m (1—g)p/kp of the Gauss-
ian term to be large, C» 1.

Use of spherical-shell distribution requires spe-
cial care. The limit o.~0+ leading to an infini-
tesimally thin shell must be taken after the energy
(2.2) is evaluated via (2.6) and (2.7) for finite o.
[Taking the limit tr —+0+ before inserting n k into

(2.6) and (2.7) has unphysical consequences. ] Of
course, the true optimal n k may in general be
much more complicated than any of (i}—(iv).

Finally we note that a straightforward solution
of the variational equations for E—obtainable by
varying with respect to n k, Eqs. (2.6) and (2.7),
subject to the conditions (2.17}and (2.18)—does
not seem tractable as too many Lagrange multi-

pliers would be involved.

~~=~abnormal ~normal & 0 ~ (3.3)

for any abnormal n k, since the second term in (3.2)
cannot become negative. One may thus conclude
that for a number of familiar potentials abnormal
occupation will not occur. These include (setting
r]2——r)

(a) repulsive delta interaction

v]2 =up5( 1 ) & (vp )0)

(b) repulsive Gaussian

—A, r
u]2 ——upe, (vp )0),

(3 4)

(3.5)

(c) Bruch-McGee interaction between He atoms
(Ref. 16)

—2r/cr p
—r/aou]2=co(8o e —28oe '),

r (3.6828 A

C6 C8
r &3.6828 A,8

(3.6)

where ep ——9.25 K, ap=0. 49413 A Bp=455.674,
C6 ——6842 KA, and Cs ——26930 KA. One finds
v(0) =702285 Kk;

(d) Mimura-Puff f]t of "He interatomic potential
(Ref. 17)

(e rja
~

—Prla)—a
(3.7)

where Ep ——894000 K, y=0.2560, a =0.3760 A,
and P=0.8000. In this case v(0) =358 312 KA .

(e) up, v], and u2 "homework" models of the
two-nucleon interaction (Refs. 3—5, 18)

(0 Jellium interaction

v(q) =4m e /q, q )0 .

v(0) =0 .
(3.8)

We turn now to simple L-independent noncol-
lapsing potentials which do favor abnormal occu-
pation.

(3 2)

Suppose the Fourier transform v(q) of the given
potential is non-negative for all q (more precisely,
except on a set of measure zero). It then follows
that
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(g) Repulsive square barrier

u ~2
——-upo(a r)—, (up p 0) .

The Pourier transform of this potential,

v(q) =pupa '-
ga

(3.9)

(3.10)

the upper bound again being negative for
A ~ 390.4.

In the spherical-shell case,

(Ae )ss ——(1—g)(kpa ) +3Ag(1 —g)j)(kpa )/kpa

+3A(1 —k)'[1 —jp(2kpa }]/4(kpa )'.

assumes negative values over finite intervals.
Defining a dimensionless energy per particle
e =e(2ma /A' ) and coupling strength A=(4~/3)
(2ma /A )uppa, we have, for the single-wing
choice of abnormal occupation, (2.12),

he = (1—(}(kpa )

With kpa =5 76. .. and D—:—3A[1 jp(2k—pa )]/
2(kpa) = —0.04S 53A, the value of g is

( —2 +8+3)/(28+D). The condition g(1 once
more calls for A & 390.4. Finally,

+3Ag(1 —g)j)(kpa )/kpa . (SW) (3.11)

A numerical search would be required to determine

(A +8}' "-48+20
(33.22 —O.OS6 17A)

0.4418A

(3.1S)
Ae(kp, g) =Minhe(kp, g) .

ko, g
(3.12)

However, the essential physical eAect is demon-
strated if we obtain an upper bound

Ae(kp, g) )he(kp, g),

and show that this upper bound can be made nega-
tive for large enough A.

(i) Choice of kp: Tal e k'pa =~.76... (pos~tion of
the first minimum of j~ (x)/x]. (ii) Determination
of g: We note that [B(he )/Bg]& g=-0 implies

g=( —A +8)/28, where 2—:(kpa ) =33.22 and
8—=3Aj~(kpa)/kpa = —O.OS617A. The restriction
g(1 requires —8&A, or A&390.4. Thus

r —Q
Ui2 =U0 exp + 1

5
(up, a,5p0) .

(3.19)

so that the double-wing choice gives the lowest

upper bound of the three cases.
Is the occurrence of abnormal occupation for the

repulsive square barrier (3.9) due to its infinite
sharpness~ To show that the answer is no, we con-
sider the following example.

(h) Smoothed repulsive square barrier (Fermi or
Woods-Saxon function)

(A +8)' (33.22 —O.OS617A)'
48 0.3447A

(3.14)

The Pourier transform of this interaction is

4m
v(q) = —u, J'(q), (3.20)

i.e., (4e)s~. is surely negative for A ~ 390.4.
Similar results are obtained for the double wing

and spherical-shell choices of n k, (2.13) and (2.14).
With the former choice

(ae)Dw =(1 g)(k pa —)'+3A[g(1 g)ji (kp—a) /k pa

+ (1—g) j)(2kpa )/Skpa ].

where the prime denotes derivative and

J (q) =—f dr cos(qr) exp + 1
0 5

cosqa " sin(qx5) sinqa

q -'/' (e"+1)(e "+1)
Again taking k0a =5.76. . . and defining
C.=3Aj, (2kpa)/Skpa = —0.003 2S2A and 3 and 8
as before, the value of g minimizing Ae is
g=-( —3 +8 —2C)/2(8 —C). Again g & 1 implies
A & 390.4. Then

cos(qx5)
dx

(e"+1)(e "+1)

(3.21)

(A +8) (33.22 —O.OS617A)
4(8 —C) 0.3316A

Taking 5/a ~~ 1 extends both lower limits to
—ce. The first integral then vanishes by sym-
metry, leaving J(q) m5 sin(qa)/sinh(nq5) and
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4&5 a cosqa n.5sinqa coshnq5vq=- U0
q sinhn. q5 (sinhn. q5)~

j (qa) 5 m
4m.a u0 — —+

qa a 6
sinqa 5

cosqa+ +0
qa a

4

(3.22)

Now, since the sum of the first two terms in this
last expression is sti/I negatiue at qa =5.76. . . for
5=(0.1)a, we see that abnormal occupation can
produce an energy lowering even if the repulsive
barrier is not perfectly sharp.

Another example of a purely radial potential for
which abnormal occupation can occur is provided
by the work of Biswas and Warke':

(i) Repulsive Yukawa-attractive exponential in-

teraction

u]2 gvL (——r)PL,
L

(4.1)

where PL projects onto the subspace of the two-
particle system corresponding to relative angular
momentum L. Defining k =( —, )

~
k]—k2 ~(rela-

tive wave number) and

(k]k2
~
u]2

~
k]k2+k2k]) —=2V v(k), (4.2)

an elementary calculation yields

P,r ge
—kr

T 2A,
(3.23) v(k)=4m g (2L+1)f r drjt 2(kr)uL(r) .

L even

Conditions on the parameters a, p, b, and A, for
which DW occupation is energetically preferable to
the undepleted zero-momentum condensate over
certain density ranges, and for which the system
does not obviously experience collapse, are derived
in Ref. 19. In this case it is not the sharp or near-

ly sharp edges in the potential which induce abnor-
mal occupation, but rather an appropriate balance
of (smooth) repulsive and attractive components.

IV. L-DEPENDENT POTENTIALS

We focus now on (generally) L-dependent in-
teractions

1

~lloflllR] 2 Pv( 0 )

where

(4.4)

v(0)=4m r dr uo(r),
0

(4.5)

i.e., just the volume integral of the S-wave com-
ponent of the potential. It is now a straightfor-
ward matter to derive expressions for the energy
Shift Ae= &abnormal ~normal COrreSPOnding tO the
specific proposals (2.12)—(2.16) for abnormal occu-
pation. The results are listed below:

(4 3)

Note that in the event of normal occupation we
only need the potential matrix element with all k's
equal to zero. Thus

(«)sw= (1—g)(]]] ko /2m )+g(1—g)p[2v(ko/2) —v(0)],

(«)Dw (1—g)(]ri k]] /2m )+g——(1—g)P[2v(ko/2) —v(0)]

+ ( —,)(1—g)'p[2v(ko ) —v(0)],
(«)ss ——(1—g)(R ko /2m) —( —,)(1—g' )pv(0)

1

+2((1—g)pv(ko/2)+ —,p(1 g)' f d—]M v'(ko&1 —]M/v 2),

(4 6)

(4.7)

(4.8)

(«)Bs ——( —,)(1—g)(& k]]'/2m) —( —, )(1—g')pv(0)
1 1

+ 6$(1—g)p f dt t v(kt]t /2)+24(1 g)2p f d—t t 2P(t)v(kt]t), (4 9)



V. C. AGUILERA-NAVARRO et al.

(4.10}

(b,e)G ———,(1—g)(fi kp /2m)

+g(1 —g)pP (kp/2) —v(0)]

+ —,(1—g) p[W(kp/v 2) —v(0)], (4.11)

00

W(q)= Sn —'~ I dxx e * v(qx) . (4.12)

In the case of the Gaussian distribution, the
transformation s'=V(1/2)(k, —kz),
K= v (1/2)(k &+ k2) was used to arrive at the
above formula involving the single integral W(q).

Reverting momentarily to the special case of an
L-independent potential with vL (r) =U(r), all L,
formulas corresponding to (4.6)—(4.11) may be
easily generated directly, or may be derived from
(4.6)—(4.11) by invoking the sum rule

r

g (2L+1)jL (kr)= —1+1 sin2kr

2 2kr
. (4.13)

In effect, the generic quantity 2v(Q/2) —v(0) ap-
pearing in the above results is to be replaced by
v(Q).

An important feature of formulas (4.6)—(4.11)
should be emphasized. If the partial-wave expan-
sion (4.3} is truncated at some L, i.e., UL,

—=0,
L &L,„,a lowering of the energy (he &0) can al-

ways be arranged, for any of the stated choices of
abnormal occupation, provided (i) v(k) falls off the
k for large k (which will normally be so) and (ii)

A. Ali-Bodmer (AB) interaction in alpha matter

An interesting physical example of bosons in-

teracting via an I.-dependent two-body potential is
provided by the idealized alpha-particle model of
nuclear matter considered in Ref. 21. (For discus-

sion of the physical relevance of such models, see
Refs. 21 and 22.) The interaction between the
"elementary" alpha particles making up the system

may be taken in the form (4.1) with

uL(r)= g Vl;exp( A,l; r ), —
i =A, R

(4.14)

as in the model of the o.-a interaction devised by
Ali and Bodmer (AB). For v(k) we then obtain

v(0) & 0 (which is required anyway to prevent col-

lapse). One need merely take kp or ks large

enough so that potential terms involving ko or kg
can be neglected compared to the other terms, and

increase p or k~ to the point that the kinetic part
of Ae is overwhelmed by the potential contribution

proportional to —pv(0}. (Take g anywhere in the

range 0 & g & 1.) The total energy per particle

( —, )pv(0)+b, e will remain positive. Attention is

drawn to the special case that vL (r)=u(r),
L &L,„,with v(k) &0 for all k. We note that
v(0) and v(0) are then identical. Letting Lm,„~ao

in such a case, the combination 2v(Q/2) —v(0)
sums to v(Q) and any energy decreases due to the
—pv(0) terms in the various he formulas are eradi-

cated.

v(k)= g g (2L+1)VI;AL; e '
IL, +~g2(k /2&1. ),

k .i=A R L
(even)

(4.15)

where the modified Bessel function IL+]&2 is given
by20

ao (z/2)2$++
Iq(z) =

p s!I (p+s + 1)

I

The result (4.15) is derived from the relation

I dr r jt (Qr)e

4QA,
II+1/2(Q/2~ }exp( Q /2~ } (4.1g)

We also note that

-e'/V2~z (z~ ao ),
v(0)=sr ~ g VptA, p;

i =A, R
(4.19)

r

l d
IL +~~2(z) =v'2z/mz

Z dZ
(4.17)

A numerical study of abnormal occupation has
been carried through, based on (4.14} with the
choice of parameters VL;, A,L; denoted by do, d2,
d4(0. 7, 10) in Ref. 23 (the standard AB potential).
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FIG. 2. Energy lowering —be in Ali-Bodmer alpha
matter for single-wing, double-wing, and pnd s herical-shell
abnormal occupations, relative to the energy for normal
occupation. (The energy drop is maximized, at eac
density p, wi resp

'
y p, 'th espect to the free parameters in the as-

sume md momentum distribution. ) The vertical arrow
inedmarks the equilibrium density of alpha matter obtaine

in Ref. 21.

To be specific, we take Vow
——475 MeV, 2+ ——V =320

MeV, and V4~ ——10 MeV, together with VLq
=—130 MeV, kl~ ——0.7 fm ', and A,~ ——0.475

fm ', L (4. It is supposed that VL; ——0, L &4, so
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FIG. 3. Energy drop —be in Ali-Bodmer alpha
n edmatter for four different abnormal occupations, exten e

to higher densities {see Fig. 2).
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that we are dealing with a truncated partial-wave
'tion of the two-body interaction Ui2.decomposi ion o

The results of minimizing he with respect to the
independent parameters g and ko in the SW, DW,
and SS abnormal distributions and the single
parameter g in the BS distribution are summarized
in igs.F' . 2—5. The arrow in Fig. 2 marks the
equilibrium density of ideal alpha matter as deter-
mined by Johnson and Clark via hypernetted-chain
variationa eory,1 th ' assuming an L-independent
o.-u interaction in which the AB S-wave com-
ponent acts in all (even) angular momentum states.
We note that the indicated density corresponds to
roughly double the empirical saturation density o
nuclear matter, hence much of the density range
displayed in the figures lies outside the domain o
applicability of the alpha-particle model.
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FIG. 5. Optimal value ko of parameter ko {or k~ in
the Bose-spheie case) in Ali-Bodmer alpha matter, cor-
responding to minimization of the energy, at each densi-

ty with respect to the free parameters of the assumedty, wit
abnormal momentum distributions.

O.I5 0.20

FIG. 4. Opt'mal zero-momentum condensate fraction

g in Ali-Bodmer alpha matter, corresponding to minimi-
zation of the energy, at each density, with respect to the
free parameters of the assumed abnormal momentum
distributions.
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Even so, the single-wing, double-wing, and
spherical-shell energy shifts plotted in Fig. 2 show

that abnormal occupation is already favored at
physically relevant densities: for the S%', DW, and

SS occupation functions the critical density p,„„
beyond which b.e (at optimal ko, g) is negative, is

approximately 0.035 alphas per fm, which is

slightly below the accepted equihbrium density of
nuclear matter. Beyond this p,„„we find

( —&e)sw & ( —he)ss ((—Ae)ow. The difference

between ( —b,e)Dw and ( —he)ss appears to ap-

proach a constant value as the density increases,
the separation of the corresponding curves being

hardly noticeable on the scale of Fig. 3. (We

might mention that upon artificially reducing the

particle mass from the alpha mass to the nucleon

mass, p,„,in the SS case increases to about 0.14 al-

phas per fm .)
For the BS choice, he remains positive until the

density reaches some five times ordinary nuclear

density (p,„,=0.197 fm in this case). On the
other hand, at very high densities the BS ansatz is
found to be more advantageous than even the DW
or the SS distribution (see Fig. 3). This is a re-

markable result, considering that the Bose sphere
n k has only one independent variational parameter
rather than two. It may well be worthwhile to in-

troduce an additional parameter into the BS distri-
bution as indicated earlier.

Looking next at Fig. 4, we observe that in the
SW, DW, and SS cases, g for p y p,„„falls off
smoothly with p from unity at p,„,to a value
around 0.5, fILattening out for large p. This
behavior may be understood qualitatively in terms
of the origin of the energy decrease —Ae in ex-

change of particles between different k states.
Considering the simplest example, namely conden-
sates at k =0 and k = ko (single-wing choice), we

1

get the maximum number of exchanges with /= —,,
as is reflected in the factor g(1 —g) in the second
term (potential term) of (4.6). If the first term
(kinetic term) could be ignored, we would have, op-
timaliy, g=g= —,

'
at any k, for winch 2v(k, /2)

—v(0) is negligible. The effect of the kinetic term
is of course to push g toward a value somewhat
greater than one half, however, with increasing
density the potential term becomes dominant and
this effect recedes. The behavior of g vs p in the
0% and SS cases can be understood similarly.

%c note that thc AB potential has thc plopcfty
that v(k) is negatiue over a considerable range in k.
[More precisely, as k increases v(k) rises from
v(0) =956.83 MeV fm to a maximum of 1636

MeV fm at k =6.49 fm ', falls off to zero around
k =1.2—1.3 fm ', and thereafter makes a negative
swing with a minimum of some —417 MeV fm at
about k =2.2 fm '.] This property favors abnor-
rnal occupation, and has the consequence that the
optimal ko in the SW, DW, and SS distribution is
smaller than would otherwise be the case (see
forthcoming examples). This optimal ko (denoted

ko) is plotted against p in Fig. 5. Returning our
attention to Fig. 4, we see that in the BS case there
is a sudden and complete depletion of the zero-
momentum condensate as p passes p,„„which con-
trasts with the behavior of the SW, 0%, and SS
examples.

Curves for the Gaussian choice of n k have not

been presented, since energy decreases for that dis-
tribution are of doubtful validity due to violation
of the requirement (2.17) of integral occupation
number. However, it is perhaps of interest to
quote results for the critical density as a function
of the amplitude parameter C = 8ir ~ (1—g)plko .
We obtain p,„.,=0.55, 3.73, 37.3, and 372.7 fm
for C =1, 10, 100, and 1000, respectively. The in-

fraction of constraint (2.17) is the less severe, the
larger C. Clearly, the Gaussian choice is not
relevant to the present problem.

In order to further illuminate the I.-truncation
phenomenon, we have examined the issue of abnor-
mal occupation (specifically, in the SW case) for an
a-a interaction consisting of the AB potential sup-
plemented by a term in which the Ali-Bodrner
U4(r) acts equally in all even partial waves L & 6.
The preference for abnormal occupation displayed

by the AB potential (as previously defined) is
erased: Ae remains positive for 0.01 fm (p
(306 fm

B. Truncated Bruch-Mcoee (BM) potential
in liquid He

As a second I.-dependent example derived from
a physical problem, consider a system of He
atoms interacting via a potential of form (4.1) trun
cated at the L =0 term. For Uo(r) we assume the
Bruch-McGee potential (3.6) [which, in a relatistic
treatment of bulk He, would normally be taken to
act equally in all (even) partial waves]. We remark
that, in contrast to the AB interaction, v(k) for the
truncated BM potential is positive for all k.

From the previous argument it is clear that the
L-dependent interaction so defined uphill promote
abnormal occupation at densities p beyond some

p,„,. One is curious to see how this critical density
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compares with the experimental equilibrium densi-

ty of liquid He at zero temperature, p, p 0 021'8
atoms per A . It is sufficient for our purposes to
examine the simple case of the single-wing distri-
bution, realizing that we will obtain only an upper
bound on the true p,„,. We find in fact that even

p,„,(SW) is less than 0.01 A, in the range
p=0.01—0.09 A the best ko increases from
6—10 A ', while the corresponding optimal g de-

clines from about 0.6 to slightly over 0.5. The SW
energy reduction can be Uery substantial (e.g., some
—4000 K at p=0.03 A, increasing with p), but
of course the total energy never goes negative.

Needless to say, truncating its partial-wave ex-
pansion (4.1) at L =0 severely mutilates the
Bruch-McGee potential. What happens to p,„,as
we truncate at higher and higher values L,„ofL?
To look into this equation we find it computation-
ally convenient —and certainly adequate at the
qualitative level deemed appropriate —to work in-

stead with the simpler model (3.7) of the He
atom-He atom interaction used by Mimura and
Puff.

C. Truncated Mimura-Puff (MP) potential
in liquid He

Again adopting the SW choice of n z, we have
truncated the partial-wave expansion (4.1}of the
L-independent MP potential successively at
L,„=0,2,4,6,..., 18. A coarse search at p=0.01
0
A revealed no instances of abnormal occupation
surviving past L,„=O, for which a negative he
was found with ko ——6 A ', (=0.5 —0.9. At
p=0.03, 0.05, 0.07, 0.09 A, abnormal occupation
survives (at least) to L,„=4,6, 8, 10, respectively.
As expected, the most favorable ko (most favorable

g) marches up (down) with density toward a sa-
turation value. It may further be remarked that
v(k) &0 for all k, for all truncations. The trans-
form v(k} becomes more repulsive as Lm,„ is in-
creased, at fixed k; it becomes less repulsive as k is
increased, at given L

V. CONCLUDING REMARKS

Restricting attention to Bose trial ground-state
wave functions which are permanents of plane-
wave orbitals, we have used a selection of simple
prescriptions for abnormal occupation (n i,

QN5k 0) of these orbitals (i) to demonstrate that
abnormal occupation is indeed advantageous in a

variety of model many-body systems of some in-
trinsic physical interest and (ii) more broadly, to
elucidate the circumstances under which abnormal
occupation may be expected to prevail. One
phenomenon uncovered by our investigations is
especially worthy of note: the promotion of abnor-
mal occupation by truncation of the partial-wave
expansion of the two-body interaction. More gen-
erally, abnormal occupation seems to be favored by
circumstances of interaction, density, and particle
mass which tend to produce spatial order.

The momentum distribution n z corresponding
to an arbitrary permanent of plane waves can be
mimicked to any desired accuracy by a finite col-
lection of shells (of finite and/or infinitesimal
thickness) and condensates g;6z z . One may then

construct successive approximations to the truly
optimal n

&
(within the class corresponding to

plane-wave permanents}, either by (a) standard ana-

lytic and numerical means or (b) by a systematic
computer search. The latter approach was adopted
in a recent investigation' of the analogous Fermi
problem, in which abnormal occupation consists in
deviation from the filled Fermi sea. Of course, the
Bose problem is rather more difficult because of
the possibility of multiple occupation of single-
particle states, especially as manifested in conden-
sates at various momenta Ak each containing, in
the thermodynamic limit, a finite fraction of the
particles. At any rate, work is presently continu-
ing along line (a), with the option of implementing
approach (b).

One may entertain the viewpoint that abnormal
occupation serves to simulate, within the indepen-
dent-particle picture, the effects of strong correla-
tions (e.g., strong short-range correlations) among
the particles. It then becomes important to deter-
mine whether or not abnormal occupation "sur-
vives" when such dynamical correlations are expli-
citly incorporated into the trial wave function.
That is: if an independent-particle wave function

4, corresponding to abnormal occupation is ener-

getically favored over the function 4„correspond-
ing to normal occupation, is the correlated state
I'4, still preferred over an "optimally" determined
F&b„'i (Here, it is supposed that I' stays within
some judiciously chosen class of tractable correla-
tion operators, to avoid trivialities. ) If the answer
to this question is no, then the fundamental signifi-
cance of work such as that described here is great-
ly diminished, its justification lying primarily in
the simplicity with which it allows correlation ef-
fects to be iritroduced in some physical settings. If
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the answer is yes, then the phenomenon of abnor-
mal occupation does indeed promise unique in-

sights into the nature of many-body ground states.
A partial answer to the above question is being

sought within the framework of Jastrow correlation
operators and HNC and other integral equation
method. The first concrete evidence —obtained
for a certain group of model Fermi systems resem-

bling nuclear matter' —is negative. However, the
broader issue of the significance and implications
of the phenomenon of abnormal occupation across
the diverse subfields of many-body physics remains
an open and challenging one.
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