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For separable, coupled-channel model interactions we show how to construct energy-

independent optical potentials, U. The elastic phase shifts and nuclear wave functions ob-

tained from U are identical at all energies with those of the conventional energy-depen-
dent optical potential U(E). Whenever there is strong absorption or a compound reso-
nance U has an extremely rapid variation with momentum.

NUCLEAR REACTIONS Energy-independent optical potentials.
Separable interaction model; compare momentum dependence of con-
ventional and energy-independent optical potentials; compare with

phase-shift-equivalent potentials.

I. INTRODUCTION

It has long been known' that in solving the
Schrodinger equation describing elastic scattering
of a projectile from the ground state of a nuclear
target, the inelastic channels describing virtual
scattering into the excited states of the target nu-

cleus can be eliminated formally. The resulting
one-channel equation contains a nonlocal, complex
effective interaction with an explicit dependence on
the parametric energy E for the scattering: This
effective interaction is the "conventional'* optical
potential U(E). In practice, U(E) is generally
represented by a local, but explicitly energy depen-
dent, potential. Many phenomenological studies
have been made regarding the energy dependence
of U(E) (Refs. 2 —5); the theoretical attempts to
understand the energy dependence of phenomeno-
logical models have led to much insight into nu-

clear reaction dynamics, as well as to continuing
controversy regarding the relation between optical
potentials and such concepts as mean free paths of
projectiles in nuclei. Recently, there has been con-
siderable progress in developing microscopic
theoretical optical potentials directly from two-
nucleon interactions. All of these methods, how-

ever, produce an optical potential which has an ex-
plicit dependence upon the parametric energy E.

Recently, Kuo and collaborators derived a new

theory ' in which the optical potential U, although
nonlocal, is independent of the energy. However,
the potential U is constructed in such a way that
the elastic scattering phase shifts and wave func
tions obtained from U(E) and U are identical at all

energies. An energy-independent optical potential,
if it can be straghtforwardly and accurately calcu-
lated, could have many possible uses in nuclear
reaction theory. For example, in direct-reaction
calculations one could calculate the matrix ele-

ments of U only once and then use them at all en-

ergies. It is even possible that microscopic calcula-
tions of the optical potential could be simplified.
It is clear that the properties of U must be funda-
mentally different from those of U(E), in order
that the two potentials produce the same elastic
wave functions at all energies.

For many years physicists have examined
"phase-shift-equivalent" potentials. ' These are
two (or more) potentials which are guaranteed to
produce the same asymptotic wave function, and
hence the same phase shift. As a consequence, the
fully on-shell elastic T matrix is identical with two
different phase-shift-equivalent potentials. The
energy-independent optical potentials of Kuo et al.
must obey a much more stringent condition, since
the construction of U requires that the elastic
scattering wave function itself (and hence the half
off shell elastic T matrix) be identical to the wave
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function produced by the conventional optical po-
tential. As a result, we sometimes refer to the po-
tential U as a "wave-function-equivalent potential. "

Although some of the properties of the potential
U have been outlined by Lee et al. , and two dif-
ferent methods have been suggested ' for con-
structing a "realistic" energy-independent optical
potential U, the detailed properties of U and the
relation between U and the conventional optical
potential U(E) remain somewhat unclear. As a re-

sult, we choose to examine a very simple model —a
"two-level" system where the target nucleus has
only two possible states, the ground state and one
excited state. The interaction potential is given by
separable Yamaguchi potentials. %e show that
such a system has the following features: (i) the
elastic scattering wave function can be calculated
analytically; (ii) the "conventional" optical paten-
tial U(E) can also be calculated analytically; (iii)
an integral equation can be obtained for the "en-
ergy-independent optical potential" U (this integral
equation can be straightforwardly solved numeri-

cally); (iv) an integral equation can be obtained to
produce a phase-shift-equivalent potential which is
guaranteed to produce the identical phase shift to
our model system.

A brief preliminary report of this work appeared
in Ref. 13. The existence of U was asserted there,
the solution of the integral equation for U was

presented, and a comparison between the conven-
tional optical potential U(E) and U was shown for
a single example. In the present paper, we give de-
tailed accounts of the model employed, and the
derivation and solution of the integral equation re-

lating U(E) to U. To describe the relation between
the two potentials, five examples which illustrate
various different nuclear reaction phenomena are
used. In the context of this model, we find that U
acquires a very rapid momentum dependence
whenever the elastic scattering has either very
strong absorption, or a "compound resonance. "
Such rapid momentum fluctuations could lead to
numerical difficulties in constructing U or in
evaluating transition matrix elements, if these Auc-
tuations occur in a realistic scattering situation. A
final application of these techniques involves pion-
nucleon scattering in the P33 spin-isospin channel.
An energy-independent potential U for this system
is constructed such that the corresponding on-shell
T matrix is a solution of the Low equation.

The outline of this paper is as follows. In Sec.
II we derive a general integral equation for U. A
brief review of the two-level model we are investi-

gating is presented, and the corresponding optical
potential U(E) is obtained. The energy-
independent optical potential U for this model is
then constructed. In Sec. III we construct U(E)
and U for the five different cases under considera-
tion. This allows us to make some general state-
ments about the potential U and its momentum
dependence. In Sec. IV the techniques of this pa-
per are applied to the pion-nucleon "Chew-Low
problem. "' An energy-independent effective in-

teraction U for pion-nucleon scattering which
yields, via the Lippmann-Schwinger equation, a T
matrix compatible on shell with the Low equation
is obtained. In Sec. V we review a procedure origi-
nally introduced by Landau and Tabakin" for con-
structing a phase-shift-equivalent (energy indepen-
dent) separable potential which reproduces the
correct elastic scattering phase shift at all energies.
A simple relationship between the phase-shift-
equivalent potential and U is obtained, and the cor-
responding wave functions are compared. In Sec.
VI we summarize our results.

II. ENERGY-DEPENDENT
AND ENERGY-INDEPENDENT

OPTICAL POTENTIALS

The elastic scattering amplitude T(E), corre-
sponding to nonrelativistic elastic scattering of a
projectile from the ground state of a nuclear target,
obeys the Lippmann-Schwinger equation

T(E)= U(E)+ U(E) . T(E) . (2.1)
1

E+ie—Ho

In Eq. (2.1), E is the total projectile-nucleus c.m.
energy and Ho is that part of the total Hamiltoni-
an for the system containing the kinetic energy and
the internal Hamiltonian of the target. Feshbach'
first derived Eq. (2.1) from the original coupled
equations which contain the excited states of the
target nucleus explicitly. He showed that the ef-
fective "optical" potential occurring in Eq. (2.1) is
nonlocal and complex (for energies above the first
inelastic threshold) and depends on the scattering
energy E.

Kuo et al. ' have shown, using folded diagram
techniques, that one can construct an energy-inde-
pendent potential U which has, at each energy, the
same wave function as U(E). If we have an
energy-independent potential U, then the scattering
amplitude T(E) corresponding to U is given by the
integral equation
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T(E)= U+ U . T(E) .E+lE—Hp
(2.2)

'( p I
T(Ek )

I
k &

=
& v I

T«k )
I

k & . (2.3)

The requirement that U and U(E) both produce
identical scattering wave functions can be ex-

pressed by the momentum-space identity

In Eq. (2.3), Ek is the projectile-nucleus energy E
corresponding to relative momentum k. Equation
(2.3), which must be valid for all p and k, requires
that the half-off-shell elastic T matrix elements,
and hence the elastic scattering wave functions, be
always identical for U(E) and U.

We can straightforwardly obtain an integral

equation for U by explicitly writing the half-off-
shell matrix elements of T(E),

&p I
T«k)

I
"&=&p

I UI "&+f, &p I

U
I q& . &q I

T«k)
I
"&

(2~)' Ek —Eq+i e

inserting Eq. (2.3) into (2.4) immediately gives

&v I
Ulk&=&v IT«k) lk& —f "', &v IUlq&

(2.4)

(2.5)

The result, Eq. (2.5), is the desired integral equation for U. Given the half-off-shell matrix elements of
T(E) as input, (2.5) is a standard matrix equation for the elements of U.

By contrast, we present the integral equation relating the matrix elements of the conventional optical po-
tential to the half-off-shell elastic T matrix; this is

&p I
U«k)

I
"&=&p

I
T«k)

I
"&—f ",&p I

U«k)
I q& . &q

I
T«k)

I
k& .

(2~) Ek —Eq+i e
(2.6)

The optical potential matrix elements which appear on the right-hand side of Eq. (2.6) depend upon the mo-
menta p and q as well as the parametric energy Ek, whereas the equation for U involves only the momenta

p and q.
In order to illustrate the construction of U and to compare it with the conventional optical potential

U(E), we invoke a very simple model in which the elastic wave functions and U(E) can both be calculated
analytically. In this model the projectile interacts via rank-one separable potentials with a nuclear core pos-
sessing a bound state and a single internal excitation, with excitation energy h. Thus the projectile-nucleus
interaction can be written as

(n'p
I

v
I
nk) =(p

I v„„
I
k) =g (21+1)A( )()„' '(p)U„' (I()P((j.k) .

I
(2.7)

In Eq. (2.7), n =0 (n =1) refers to the nuclear
ground state (excited state), respectively, e.g. , the
potential coupling the ground state to the excited
state is denoted V~p and the diagonal potential for
the ground state of the target is Vpp. The coupling
constant A,

' '=+1 gives the sign of the interaction
(attractive or repulsive). Although such a descrip-
tion of nuclear scattering is very specialized and
apparently rather limited, it is possible to provide
at least a qualitative representation of a large
number of nuclear scattering phenomena by a judi-
cious choice of the available parameters.

The elastic scattering amplitude resulting from
such a potential has the form

( ()
( )

( I)
( k )

(p
I
T(E)

I
k) =g(2l+1)A,"

D(l)(E)

Xp((p Ir.), (2.g)

where

(()(
2X(" ~ (I dllvn 0 1

(n)
p

P E+i e —Eq"

(2.9)

In Eq. (2.9) E~" is the relative c.m. kinetic ener-

gy in channel (n) corresponding to momentum q;
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E(1)

where

q

2po

2

2pi

(2.10)

we use nonrelativistic kinematics throughout, so
that

D (E), )F(k): (2.15)

then make use of the relation between the fully
on-shell elastic T-matrix element and the phase
shift:

The integral equation (2.14) may be converted
into an easily solved expression by two steps.
First, define

pi =po+6 .

For such a simple system, the conventional optical
potential is given by the relation

e ' '"'sin[5(k)] = —2p(k) ( k
~

T(Eg )
i
k )

= —2k , dk ~[uo«)]'

de D (Eg )
(2.16}

X&i(p k), (2. 1 1}

(p
~

U(E)
i
k) =g(21+1)A,'"

(I)( } (l)(k)

I D,'"(E)
In Eq. (2.16), p(k):—k (dk/dE~ ) is the density of
states, and for the coupled-channel problem the
phase shift 5 is complex above inelastic threshold.
Inserting Eqs. (2.15) and (2.16) into (2.14) gives the

integral equation

where

)I)( }
2A,

''
1 d

q [u)

E+i'e Eq

(2.12)

F(k) =1+—1 dy

th EI +lE' —JI

Xe' '~ sin[5(y)]F(y) . (2.17)

To obtain the energy-independent optical poten-
tial U, we assume a solution of the form

(p i
U

i
k) =g(21+1)A,'"uo"(p)

I

u'"(k)
X ()) &((p'k)~(l)(k) (2.13)

Although Eq. (2.13) looks superficially like the
equation for the conventional optical potential, we
note that &' '(k) in Eq. (2.13) is a function of the
momentum k, while Dq" (E) in Eq. (2.11) is a func-
tion of the parametric energy [the differences are
also clear by comparing Eqs. (2.5) and (2.6)].
(Note: in subsequent equations wherever possible
we work with a single partial wave and suppress
all angular momentum indices, to simplify the no-
tation with no loss in generality. )

We can then obtain an integral equation for
&(k) by substituting Eq. (2.13) into the integral
equation for U, Eq. (2.5). This relation is

&I +Em

EI D(Ep )

1 " dx5(x)
)(exp

th Ep+l &—X
(2.18)

In Eq. (2.18), we have assumed that there is a
bound state of the projectile-nucleus system with
energy Ez [if there is n—o bound state, set Ee ——0
in Eq. (2.17)]; also, E,h is the elastic channel
threshold energy.

For our model problem, we can use one further
simplification. With the separable potentials we
have used, we can show that' '

Equation (2.17) is in a form which has been
solved by several previous authors. "' ' We re-

peat the derivation in the Appendix, along with the
conditions on the phase shift 6 necessary for solu-
tion of the integral equation. The solution of Eq.
(2.17) is

dq q A, [uo(q)]
&(k) D (E)g ) m. "0 Eg E'0)+I'e D(EI, )=

EI +Ee 1 ~ 5(x)dx
exp

EI 7T th EI +lE' —X

X
1

& (q)D(E& )

(2.14)

(2.19)

In Eq. (2.19), 5(x) is the real phase of the T ma-
trix, defined through
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t
e' "'sin[5(x)] }

—=
~

e' '"'sin5(x)
~

e' '"' . (2.20)

channel threshold energy, then we define

p&
=—pp+6 . (3.3)

(2.21)

We now have an equation for &(k) in terms of
the elastic channel phase shift 5 [knowledge of 5
also defines 5 via Eq. (2.20)]. For separable, two-
channel interactions the conventional optical poten-
tial is given by Eq. (2.11), and the energy inde-
pendent optical potential U is given by Eqs. (2.13)
and (2.21).

III. SOME NUMERICAL EXAMPLES

In this section, we work out several examples in
which U(E) and U are constructed and compared.
The expressions (2.11), (2.13), and (2.21) are em-

ployed.
The potentials we use are rank-one potentials of

Yamaguchi form, ' for I =0 or I = 1, which are de-

fined by

Un'(p) =

U~ (p)={I)

1/2
&~a' —21'

pp

4' b /3
1/2

p

p +a

pl

p 2+ Q
2

(3.1)

(3.2)

An explicit formula for 5 is given in Ref. 12. The
use of (2.19) allows us to obtain a simplified ex-

pression for the function &(k),

1 1 dx [ 5(x) —5(x) ]=exp~(k) 77 Eth Ek+ te x—

and

2 b2
D' )(Ek)=l-

(a —ik)' (b ik'—)
(3.4)

iaa (2k+ia) igb (2k'+ib)
Ek =1+ . , +, (3.5)

a ik) — (b ik')2—

where

k'=[2@,iI k l2po 6, j]'— (3.6)

The potentials have been normalized so that if
the channel coupling were set to zero, then the po-
tential would produce a bound state if a y 1. The
condition for a bound state to be present (these
models will produce at most one bound state) are

1 —cx— . , &0 (1=0), (3.7a)

The parameter A, is always chosen as ( —1), to give
an attractive force. By appropriate variation of the
ranges and strengths with these potentials, it is
possible to simulate a number of different reaction
phenomena. The parameters which are used for
the five examples for this paper are listed in Table
I.

With the Yamaguchi potentials from Eqs. (4.1)

and (4.2) we can solve for the elastic wave function
and scattering amplitude. With these potentials,
D' '(E) from (2.9) has the form

In Eqs. (3,1) and (3.2), [ n, P ] and I a, b I are the
interaction strengths and ranges for the potential
form factors. The masses pp and p& represent the
projectile-nucleus mass in the ground and excited
states, respectively. If 6 represents the inelastic

1 —a—
P 1+ 2

1+—
B

. 2' &0 (i=1), (3.7b)

TABLE I. Parameters for two-channel separable potential model used to illustrate various
reaction mechanisms. The definitions of the symbols are angular momentum I, ranges a and
b (MeV), strengths a and P, masses po and 6 (MeV), and binding energy Ea (MeV) (this is
blank if there is no bound state). Parameters as defined in Eqs. (3.1)—(3.3).

Case
a

(MeV)
b

(MeV)
po

(MeV) (MeV) (MeV)

I
II
III
IV
V

250
250
500
250
250

0.87
0.63
0.348
0.75
0.30

400
400

1000
400
400

0.30
0.54
0.578
0.22
0.97

883
883
140
883
883

30
30

220
30
30

12
12
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where

Q =—[2m i~1'" (3.7c)

I80

I50

I20

90
(deg)

60

I.O

0.8
0.6 q
0.4

The bound state energy E~ occurs at a zero of D,
i.e., D'"(Ez~ 0——T.he functions D2"(E), which oc-
cur in the expression for the conventional optical
potential in this model [see Eq. (2.11)] are obtained
from Eqs. (3.4) and (3.5) by setting cr =0 in each of
these expressions.

For each case considered, we choose the parame-
ters for the model and then calculate analytically
the conventional optical potential. Then the elastic
phase shifts 6 and 6 are used to perform the in-

tegration in Eq. (2.21) to construct &(k) and hence

obtain U. Since our potentials have the form

uc(p)uo(k)
(p

~

U(E)
~

k )—
D2(E)

uc(p)uo(k)
piU[k

a comparison of U(E) with U can be made by
comparing the functions D2(E) and &(k). The
essential difference between the two potentials is
that D2 is a function of the scattering energy E,
while Q' is a function of the momentum k.

«&e I is the "mostly elastic" l =1 case used by
Haider and Londergan (HL). The projectile is

strongly coupled to the ground state of the target,
and only weakly coupled to the target excited state.
There is a projectile-nucleus bound state at 12
MeV, and the inelastic channel threshold is at 30
MeV. The elastic phase shifts for this case are
shown in Fig. 1(a); the phases g and 5u are related
to the (complex) phase 5 by

0.230
0 I I I I I I I I I

200 400 600 800 IOOO
2i5 o2i5

(3.8)

The phases are plotted versus the c.m. momentum
k. The arrow in Fig. 1 denotes the momentum

arg 20
IO-

D

(deg)
—IO—

I80

l50

I20

90
(deg)

60

—I.O
—0.8

-06 g
—0.4
-0.2

I II I I I I I I I

200 400 600 800 IOOO

-20—

-30—
0 200 400 600 800 IOOO

k (MeV/c)

FIG. 1. (a) Phase parameters for case I, "mostly elas-
tic P-wave" case used by HL, Ref. 20. Elastic complex
phase shift 6 is represented by 6=60—(i/2)lng. Solid
curve: 6o. Long-dashed curve: g. Short-dashed curve:
6, defined in Eq. (2.20). Phases are plotted vs c.m.
momentum k, in MeV/c. The arrow on the horizontal

axis denotes the inelastic channel threshold. (b) Magni-
tude of the functions [N(k)] ', defined from Eq. (2.21),
and [D2(Ek)] ', defined in Eq. (2.12) vs c.m. momen-
tum k. Solid curve:

~

&(k) '; dashed curve:
D2(Ek)

~

'. The functions & and D2 allow a direct
comparison between the conventional and energy-
independent optical potentials, from Eqs. (2.11) and
(2.13). (c) Phases of [&(k)] ', and [D2(Ek)] ', in de-

grees, vs c.m. momentum k. Solid curve: aug[&(k)]
dashed curve: arg[D2(Ek)]

I

D
2 ——=-

I—

o I Il

40-

20-
org

I

D

(deg) -20-

0 I

-40-
(c)

I I I I

200 400 600 800 IOOQ

k (Me V/c)

FIG. 2. Phase parameters, [&(k)] ' and [D2(Ek)]
vs c.m. momentum k for case II, "mostly inelastic P-
wave" case of HL. Notation is that of Fig. 1.
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I20-

90-
8

(deg) 60

—I.O
—0.8

-m0.6 q
—0.4

=0.2

200 400 600 800 IOOO

I

D 20-

(b)

10—

60-
40-

arg

0
D -20-

(«g) ~0
-60—
-80-

(c)

I I I I I

200 400 600 800 l000
k (MeV/c)

FIG. 3. Phase parameters, [&(k)] ' and [Dz(Ek)]
vs c.m. momentum k for case III, "very strong absorp-
tion" case used in Refs. 13 and 17. Notation is that of
Fig. 1.

corresponding to the inelastic channel threshold.
Note that below inelastic threshold, g=1 and
5=5p ——5.

In Figs. 1(b) and 1(c), the magnitudes and phases
of [Dq(Ek)] ' and [&(k)] ' are plotted vs c.m.
momentum k. For this particular case, both are
smooth functions of k. Note that the conventional
optical potential is real below inelastic channel
threshold, since the imaginary part of U(E) only
occurs when there are open inelastic channels,
whereas the energy-independent potential U (and
hence N) is complex at all momenta.

Case II is the "mostly inelastic" P-wave model of
HL. Again there is a bound state at 12 MeV, but
the coupling to the inelastic channel is considerably
stronger than for case I. As shown in Fig. 2(a),
the resulting phases lead to a minimum in g at
about 450 MeV/c, where r) -0.23. From Fig. 2(b),
we see that 1/& has a prominent maximum at
this momentum.

Case III is the very strong absorption P-wave

model of Londergan and Moniz. ' This case was

„1mk
(a)

Im k
(b)

0
-.—.-.- & Re k

k 0 Rek

FIG. 4. Schematic diagram of poles and zeroes of' the
elastic S matrix in the complex k plane (k is the c.m.
momentum). Zeroes of S are denoted by 0; poles by )&.
(a) The multisheeted k plane with cuts beginning at k,h

(first inelastic channel threshold). Dashed lines mean
that pole or zero is on second sheet of k surface. Poles
and zeroes describe situation with a resonance which has
more than half its width in inelastic channels, and a
zero of S very close to the real axis. (b) The same situa-
tion for an "energy-independent" description. In this
case there is only a single sheet of the k surface, so that
the pole and zero of S which occur on the second sheet
of k surface in (a) appear on the first sheet in (b).

w~~q( —k)
S(k)=

N~g (k)
(3.9)

discussed briefly in Ref. 13, and is repeated here
for completeness. In this case, there is very strong
absorption (r) &0.01) for k-480 MeV/c as shown
in Fig. 3(a). The conventional optical potential for
this case varies smoothly with energy; however,

! I/&~! has an extremely large maximum which
coincides exactly with the minimum in g, and a
very rapid change in phase as shown in Figs. 3(b)
and (c).

A detailed explanation of this behavior (a very
rapid change in U associated with a minimum in

t)) was given in Ref. 12, and we recapitulate it
briefly here. Such behavior will occur whenever
there is a coupled-channel resonance with more
than half its width in inelastic channels. In such a
case, a decrease in g exactly coincides with an in-
crease in

~

I/O' ~; the smaller r) is, the la,rger

~

I/&
~

will become. In Fig. 4, we show the posi-
tion of a few of the zeroes (0) and poles ( X ) of the
S matrix in the complex k plane (k is the elastic
channel momentum) for a typical inelastic reso-
nance. The fact that the zero of S in the right-
hand k plane is in the lower half plane means that
the resonance has an elastic width which is less
than half the total resonance width. Since the zero
of S shown here is very close to the real axis, then
q-0 at the corresponding value of k.

In Ref. 12 it was shown that the S matrix has
the form



PROPERTIES OF ENERGY-INDEPENDENT NUCLEAR OPTICAL. . . 53

where

Ek +&a 1 " dy6(y)&q(k) = exp
Ek 77 &h Ek+lE —y

(3.10)

[See Eq. (2.21) and Sec. V.] By construction,
&q(k) has no zeroes in the upper half plane except
for the bound state at energy —Fz,' similarly,
&z( —k) has no zeroes in the lower half k plane.
The S-matrix zero in the lower half k plane in Fig.
4(b) must therefore come from a pole of &~(k). If
the zero of S(k) occurs close to the physical re-

gion, then &„(k) will be extremely large at the
corresponding momentum.

Figure 3 (and to a lesser extent Fig. 2) illustrates

this behavior. The function 1/M~ becomes very

large just where g, the magnitude of the elastic S-
matrix element, becomes smallest. By comparing
Eqs. (3.10) and (2.21), we can see that I/&(k) will
become large whenever Q'z(k) is large. The essen-
tial difference between the energy-dependent and
energy-independent separable potential models is il-
lustrated in Fig. 4. In the energy-independent
model, the elastic S-matrix element is described in
terms of the single-sheeted momentum or k sur-
face. In an energy-dependent approach, the elastic
S matrix is described in terms of a multisheeted
momentum plane (with an inelastic cut beginning
at the first inelastic threshold). The absence of the
inelastic cuts in the momentum plane sometimes
forces the energy-independent formulation to
develop very rapid momentum dependence, as ex-
hibited in Fig. 3. The energy-independent potential
U acquires a momentum dependence which gives
the same elastic wave functions everywhere as
U(E). The extremely rapid momentum depen-
dence in this instance would presumably require
considerable care both in constructing and evaluat-

ing the matrix elements of U.
In case III, the coupled-channel resonance had

more than half the total width in elastic channels
and a consequent very rapid momentum depen-
dence of U. If instead we had a coupled-channel
resonance with more than half the total width in
the elastic channel, the resulting U would not have
any unusual momentum dependence (an example
of such a resonance is seen in the D~3 mX partial
wave, as shown in Fig. 4 of Ref. 12}.

In cases IV and V, we look at the two different
ways in which sharp resonances can occur in the
elastic scattering channel. One of these types, il-
lustrated in case IV, we call an elastic resonance.
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FIG. 5. Phase parameters, [u~(k)] ' and [D2(EI, )]
vs c.m. momentUm k for mode1 IV, "elastic I'-wave res-
onance. " Notation is that of Fig. 1.

This is the common resonance situation where the
combination of centrifugal repulsion and (essential-

ly elastic} attraction creates a "pocket" which traps
the particle and gives rise to a resonance. Such a
resonance can obviously be generated with no in-
elastic channel at all. We choose l =1, and the re-
sulting phase shifts are shown in Fig. 5(a); the res-
onance occurs at k =115 MeV/c. The functions
D2 and 0' shown in Figs. 5(b) and (c) are both
quite smooth; the energy-independent potential U
can generate the observed resonance without any
unusual momentum dependence.

Case V illustrates what we call the "compound
resonance" situation. In this case, the inelastic-
channel coupling is sufficiently strong that there
would be a bound state in an inelastic channel if it
were not coupled to the (lower energy) elastic chan-
nel. If the elastic-channel coupling is sufficiently
weak, then it is possible to produce a sharp reso-
nance in the elastic channel. This is the standard
way in which narrow resonances are produced in
low-energy elastic scattering: the conventional op-
tic potential has poles at a given scattering energy,
and these poles get converted into narrow elastic-
channel resonances.

In the s-wave model which we use, the inelastic
channel coupling is almost strong enough to pro-
duce a closed-channel bound state (13=0.97), and

I80 I I I I I I I I I
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equivalent effective interactions (similar to U in

the previous sections) has been used in finding
solutions to the Low equations governing pion-
nucleus interactions. ' If we neglect the crossed
pion-nucleon (left-hand) cut in the Low equation,
then we show that we can find two different effec-
tive interactions, both of which are guaranteed to
give the same half-off-shell T matrix at all ener-

gies, and one of which is energy independent. %e
contrast the operator techniques previously used to
obtain this result with the methods used in this

paper.
If we neglect the left-hand cut term in the pion-

nucleon Low equation, then it has been shown

that the following operator equation gives an ident-

ical T matrix to the CL equation

T(E)= +, . T(E) .
E E h02 (E+ie hp)—

(4.1)

I lk I I I I I I I

200 400 600 800 1000

FIG. 6. Phase parameters, [S'{k)] ' and [D2{Ek)]
vs c.m. momentum k for case V, "compound L =0 reso-

nance. " Notation is that of Fig. 1.

The driving term VCL is given by

& q VcL
l p &

= „,4~P(p q)
U (q)u (p)

[2' q 2cop ]

(4.2)

the elastic-channel coupling is quite weak. The re-
sult is a very sharp resonance which occurs right
at the inelastic channel threshold: the phase shift
rises very rapidly to SS' and q drops to 0.1, as
shown in Fig. 6(a). Both 1/& and 1/D2 vary ex-

tremely rapidly at threshold, as shown by Figs. 6(b)
and (c). We stress the difference between U(E)
and U here, however. If we construct the scatter-
ing amplitude T(E) from the integral equation for
U(E), Eq. (2.6), the sharp energy dependence of D2
can be factored out of the resulting integrals and is
relatively easy to handle. However, the extreme
momentum dependence of &(k), and hence U,

may be more troublesome to handle numerically.

P(p, q) is a spin-isospin projection operator for the
resonant (3,3) channel (we suppress spin and iso-

spin labels in this discussion), and co& is the energy
of the free Hamiltonian ho for a pion of momen-

turn q,

( 2+ 2) I /2 (4.3)

Here the static model is used because it was em-

ployed in the original CL work. The constant k
appearing in Eq. (4.1) is real and negative.

Inserting Eq. (4.2) into (4.1) gives the matrix ele-

ments of T(E),

U(q)U(p) P(q,p)
[2coq2co ]' ' D(E)

(4.4a)

IV. THE CHEW-LOW PROBLEM where

In this section we discuss the relevance of the
techniques discussed in Sec. II to the Chew-Low
(CL) problem. ' Here the energy dependence of
the effective interaction (the analog of the "con-
ventional optical potential" for this problem) arises
not from the opening of inelastic channels but
from a pole in the T matrix below elastic thresh-
old. The technique of finding wave-function-

kE I™dqq [v(q)]
a2~ (E+ie co )—

(4.4b)

The result (4.4) is just the CL solution neglecting
the left hand cut (the function which we call

[D(E)] ' is called h (E) by CL) proving that Eq.
(4.1) is identical to the T matrix of CL. From Eq.
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(4.4b), it is clear that [D(E)] ' has a simple pole
at E =0 with residue A, . From the relation be-

tween T(E) and D(E), it is straightforward to
show the relation between the real phase shift 5 in
the (3.3) channel and the function D.

V=AVCL 1+ V
1 1

p p

(4.12)

Clearly, V in Eq. (4.12) is independent of energy.
An explicit form for V is obtained by substituting

VCL from Eq. (4.2) into (4.12)

—e " sin[5(cok )]
[u (k)]zk'

(4.5) 4vru(q)u(p) P(q,p)
[2coz 2coz ]

Next, we show that there is an "optical poten-
tial" for the CL problem; i.e., an energy-dependent
effective interaction U(E) which when inserted
into the Lippman-Schwinger integral equation will

reproduce the CL T matrix. From Eq. (2.6), the
equation which U(E) must satisfy is

where

"dq[qu(q))
7T Q)

(4.13)

(4.14)

T(E)= U(E)+ U(E) . T(E) . (4.6)
1

E +l6' —hp

The potential U(E) may be obtained directly by
equating (4.6) and (4.1); this gives

Direct substitution of (4.13) into (4.11) shows that
Eq. (4.9) is correct.

Next, we obtain an energy-independent optical
potential V for the CL problem applying the
methods of Sec. II of this paper. First, note that
Eqs. (4.4b) and (4.5) can be rewritten as

U(E) = E A, VcL(E+—hp)
1

hp
A, VCL .

(4.7)

The optical potential U(E) has an explicit ener-

gy dependence. %e next find an energy-inde-
pendent potential V which produces the same
half-off-shell matrix elements as U(E) First the.
operator approach of Ref. 23 is used. Define the
operator u (E) by

AD(E) 1 e'N 'sin[5(y)]= 1 —a+ — dyE ~ m~ E+ie —y

A,D (y)

y

Now define

A,D (z)

(1—a)z '

(4.15)

(4.16)

,x (E)=T(E)E 1

hp
(4.8)

By inspection, the half-off-shell matrix elements
of a (E) and T(E) are identical

so that Eq. (4.15) can be simplified:

1 e' '"'sin 5(y)f(z)=1+—f dy f(y) . (4.17)
m~ z —y

( P I

~ (~k )
I

k & =
& p I

T(~k )
I

k & .

From Eq. (4.1), we see that a (E) obeys the in-

tegral equation

a(E)=AVCL 1+E, a(E)1 1 1

hp hp E+ie —hp

(4.9)
Equation (4. 17) is identical to Eq. (A4) of the Ap-
pendix; following the steps outlined there, one can
write immediately

A,D (Ek ) 1 ~ dy5(y)= (1 —a)exp
~& Ek+i e—y

(4.18)
(4.10)

The energy-independent potential V must satisfy
the integral equation

Next, following the logic of Sec. II and Eq. (4.2),
we assume a form for U,

,~(E)=V+V . ~(E) .
E +lE—hp

(4.11)
4~u(p)u(k) AP(p, k)

[2'&2cok ] +(~k )
(4.19)

We can obtain V by equating (4.11) and (4.10); this
gives the integral equation

Inserting (4.19) into (4.11) and making use of (4.5)
gives
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D(~k) 1 f ~ dye' '~'sin5(y) D(y)
e(cok) m . ~ +ie y e(y)

(4.20)

Equation (4.20) is identical with Eq. (4.17) if a
quantity

f( )
D(z}
&(z)

(4.21)

is defined.
Both (4.16) and (4.21) satisfy identical integral

equations with identical boundary values, so that
one can equate the two solutions for physical ener-

gies; this gives

1 1

&(cok) cuk(1 —a)
(4.22)

Substituting this into Eq. (4.19) yields the result
that the solution U in Eq. (4.19) is identical to the
potential V of Eq. (4.13), defined via the operator
methods of Ref. 23.

V. COMPARISON OF %'AVE-
FUNCTION-EQUIVALENT AND CERTAIN
PHASE-SHIFT-EQUIVALENT POTENTIALS

In this section the elastic channel wave functions
obtained from U(E) are compared with those of
another model, Ref. 11. In that work an energy-
independent potential, Vz is obtained. Although
Vz and U(E) have the same phase shifts, the cor-
responding wave functions are different.

We begin by using U(E) [(2.11) and (2.12)] to
obtain the elastic channel wave function in the
momentum representation,

(p i P(Ek)) =(2n) 5(p —k)

1+uo"(P)uo '(k)(21 + 1)PI(p.k )

[Ek E~+ie]D (Ek—)

(5.1)

In Eq. (5.1),
~
p(Ek) ) is the elastic wave function

corresponding to c.m. energy Ek {or c.m. momen-
tum k}. The Jost function D'"(Ek) appearing in

Eq. (5.1) is given by Eq (2.19), w.hich is repeated
for clarity,

Here ( E—s ) is the energy of the bound state in the
ith partial wave for the system (Es ——0 if there is
no bound state), and 5'"(E) is the real phase of the
elastic T matrix at energy E. We can define the
on-shell 1"-matrix element ti(Ek) as

A, '"(2l +1)[u'0"(k)]
(k

i

T' '(Ek)
i

k =
(n

k

(5.3)

and rewrite the elastic wave function as

(p
~
q(Ek)) =(2') 5(p —k)

(n( )

uo (k) Ek Ep+iE—

Xti(Ek)Pi(P k) . (5.4)

The potential U defined in Sec. II is guaranteed
to produce exactly the same elastic wave function
as Eq. (5.4) at all energies; for this reason we call
U a wave-function-equivalent potential. Since the
elastic wave function can be exactly calculated in
this model, it is instructive to compare the optical
potential U with a phase-shift-equivalent potential,
which reproduces the asymptotic form of the elastic
wave function (i.e., the phase shift or the fully-on-
shell T matrix) at all energies, but will not give the
exact wave function. We do this for two reasons.
First, there exist methods for constructing phase-
shift-equivalent absorptive separable potentials
(ASP)." These techniques can be used to construct
an elastic channel wave function which has the
same phase shift everywhere as our model wave
function. It is instructive to compare this wave
function to our exact result. Second, a simple rela-
tionship between the absorptive separable potential
and our energy-independent potential U can be ob-
tained.

The absorptive (energy-independent) separable
potential approach was developed by Landau and
Tabakin (LT) (Ref. 11) and applied to rf Npoten--
tials. If the elastic phase shift in the lth partial
wave 6' ' is known at all energies, LT showed that
a separable potential Vz could be constructed
which was guaranteed to exactly reproduce 6'"
everywhere. The "absorptive separable potential"
Vz has the momentum representation

D' '(Ek)= Ek +Ea 1 " 5' "(y)dy
exp

th EI —lE—p

(5.2) X u~"(q)P, (p.q) . (5 5)
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l ("[Ug (k)]'(2I+ 1)

= ( k
~

T'"(Ei, )
~

k &~a"(Ei,}

where

(5.6)

The form factors vz occurring in Eq. (5.5) are de-

fined by

&«I )
&(Eg)=-

&g(EI, )
(5.12)

function, and U correctly reproduces the elastic

wave function (and hence the half-off-shell T ma-

trix) at all energies. However, by comparing Eq.
(5.11) with (5.7) and (5.2) one finds that

Ei +Em
&„'"(E )= exp

+lb EI, +l&—p

(5.7)

(angular momentum indices are suppressed for the

sake of clarity). Consequently, we can write the

energy-independent potential U in terms of the

elastic and absorptive potential form factors,

With the separable potential of Eq. (5.5), one can

immediately write the corresponding elastic wave

function
~ Pq ) in momentum space,

(p ~
fg(E), )) =(2m) 5(p —k)

g(!)U(i)(p)U (l)(I )

+
[Ei, E+ie]—

X(21+1)&i(P8}, (5.g)

X&i(E),)&((p &) . (5.9)

Compare the exact model wave function
~
P) of

Eq. (5.4} with the phase-shift-equivalent wave

function
~ Pq ) of Eq. (5.9), and observe that al-

though
~ fz ) has the correct phase shift, the

momentum components of
~ 1(z ) are clearly dif-

ferent from those of the exact wave function.

Next, we compare our energy-independent poten-

tial U with the phase-shift-equivalent potential V~.

Recall from Eqs. (2.13) and (2.21) that U has the

ofm

3„(l) (i)
( )

(i) (k)
(5.10)

where

~(i) E 1 " d3 P(y}—@y}]E =exp
zth E+lE y—(5.11)

It is not obvious that there should be any simple

relation between U and V&, since V& reproduces the

phase shift everywhere but not the elastic wave

or alternatively

(p
~
gq(E), ))= (2~) 5(p —k)

I . UA(i)(k) Ek Ep+ie—

(p
~

U
i
k) =+A, '"U'"( )

X(21+1)P((p k) . (5.13)

VI. SUMMARY

It is very appealing to consider the possibility of
constructing energy-independent potentials at all

energies. Such potentials suggest a great savings in

time and complexity for use in nuclear reaction

analysis. Although some of the general properties

of these wave-function-equivalent potentials U

have been enumerated by Kuo et a/, ' it is unclear

whether U must develop unusual momentum

dependence, poles, etc., in order to accommodate

all of the scattering, resonance, and bound state

phenomena in one energy-independent form.

In order to examine some of these questions, we

use a very specific model —that of a projectile in-

teracting via rank-one separable potentials with a

target which has only two states (the "ground

state" and one "excited state"). Although this re-

striction is quite severe, it does have many appeal-

In the simple model which we employ, the con-

ventional optical potential is a separable potential

with form factor Uo(p) with a coupling constant (or

potential strength) which depends explicitly upon

the energy E. %e can also construct an absorptive

separable potential Vq which reproduces the elastic

phase shift at all energies. An energy-independent

optical potential U can be obtained which produces

the exact elastic scattering wave function at all en-

ergies. Somewhat surprisingly, in this particular

model one can write the matrix elements of U in

terms of the form factors vg and Uo' consequently,

knowledge of the properties of vq can be used to
infer the properties of U (see the discussions in

Refs. 12 and 18).
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ing features. First, we can solve exactly for the
elastic scattering wave functions and the conven-
tional optical potential with such a model. There
is sufficient flexibility with this model so that a
number of different nuclear reaction phenomena—
elastic resonances, compound resonance, " strong
absorption, etc., can be reproduced. %e can also
construct and analyze the energy-independent po-
tential U. It is found that U develops very rapid
momentum dependence under two general condi-
tions: first, whenever there is very strong absorp-
tion in a given partial wave, and second, whenever

a narrow "compound resonance" occurs in a given

partial wave.

In our model, poles or zeroes of the 5 matrix
which occur "naturally" in a multichannel (or
energy-dependent) description of the process can
lead to very rapid behavior of the energy-inde-

pendent U. Although we cannot extend our
methods to a general energy-independent potential,
our results suggest that some care be taken in con-
structing energy-independent potentials for systems
of particles which have either narrow compound
resonances or strongly inelastic resonances.

One may also compare a phase-shift-equivalent
potential (the ASP method for constructing phase-
shift-equivalent separable potentials given the elas-
tic phase shift at all energies) with our exact model
and with the wave-function-equivalent potential U.
In our separable model, there is a simple relation,
(5.13), between U and the ASP form factors.

The Chew-Low (CL) problem' may be analyz-

ing using our techniques. Previously, it has been
demonstrated that an energy-independent poten-
tial can be constructed which exactly reproduces
the half-off shell T matrix. It is shown that the
methods employed in this paper to construct the
energy-independent potential U can also be used

for the CL problem.

from the integral equation for U in terms of the
half-off-shell elastic T matrix, Eq. (2.5), we obtain
the following integral equation [Eq. (2.17)],

Xsin[5(y)]F(y) . (A2)

note that f is related to F via

F(k) = lim f (z =E„+is) . (A5)

The function f (z) is analytic in the cut z plane,
with a branch cut along the real z axis beginning at
z=E,h. From Eq. (A4) one can show that the
discontinuity of f (z) across the branch cut is

f(x +re) ps()
( )f (x ie)—

It is useful to define a function L (z) by

L (z) =lnf (z),

(A6)

(A7)

In Eq. (A2), 6 is the elastic scattering phase shift,
which is complex above inelastic threshold energy,
E,h is the threshold energy for the elastic channel,
and

F(k)—:
D(&k)

N(k)

where D(E) is given by Eqs. (2.8) and (2.9).
Integral equations of the form (A2) have been

solved for constructing phase-shiA-equivalent
separable potentials. We review here the method
of solving this equation. Define a function f (z)
for complex variable z by the relation

This research was supported in part by the U. S.
Department of Energy and the National Science
Foundation.

with discontinuity

L (x +i e) L(x —ie) —= —2i5(x), (x & E,h ) .

(AS)

APPENDIX: SOLUTION OF THE INTEGRAL
EQUATION FOR U

In Sec. II of the text, we assume a form for the
energy-independent optical potential in our
separable-potential model

Equation (A4) relates f (z) to an integral containing
the S-matrix element (in the form of the phase
shift 5). If there are no bound states, and if the S
matrix is not zero for any scattering energy, then
L (z) as defined from Eqs. (A7) and (A8) is analyt-
ic in the first sheet of the cut z plane. In this case,
one has

uo(p)uo(k)
p iUik

Ni(k)
(Al) 1

g
dyL (y)

2 vari c y —z
(A9)
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where the contour C is shown in Fig. 7(a). Provid-
ed the phase shift 6 goes to zero as E~ oo, we can
rewrite Eq. (A9) as

1 I" dy5(y)
E~~ z —y

which leads immediately to the expression

(A 10)
Re z

1 1 " 5(y)dy
exp

D (Ek ) n ~e Ek +i e y—

(A 1 1)

L (z}=ln
z+Ea 1 " dy5(y) A12

Z th Z —P

and the resulting expression for D(k) is

1 Ek+Ea
&(k) Ek

1

D(EI, )

)& exp
d5()

7T th Ek+1g—p

(A13)

If there is a bound state at E= —E~, then the S
matrix has a pole at E= Es, an—d L (z) has a log-
arithmic singularity there. In that case, there is an

. additional branch cut for the function L (z) along
the real axis from Ez to E—u„Eq. (A9) is still
valid, but the contour C must be changed to that
shown in Fig. 7(b). Evaluation of the necessary in-

tegrals then gives

FIG. 7. Integration contours for the function L (z)
defined in Eq. (A7). (a) Case where there is no bound
state. Then L (z) is analytic in the z plane cut along the
real axis from E,h to oo (z is the analytic continuation of
the elastic scattering energy). (b) The situation when
there is a bound state at energy —E&. Then, in addition
to the cut from E,h to oo, L (z) has an additional branch
cut from —E~ to E,h, since L (z) has a logarithmic
singularity at z= —E~.

This is Eq. (2.18) in the text. Note that Eq. (A13}
reduces to (Al 1) if we set Ez ——0; so if there is no
bound state, we simply set Es ——0 in Eq. (A13).

The requirements on the phase shift 5 in order
that &(k) be defined from Eq. (A13) are

(i) 5(E)~0 as E~ ao.
(ii) 5(E,q) equals 0 if there is no bound state,

and equals ~ if there is a bound state (this pro-
cedure fails if the system has more than one bound
state).

(iii) S(E)—:e ' ' ' is never zero, for real E.
(iv) sin[5(E)] does not change sign below the in-

elastic channel threshold.

'H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287
(1962).

2A. Bohr and B. R. Mottelson, Nuclear Structure (Ben-
jamin, New York, 1969), Vol. I, p. 237.

P. E. Hodgson, Nuclear Reactions and Nuclear Struc-
ture (Clarendon, Oxford, 1971).

4A. K. Kerman, H. McManus, and R. M. Thaler, Ann.
Phys. (N.Y.) 8, 551 (1959).

5Microscopic Optical Potentials, Lecture Notes in Physics
No. 89, edited by H. V. von Geramb (Springer, New
York, 1979).

R. M. DeVries and J. C. Peng, Phys. Rev. Lett. 43,
1373 (1980).

7T. T. S. Kuo, F. Osterfeld, and S. Y. Lee, Phys. Rev.
Lett. 45, 786 (1980).

SS. Y. Lee, F. Osterfeld, K. Tam, and T. T. S. Kuo
Phys. Rev. C 24, 329 (1981).

P. U. Sauer, Phys. Rev. Lett. 32, 626 (1974); D. D.

Brayshaw, Phys. Rev. Lett. 32, 382 (1974).
'"N. J. McGurk, H. de Groot, H. Fiedeldey, and H. J.

Boersma, Phys. Lett. 49B, 13 (1974).
"R.Landau and F. Tabakin, Phys. Rev. D 5, 2746

(1972).
' J. T. Londergan, K. W. McVoy, and E. J. Moniz,

Ann. Phys. (N.Y.) 86, 147 (1974).
J. T. Londergan and G. A. Miller, Phys. Rev. Lett.
46, 1545 (1981).

~4G. F. Chew and F. E. Low, Phys. Rev. 101, 1570,
1579 (1956).

~5M. Goldberger and K. M. Watson, Collison Theory
(Wiley, New York, 1964), Appendix G. 2.

~6R. Omnes, Nuovo Cimento 8, 316 (1958).
J. T. Londergan and E. J. Moniz, Phys. Lett. 45B,
195 (1973).

' D. J. Ernst, J. T. Londergan, E. J. Moniz, and R. M.
Thaler, Phys. Rev. C 10, 1708 (1974).



J. T. LONDERGAN AND GERALD A. MILLER 25

~ Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
2oQ. Haider and J. T. Londergan, Phys. Rev. C 23, 19

(1981).
G. A. Miller, Phys. Rev. C 16, 2325 (1977).
M. A. Alberg, E. M. Henley, G. A. Miller, and J. F.

Walker, Nucl. Phys. A306, 441 (1978); C. Y. Cheung,
E. M. Henley, and G. A. Miller, ibid. A305, 342
(1978).

23G. A. Miller, Phys. Rev. C 14, 2230 (1976).


