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We present a unified microscopic theory of rearrangement scattering which satisfies the
Pauli principle. The equations for the transition amplitudes and wave functions are re-
duced to effective two-body equations with the complexity put into the distortion poten-
tials and the transition potentials. The central theme in the development of this theory is
the importance of elastic scattering in the initial and the final channel, although this is
not a prerequisite for its validity as the theory is exact. The elastic degrees of freedom
are absorbed into the distorted waves using projection techniques in combination with the
Faddeev formulation. The resulting transition amplitude can be expanded in the transi-
tion potential, leading to a modified coupled channel series. The transition potential,
which has a constructive nature (i.e., no counter terms), can also be expanded. We pro-
vide arguments for the convergence of both expansions. Various contributions to the
transition potential are discussed, and we put special emphasis on a rescattering term
which has not been considered before in the context of coupled channel equations. Vari-
ous inconsistencies which may hamper standard coupled channel calculations are dis-

cussed' as well.

NUCLEAR REACTIONS Microscopic theory of rearrangement
scattering. DWBA. Coupled channel effects. Rescattering contribu-
tion. Two-nucleon mechanism. {p,d) reaction.

I. INTRODUCTION

We give a unified microscopic description of
rearrangement scattering in terms of its three basic
ingredients: nuclear structure, direct elastic
scattering, and pure rearrangement effects. Of
these three, nuclear structure information has al-
ways been treated as basic physical input for rear-
rangement calculations. We propose to extend this
physical input to the (direct) elastic optical poten-
tial operator. Admittedly, the idea to use the opti-
cal potential as input has been applied for years in
DWBA calculations; however, we provide a micro-
scopic framework which accomplishes this in a na-
tural and rigorous way. The major portion of this
paper is devoted to the rearrangement aspects of
the problem: the relation of distorted waves to
elastic wave functions, the expansion of the transi-
tion amplitude, and the expansion of the transition
potential. The equations are developed so as to op-
timize their practicality. In its final form the
theory is expressed in familiar terms, such as dis-
torted waves, coupled channel effects, etc.; howev-
er, there are also some new elements (in particular,
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a phase-equivalent transformation) whose practical
implications have to be studied further. The final
structure of the equations is sufficiently rich
enough that its practicality does not depend on
overall ad hoc approximations which affect every
aspect of the problem. Instead, its practicality
depends on the convergence of the expansions and
on more specific approximations which can be
checked independently. In this paper we only give
exact relationships, postponing the discussion of
various approximations to a subsequent paper. We
will, however, comment on the convergence prop-
erties of the expansions, and discuss the lowest or-
der contributions (DWBA, coupled channel terms,
etc.) to the rearrangement amplitudes.

The development of this microscopic theory of
reactions was motivated both by a desire to resolve
certain shortcomings in some of the current reac-
tion theories, and by the need for a practical, but
consistent, theory to analyze (p,d) reactions at in-
termediate energies. Its guidelines were derived
from our physical understanding of transfer reac-
tion data (in particular, in terms of DWBA); how-
ever, its development was only made possible by a
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suitable synthesis of various theoretical techniques:
Faddeev equations,! Feshbach theory,’ many-body
scattering theory,’ and, to a minor extent, multiple
scattering theory.*>

Let me first discuss the drawbacks which plague
some of the current theories of rearrangement
scattering. This discussion only serves to em-
phasize these shortcomings, and should not be seen
as an exhaustive review. Many descriptions of
rearrangement reactions are based on three-body
models,® !0 the three particles being the projectile
(ejectile), the transferred particle, and the core. In
this approach, effective potentials between the clus-
ters are given from the onset and their dynamical
origin and form never enter explicitly in the formu-
lation. These effective potentials both have to
describe scattering and binding phenomena, so that
they should be energy-dependent and complex (at
least above the first inelastic threshold). However,
since such potentials are very hard to use con-
sistently, one either ignores the constraints set by
the three-body model,'® or one maintains consisten-
cy by allowing only those potentials to be complex
which do not have to support a bound state.’
However, even in the latter case inconsistencies of
a slightly different nature may arise (such as dif-
ferent neutron and proton-nucleus effective poten-
tials®). A further drawback of these three-body
models is that one usually makes no attempt to re-
late the effective potentials to more microscopic
entities, such as the microscopic otpical potential.
In summary, three-body models usually lack a firm
microscopic basis, consistency, and/or flexibility
(in choosing the effective potentials), all of which
are properties which seem indispensable for a prac-
tical, microscopic theory.

Slightly different in philosophy, although in
many cases equivalent, are the theories'! which
start from the exact Schrodinger equation, and sub-
sequently limit the Hilbert space to the asymptotic
channel configurations. Depending on when and
how this truncation is done, one gets different
theories, the main exponent being the distorted
wave Born approximation (DWBA).!? This ap-
proximation results if one truncates the space after
the introduction of distorting potentials in the
asymptotic channels. Formally, any distorting po-
tential can be used, and possible microscopic cri-
teria, such as the minimization of the omitted
terms, have proven to be quite ineffective in prac-
tice.!! Therefore, one usually chooses the distorting
potential on intuitive grounds, and takes it to be
equal to the elastic optical potential. This pro-

cedure is quite unsatisfactory from a microscopic
point of view since it offers no guarantee that the
remaining terms in the transition operator are
small. Nonetheless, the DWBA has proved quite
successful in describing the experimental data,
which clearly tells us something about the physics
of the reaction, since it is unlikely that this success
was all accidental. We therefore want to exploit
our experience with the DWBA to give us some
guidance in developing our microscopic theory.

In order to define such a guiding principle we
first want to rephrase the DWBA in more micro-
scopic language. The DWBA amplitude usually
employed in fits to experimental data is the distort-
ed wave matrix element of a simple transition po-
tential [such as the neutron-proton interaction in
the (p,d) reaction]. Since the plane wave matrix
element of the same transition potential is much
less successful in explaining the data, it seems that
much of the strength of the higher-order terms in
the exact T matrix can be absorbed into the distor-
ted waves. In more physical terms: The process
takes place in three stages: elastic scattering in the
initial channel, the actual transition, and elastic
scattering in the final channel. This picture
stresses the importance of the asymptotic channel
configurations and deemphasizes the external role
of the more complicated many-body degrees of
freedom. These latter degrees of freedom, however,
play an essential role in determining the (micro-
scopic) optical potential, as all higher-order contri-
butions to this potential derive from the very ex-
istence of these nonelastic degrees of freedom.
Since the potential determines the distorted waves,
these many-body degrees of freedom are still essen-
tial for a reasonable description of the process.
This conclusion is supported by a recent model
study of the (p,d) reaction, where we showed® that
continuum contributions to the scattering ampli-
tude become increasingly important when the ener-
gy goes up, but still can be represented reasonably
well by the distorted waves. In the same publica-
tion we show that a rigorous cutoff of the continu-
um degrees of freedom (the bound-state approxima-
tion) leads to much poorer results. Another study’
also emphasizes the importance of the optical po-
tential, and thus implicitly the importance of
many-body degrees of freedom.

The fundamental lesson to be learned is the fol-
lowing: Despite the fact that many-body degrees
of freedom play a very important role in transfer
reactions, their main effect can be absorbed into
the distorted waves, i.e., in a wave function with a



448 J. M. GREBEN

simple two-body structure. Or to rephrase this in
a useful guiding principle for our microscopic
theory: The initial and final channel configura-
tions should be treated explicitly and in a rigorous
way, whereas the more complicated many-body de-
grees of freedom should be absorbed into potentials
and treated in an implicit—possibly perturbative—
way. This also leads to a practical formulation:
effective two-body equations with the complexity
buried in the potentials.

The guiding principle is very similar to the one
applied in the multiple scattering theory of elastic
scattering.” Therefore, it should come as no
surprise that our theory will accommodate the mi-
croscopic elastic potential in a very natural way.

In fact, one of the main original purposes of our
work was to make the role of the microscopic opti-
cal potential in rearrangement reactions more ex-
plicit. We felt that a duplication of the enormous
amount of work on microscopic theories of elastic
scattering in the context of rearrangement theory
would be inappropriate (Refs. 4 and 13— 18 give
some idea of this effort). Instead, the theory
should be flexible enough to accommodate the mi-
croscopic optical potential. The present theory ac-
complishes this goal in a natural way, and reserves
a very important role for this potential. As it
turns out, this also increases the practicality and
accuracy of the theory, as we can now take the best
potential and their associated wave functions from
the literature, and use them to evaluate the distort-
ing potential and distorted waves in the present
framework. Perhaps we should stress the nontrivi-
al nature of the guiding principle; neither the
three-body models, which ignore the role of the
many-body degrees of freedom, nor the majority of
many-body scattering formulations, which only be-
come practical after a rigorous cutoff in the Hilbert
space, cherish this principle.

The development of the present theory is made
possible by an enormous simplification (not ap-
proximation) at the very start. By concentrating
ourselves on one particular amplitude, itself part of
the total physical amplitude, we reduce the amount
of two-body channels which has to be considered
explicitly from 2V ~!—1 in N-body scattering
theory to a mere three or four. In this way we
give proper account of the dynamics of the process,
and put the burden of dealing with many-body
singularities on the effective potentials. These ef-
fective potentials still have a very simple form and
do not have the nested structure typical of some
many-body scattering theories.!” In this paper we

limit ourselves to those amplitudes which only
necessitate the explicit treatment of three channels.
This enables us to use standard Faddeev tech-
niques, which, as we will see, are extremely useful.
The limitation is not very serious in practice; all
proton-induced transfer reactions are covered by
the present theory, whereas the direct and ex-
change amplitudes (defined later) for any rearrange-
ment process are covered as well.

The outline of this paper is as follows. In Sec. II
we start the formal separation of two-body and
many-body degrees of freedom in the effective Fad-
deev equations for the amplitude under considera-
tion. This separation is accomplished by using
standard projection techniques,?’ which do not give
rise to so-called nonorthogonality problems, as the
Faddeev equations account properly for the chan-
nel dynamics.?! The use of projectors also auto-
matically solves the problem of the antisymmetri-
zation among identical nucleons. In Sec. III we
discuss the connection between the distorting po-
tentials and the microscopic optical potentials.
This relation is still obscured by the presence of a
correction term, whose task it is to eliminate the
rearrangement contribution from the optical poten-
tial. In order to treat this correction term and the
associated recoupling term in the transition opera-
tor at the same footing, we analyze the transition
amplitude in more detail in Sec. IV. This leads to
the introduction of a new distorting potential
which no longer contains this correction term and
is phase equivalent with the microscopic optical
potential. The resulting transition operator con-
tains the same transition potential as before; how-
ever, the expansion in recoupling terms has
changed in a simple but drastic way. Some impli-
cations of these changes for standard coupled chan-
nel calculations are discussed. In Sec. V we dis-
cuss some explicit expressions for the distorting po-
tential and distorted wave function in terms of the
elastic input. A rigorous calculation of these ob-
jects requires breakup-matrix elements of the mi-
croscopic optical potential operator; however, we
hint at some approximations which will reduce this
to pure elastic information. In Sec. VI we discuss
the expansion of the transition potential. This po-
tential has a purely constructive character (i.e., no
counter terms). We discuss various first order
terms, stressing in particular a rescattering ampli-
tude, which is never included in coupled channel
calculations. Finally, in Sec. VII we give a brief
summary, and discuss various aspects and possible
extensions of the theory.
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II. MICROSCOPIC THEORY
OF REARRANGEMENT SCATTERING

We consider a projectile consisting of # nucleons
incident on a target containing A nucleons. The
whole system will be governed by a nuclear many-
body Hamiltonian of the form

A+n A+n

i=1 i<j
so that we neglect many-body forces and do not
treat pion and isobar degrees of freedom explicitly.
Given the scattering process 4 (n,m)A +n —m,
with m > n, one can distinguish (n + 1) different
types of amplitudes (assuming 4 > #) depending on
how many particles of the projectile are contained
in the final ejectile 0,1, . . ., n). Of course, we can-
not discriminate the different asymptotic states
physically; however, the microscopic description is
quite different.

These (n +1) different amplitudes can be divided
into those with an intrinsic two-, three-, and four-
body structure. Those with a two-body structure
describe direct elastic scattering (requires n =m)
and are not discussed here. Those with a three-
and four-body structure represent true rearrange-
ment processes. The three-body amplitudes corre-
spond to the case where the ejectile contains all
(direct) or none (exchange) of the projectile nu-
cleons. The remaining (n — 1) amplitudes have a
four-body structure. The dynamics of these latter
processes is such that the final state cannot be
reached in a single-step transfer process, so that a
complex multistep mechanism is required. All
proton induced (n =1) and direct single-step
processes have the simpler intrinsic three-body
structure, which will be investigated in this paper.
Let us give an example to illustrate this classifica-
tion: The physical deuteron elastic scattering am-
plitude has three parts®’: one representing elastic
scattering without exchange (considered as input in
this theory); one representing the exchange of one
particle, which cannot be dealt with by the present
theory, as it has an intrinsic four-body structure;
and one in which both particles are exchanged,
which can be dealt with by the present theory. For
illustrative purposes, we will often specialize our
discussion to the direct (p,d) amplitude; however,
this does in no way limit the generality of the
theory. In the (p,d) reaction we distinguish two
amplitudes: the direct and the exchange ampli-
tude, both shown in Fig. 1. The direct amplitude
contains the important single-step pickup process,
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FIG. 1. Direct and exchange amplitude in the (p,d)
reaction.

whose dominance is usually assumed at forward
angles, and is essential for obtaining simple spec-
troscopic information. The exchange amplitude
contains the heavy particle exchange diagram, im-
portant at backward angles. In order to obtain the
physical (properly symmetrized) amplitude one
multiplies the direct amplitude with 4, the ex-
change amplitude with 4 (4 —1)/2, and adds them
up. Both the direct and exchange processes in-
volve at least three clusters of particles: the pro-
jectile (proton), the transferred particle(s) (neutron
deuteron), and the core (4 —1 or 4 —2). Obvious-
ly, this three-body structure has to be taken into
account in an exact description of these ampli-
tudes. The enormous simplification of our theory
over the usual many-body scattering theories is due
to the fact that we only treat three of the 24 —1
two-body channels explicitly. This reduction is
possible because we treat different amplitudes by
different equations.

The three two-body channels are uniquely deter-
mined by the cluster structure of the amplitude
under consideration. For definiteness we will dis-
cuss the direct amplitude shown in Fig. 1(a). The
total Hamiltonian is written as the sum of the core
Hamiltonian H,, which contains all the interac-
tions among the A —1 core nucleons plus all the
kinetic energy operators:

A
Hoy=K+ X V. (2.2)
i<j
i>1
Using standard three-body language we define the
intercluster interactions V;:

A
Vi=2 Vi, 2.3)
i>1
4
Vo= 2 Voi (2.4)
i>1
Vi=Vy . 2.5)
As usual, the channel Hamiltonians are defined by
H;=Hy+V;, i=123. (2.6)

Asymptotic channel wave functions will satisfy
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H;¢;=E¢; . (2.7)

In analogy to Faddeev’s theory! we introduce chan-
nel components which correspond to the three ar-
rangement channels defined by Eq. (2.6):

Y=+ +9s, 2.8)
with
(E—H W=V, 3 ¢;, i,j=123. 2.9)
i

If we sum these equations we recover the original
Schrodinger equation for the full wave function. In
channel coupling array?® theory one can prove that
a channel component contributes exclusively to the
asymptotic two-cluster channel specified by the la-
bel of the channel component. In the present case
we only made a partial decomposition of the wave
function, and only treat three of the 24 —1 two-
body channels explicitly. Under these cir-
cumstances 1; will contribute to many asymptotic
channels. However, only ¥; will contribute to the
asymptotic wave in two-body channel i. This
property of the Faddeev components

¥, =(E —Hy+i0)"W;h=GV;1 is well known!
and was recently reconsidered in the context of
many-body scattering theory.?* The property fol-
lows from the fact that the other components
;=G V;y¥ cannot generate the scattering singular-
ity (in momentum space) in channel i. This is due
to the fact that GoV; does not contain all the in-
teractions internal to channel i (which are neces-
sary for generating the channel eigenstates and the
typical scattering singularity) but does contain in-
teractions external to channel i (in the form of V),
which prevent the creation of the channel eigen-
state.”> The correctness of this property is con-
firmed explicitly in Appendix C, where we prove
that the channel components carry the physical
amplitude.

The channel components are extremely useful in
the present context as they account in a natural
way for the dynamics of the reaction process. As a
consequence we can easily impose the boundary
conditions and locate the relevant asymptotic infor-
mation in the different components. Also, it en-
ables us to use projection techniques without facing
the problem of channel nonorthogonality. In our
(p,d) example the incident wave is carried by ¥,
so that

Pi~e

+outgoing waves (r; large) , (2.10)

-

KT (OW(L, . .., 4)

which obviously satisfies Eq. (2.7). The other com-
ponents ¥, and 13 do not contain outgoing or in-
cident waves in channel 1. The target wave func-
tion ¥, in (2.10) is antisymmetric under inter-
change of two nucleons. The physical wave func-
tion should also be antisymmetric among the pro-
jectile (0) and the target nucleons; however, this an-
tisymmetrization does not affect the determination
of the present amplitude, and just fixes the statisti-
cal factor which multiplies the direct amplitude
when it is added together with the exchange ampli-
tude. The (p,d) direct amplitude is now carried by

Y3

eikdr3
Py~ p 7300, D¥5(2, . . ., A)
3
XTE(Ky,K,,E) (ry large),  (2.11)

whereas 1, will carry information on the (p,n) am-
plitude (assuming the two-body neutron-nucleus
channel exists).

As pointed out in the Introduction, our aim is to
treat the asymptotic channel degrees of freedom ex-
plicitly and the more complicated many-body de-
grees of freedom implicitly. To accomplish this we
use standard projection operator techniques.?®
Each of the three channels has its own projector,
e.g., the proton channel projector is given by

Pi= [dK| Kni(0)¥(L, ..., 4))
X(W(1, .., A | . (2.12)

This definition is easily generalized to include ex-
cited states by writing P; as a sum over the excited
states W\%. We can also set P, =0 if we do not
want to treat a channel explicitly. This is usually
the case for the third channel which neither corre-
sponds to the initial, nor to the final channel [such
as the neutron channel in the (p,d) case]. The
complement of P; is called Q;:

Ui =P + Qi =9f + 42 . (2.13)

In defining Q; this way we have implicitly assumed
that the Hilbert space is well defined. Since the
original incoming wave is fully antisymmetric in
the target nucleon coordinates 1,2, . . ., 4, and
since the Hamiltonian is manifestly symmetric in
all nucleon coordinates, the exact wave function
also displays this symmetry. The channel com-
ponents, however, are defined in a nonsymmetric
fashion and will not display the full symmetry, al-
though they still will be antisymmetric among the
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core nucleons. The Hilbert space is therefore limit-
ed to wave functions which are completely anti-
symmetric in the particle coordinates 2,3, . . . , 4,
but not further restricted in the symmetry proper-
ties of particles 1 and 0. A further discussion of
symmetry properties is given at the end of this sec-
tion.

We now eliminate ¢,Q everywhere in favor of /.
The resulting equations are a straightforward ma-
trix generalization of the usual Feshbach equa-
tions?:

(E-PHP-PUP)Y =0, (2.14)
where

U=VQG,,QV, (2.15)

Goo=(E—QHQ +i0)"", 2.18)
and

(WP =9 =Py = | m;¥iX; ) . (2.19)

Projection and energy operators are diagonal [e.g:,
(P);j=8;;P;], and §;;=1—8;;. Naturally, ¢ is
subject to the usual incoming boundary condition
[e.g., Eq. (2.10)]. If we now project with (¥;7; |
from the left one obtains the following set of effec-
tive two-body equations for the relative motion
wave functions:

(E +E; —K; — (U ) )X;

= X Vi+Uy)X;, i,j =1,2,3, (2.20)
ot

where E; is the total binding energy and K; is the
relative kinetic energy in channel i. In deriving
(2.20) we employed the property [H;,P;1=[H;,0;]
=0. We also introduced a shorthand notation for
the distorting potentials,

(Ui )= (¥ | Uy |95 (2.21)
and the transition potentials,

Equation (2.20) is our first basic result. By mak-
ing a partial wave expansion of the operators we
can reduce it to a set of one variable integrodif-
ferential equations for the relative wave functions
X;. The relative wave function for the deuteron
channel contains the asymptotic information about

the direct (p,d) transfer amplitude.

We can also take into account the coupling to
excited states explicitly by including these states in
the projection operator P;. Labeling the nuclear
states by Greek indices a or 8 we obtain, instead of
(2.20),

(E +E,-(a)—Ki—<a l Uii la))X:z

= 3 (a|Us | BXE + 3 al Vi+U; | BIXE,
Ba 5

(2.23)

where Uj; is now defined in terms of a reduced Q
operator which is complementary to the new P
operator. These equations show a striking resem-
blance to the well-known coupled channel Born ap-
proximation (CCBA) equations.*® Hence, our for-
mulation may also give a microscopic basis for
these latter equations.

Let us conclude this section by discussing some
interesting aspects of the theory developed so far.
The final equations (2.14) or (2.20) do not contain
any nonorthogonality terms (terms of the form
P;P; with i=%j). This is due to the effective separa-
tion of different channel spaces by the Faddeev
decomposition. The only way P; and P; (j5i) can
communicate is through the transition potentials
V;+U;;. This property also guarantees a simple
intuitive interpretation of the operators in the prob-
lem. The property would be lost if we had used
distorted Faddeev equations,’! where an optical po-
tential P; ¥, P; is added to the left of Eq. (2.9).

To compensate for such a term, one has to subtract
terms of the same form on the right, leading to
nonorthogonality products. The distorted Faddeev
equations also lead to nonconstructive transition
potentials, a property shared by other approaches
which introduce (arbitrary) potentials in the formu-
lation.”~!!

We now pursue our discussion of symmetry
properties. In the scattering region, 1; will not be
antisymmetric for the interchange of nucleons be-
tween clusters because of the nonsymmetric nature
of the Faddeev equations. However, since 1, car-
ries the asymptotic wave function in the elastic
channel, we expect that asymptotically the anti-
symmetry among target nucleons is restored. This
is exactly what happens: The lack of symmetry is
caused by the operator GyV; in ¥; =Gy V;y, and
this operator becomes unity in the asymptotic re-
gion, thereby removing this lack of symmetry
(Y=ieG ¢, itself preserves the symmetry of the in-
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incident wave). The lack of antisymmetry among
the nucleons 0 and 1 in the asymptotic deuteron
channel remains, but is not of serious nature. By
completely antisymmetrizing the incident wave
(2.10), one would, of course, guarantee that
displays the correct symmetry properties for

r3— o0, SO that unphysical components would be
eliminated. The same elimination takes place,
when we operate with P3 on 93, where P; is natur-
ally defined in terms of physical (i.e., fully an-
tisymmetric) cluster states. It is therefore easy to
show that 9} carries the correct (direct) physical
amplitude.”> Without any extra effort we have
resolved the problem of antisymmetrization by us-
ing the projection techniques. As mentioned ear-
lier we will even show explicitly that the ampli-
tudes carried by the channel components are on-
shell-equivalent with the exact ones.

HI. RELATION BETWEEN DISTORTING
AND OPTICAL POTENTIAL

The distorting potentials ( U; ) are defined as
the diagonal matrix elements (2.21) of the operator
U, defined in Eq. (2.15):

U=¥0G,,QV . (3.1)

In this section we want to relate this distorting po-
tential to the usual microscopic optical potential.
The formal definition of the elastic optical poten-
tial operator in our notation is'®

U= 3 Vot [z Vm ]Q,-<E—Q.-HQ.-+i0>—‘Q,-
m£i msti
X ¥ Vs (3.2)
m=£i

where H is the full Hamiltonian of the (4 +1)-
body system. The (Feshbach) optical potential
(UF) is the ground-state matrix element of this
operator. Notice that the Feshbach optical poten-
tial by itself does not give the complete elastic am-
plitude since it does not account for exchange
terms. In order to connect the distorting potential
(U; ) and the elastic potential {U/) we first de-
fine generalized scattering operators corresponding
to these potentials. One can easily show that uf
satisfies the following Lippmann-Schwinger (LS)
equations:

U= 3 Vm+ 3 VmOQ(E —H;+i0)7'Q,Uf

m&i m=£i
=3 Vu+UfQE—H;+i0)"' 3 V,, . (3.3)
m=£i ms£i
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The operator U also satisfies a LS equation:

U=KQGV+¥QGU=VQGV+UQGYV,

where (3.4)

(g)’JZSU(E —Hi+i0)_1
=98;;G;(E +i0) . (3.5)
Notice that [Q,G]=0. One obstacle in relating U
and U is the occurrence of the three projection
operators Q; in U. Therefore, we introduce the

scattering operator 4 A which is free of these projec-
tion operators:

d=VGV+VGA=VGV+AGY. (6

Obviously, (4 + V) satisfies a conventional
Lippmann-Schwinger equation with driving term

Y, so that we can use a standard two-potential for-

mula to connect Uand A

—(4+I=/)£(=;(l=f Y. (3.7)

Because of the nondiagonal term, {4} ) is not the
true scattering amphtude corresponding to (Uj; ).
One can show that (A,,) is on shell equivalent
with the scattering amplitude belonging to { Uf):
defining

A;=V,GoAf; (3.8)

one derives the following equation from (3.6):

Af= (2 V,,,]

m£j
+ {2 Vm }(E —H+i0)"' [ V, ] ,
m£i ms£i
(3.9)
so that
A{=U{+U/P,GA[
=UF+4fP,G, U . (3.10)

This shows that (A4} is the scattering amplitude
corresponding to {Uf). Since V;G is unity if it
operates to the left on an on-shell state, we have
proved that (4;; ) is on shell equlvalent with the
exact elastic scattering amplitude (Af ) One can
now express A,, directly in terms of U}:

A;=V,G U +4,P,G,UF . (3.11)

Using (3.7) we now establish a relationship between
Uf and U;. Defining the operator
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Ai=3 Ui +Vi)Pu GG (Upi +V,) ,  (3.12)
ms£i

and its transpose

Bi= 3 Ui +ViPpGp(Api+Vy), (3.13)
ms£i

and eliminating //f,-, from (3.7) and (3.11), one final-
ly obtains

U; =V;GoUf + U;P;,GoUf — A;(1—P;G; UF) .
(3.14)

Although this equation could be used to evaluate
(U; ) in terms of Uf, the presence of the nondiag-
onal term, which requires information on rear-
rangement amplitudes, is fairly inconvenient. Let
us therefore analyze this term in some more detail.
It is quite evident that A; represents the process of
rearrangement elastic scattering as illustrated in
Fig. 2. Since such rearrangement effects are in-
cluded to all orders in the coupled channel equa-
tion (2.20), they have to be subtracted from the op-
tical potential, and Eq. (3.14) tells us how to do
this in the present exact framework. Because of
the similarity of these recoupling terms in Eq.
(2.20), and the correction terms generated in Eq.
(3.14), it would seem rather inconsistent to include
these effects in one case but not in the other. In-
stead, one would like to treat them at the same
footing, and exploit possible cancellations between
them. This goal can be accomplished by redefining
the distorted wave basis in terms of an optical po-
tential U,, which is free of the correction term.

The correction term is then forced into the transi-
tion amplitude and we will see that it can be nicely
combined with the recoupling terms already
present in this operator.

However, before moving on with this analysis of
the transition operator, we want to make some re-
marks on the magnitude of A;, and more, in partic-
ular, on the magnitude of the recoupling effects in

1
2

A

FIG. 2. Rearrangement contribution A; in the proton
optical potential for P,=0. {4, V;) is on-shell
equivalent with the exact transition amplitude, whereas
(Upmi+V,,) is the transition potential.
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the coupled channel equation (2.20). Although
these effects proceed via the important two-body
channel degrees of freedom, their effect has been
shown to be quite small in calculations performed
so far.>! Despite the fact that these calculations
only included the first part of the transition poten-
tial (V; 4+ U,, ), they should give a fair impression
of the magnitude of these effects (since we expect
that U, is small with respect to ¥;). An impor-
tant theoretical reason which weighs in favor of the
smallness of A; is that this rearrangement process
only involves a single nucleon (in the proton exam-
ple of Fig. 2), so that it does not represent a
coherent process, as do the other contributions to
the microscopic optical potential. Naturally, this
argument does not apply for the deuteron distort-
ing potential, as only two nucleons are involved
here.

IV. REARRANGEMENT OPERATORS
IN VARIOUS DISTORTED WAVE BASES

The coupled equation (2.20) defines transition
operators in the distorted wave basis X; 3 9. " These

distorted waves satisfy the ordinary Schrodinger
equation

(E +E; —K; — (U )X, =0, 4.1)

where E,- specifies the momentum of the incoming
wave (E =k;2/2M; —E;). The formal solution of
4.1) is given by one of the following equations:

=|k; )+PG(E+10)(U11>X,k , 4.2

X;

),

L k;

| Ki) +P,G{E +i0){4;) | K;), (4.4

where

G{(E +i0)=(E —H; —(U; ) +i0)~! 4.5)
and

(A Y =AUy ) +{4; YP,G{U; ) . (4.6)

Notice that (4;; ) is the scattering operator corre-
sponding to (U; ). The rearrangement amplitude
in the basis (4.1) follows directly from Eq. (2.20):

Tji=V;+Uy)8;
+AVj+ Upp )8 Pon G T - 4.7)

Higher-order terms in Eq. (4.7) represent repeti-
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tions of rearrangement scattering, e.g., pickup lead-
ing from the proton to the deuteron channel, fol-
lowed by scattering back into the elastic channel,
and finally a return to the deuteron channel. We
now want to combine these recoupling terms with
the corresponding subtraction terms in Uy and Uj;.
To simplify the following considerations we will
not treat the uninteresting third channel explicitly
and put P,, =0, so that Q,, is the unit operator [in
the (p,d) example, m is the neutron channel]. This
choice also simplifies the calculation of the transi-
tion potential (¥;+ U ). Equation (4.7) can now
be solved for T}; (i#j):

T =V;+Ui)+{V;+ Ui )P;G{V; + Uy ) P,G; T;;
(4.8)

or its right-handed partner:

T =(V;+U) +TpPiG{V;+ U; )P;Gi{V; + Uy .
(4.9)

These are linear integral equations in one continu-

ous variable. Since the distorted waves X 5.0;)*‘ are
(a1

eigenfunctions of the Hamiltonian contained in G;
this equation is also equivalent to the coupled
channel equations (2.20). Using the off-diagonal
form of Eq. (3.7) and the definitions of G; [Eq.
(4.5)] and A; [Eq. (3.12)], one can derive the fol-
lowing identity:
(I/i+l]ij>Pj5j<I/j+Uji>
=P,(1+A4;P,G;)~'P,A,P; . 4.10)

We can now express the second term of (4.9) in
terms of A;:

Ty ={V;+Uy) + Ty PiGi(1+ 43 P,G,) ™ 'Pi P,
i#j . (4.11)
Next we redefine T; in a basis not involving the

subtraction term A;. In analogy with (3.7) we thus
define an optical potential {Uj; ) satisfying

Oy =4y —A4;P,G, Uy . 4.12)

Using (3.11) we can express 0,»,- in terms of U/
U,=V,G U +U,P,G,UF . 4.13)

Hence, we have succeeded in eliminating the non-
diagonal term in Eq. (3.14) through the introduc-
tion of U;. Obviously, Eq. (4.13) will be easier to
use in practical calculations than Eq. (3.14). No-
tice that according to Egs. (3.8) and (3.10), (U, )
and (Uf) are phase equivalent (i.e., they give the

same on-shell scattering amplitude and phase
shifts). Despite the fact that Uj; and U/ are phase
equivalent we expect that the corresponding elastic
wave functions in the interior differ more than
those corresponding to U; and Uj;, which are not
phase equivalent, but whose difference is propor-
tional to A;. We have summarized the different
potentials and transition operators with their rela-
tionships schematically in Fig. 3.

In order to obtain the transition operator in the
new distorted wave basis determined by the poten-
tial operator defined in Eq. (4.13) we compute the
“ratio” of corresponding Mdller wave operators:

X3 =[14+P,G{(E +i0){4;)]| k;)
=[14+P;G;(E +i0){4;)]

X[1+PG{E +i0{4;)]17" X, ), (4.14)
where X ; %, is the distorted wave corresponding to
Uii:

Xv =K +PGUE +i0X U)X,z - 4.15)

In Appendix A we show that Eq. (4.14) can be

A (3.10) uf
(53)\
(4.13) ’J“
(3.8) (3.11) (3.14)
(5.2)
A, (4.12) r\'—l’ Gii
| @7) /
(A4)
| /
I /
R . Y

FIG. 3. Summary of different potentials (right) and
scattering operators (left) in the theory. Ordinary
Lippmann-Schwinger equations between potential and
scattering operator are indicated by horizontal lines.
Wiggly lines connect on-shell equivalent operators,
whereas broken lines connect operators whose difference
is first order in A;. The central operators in our theory
are the optical potential operator U and the distorting
potential operator U;.
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rewritten as follows:

Lk;?

(4.16)

which explicitly shows that the difference between
X and X is of order A. We have already ex-
pressed the recoupling term in 7}; in terms of
(A;), and now have to combine Egs. (4.16) and
(4.11) to obtain an expression for the transition
operator in the basis X Pt Converting Eq. (4.11)

by using the identity (see Appendix B)

(14-P,G; (A, )[1—P,G;(1+4,P,G;)~ (A, )]
=1, 4.17)

we obtain
T;=(V;+U;)(1+P;G;{(A;)), (4.18)
so that we find with the help of Eq. (4.16) that
v T 1 X)) = O0% | <Y+ Uy X% -
(4.19a)

We can also replace the distorted wave state on the
left, using the adjoint of (4.16). Defining the rear-
rangement operator 7 in the new distorted wave
basis by

( X(O |

X0 ) =R, |

J
we find that with the help of Egs. (4.17) and (4.10)
Tji= P;j(V;+Uj)P;

i |1 X3} ,(4.190)

Uy PGy (V;+ Uy ) -
(4.20)

This expression still refers to the potential U; and
Uj; via the Green’s functions G; and 6}._ In order
to obtain an equation expressed exclusively in the
new potentials, we introduce operators G; in analo-
gy to G; [Eq. (4.5)]:

GHE +i0)=(E —H;— (U, )+i0)". 4.21)
One can show that @,- and G, are related by
P,G;=P,G;+P,G(V,+ Uy )G {V;+U;)GP;
(4.22)

where we made use of Egs. (3.7), (4.10), and (4.12).
This allows us to rewrite (4.20) as follows:

T;=Pj(V;+Uy)P;
—P;(V;+ Uy)P;Gi(V; + Uy >Pjé\ff1ﬂ
(4.23a)

—~TuPiG (Vi + Uy PG Ty . (4.23b)

This is our basic result for the transition operator.
One easily shows that the distorted wave matrix
element of TJ, is identical to the exact plane wave
T matrix (see Appendix C), confirming the validity
of our discussion so far. Since the distorted waves
are eigenfunctions of the Hamiltonian contained in
G;, one can solve Eq. (4.23) in this basis, and also
can use coupled channel methods. Because of the
nonlinear character it cannot be solved by the usu-
al Lippmann-Schwinger techniques; however, if the
recoupling term is small then we can solve it by
iteration. One easily verifies that Eq. (4.23)
represents a series expansion in the operator

Z=P,G(Vi+Up)P,G(V,;+U;)  (424)

with the formal solution:
Ti=P(V;+UpP[—3Z '+ 527 (1+42)'7],
4.25)

where the square root should, of course, be under-
stood in the sense of a series expansion. This
should be compared to Tj; in (4.8), whose series ex-
pansion can be represented by

Tj=P;(V;+U;)P{1-Z } 7", (4.26)

where Z is defined by Eq. (4.24) with 6 replaced
by G, Notice that the lowest order recoupling
terms in T], and T}; have opposite signs, whereas
higher order terms will also have different magni-
tude. This shows that conventional coupled chan-
nel equations®>** give incorrect results for the_
recoupling terms if unsubtracted potentials { U )
are used. Whether this statement is also true for
phenomenological coupled channel calculations us-
ing (UF) instead of (U ) cannot be stated with
absolute certainty; however, it is hard to see how
the off-shell transformation could affect it. As
mentioned before, coupled channel codes can still
be used to calculate T; ji> one only has to readjust
the coefficient of the coupling potential after every
iteration step and keep track of the changes in the
wave function after every iteration. One can expect
that the radius of convergence of (4.25) is smaller
than that of (4.26). In fact, if we could consider Z
and Z as pure numbers, then the convergence radii
would differ by a factor of 4. Despite this expected
weaker convergence, the effect of all the recoupling
effects in T will be smaller than in T}; if we have
a constructlve recoupling effect (i.e., a recoupling
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term Z or Z which schematically speaking is posi-
tive and increases the magnitude of 7);). The
reason is that (4.25) alternates in sign for positive
Z. If such a decrease in coupled channel effects
would be confirmed by actual calculagons, then it
would show that the distorted waves X; ¢ are not

only more convenient than X!% , but also lead to
L |

better first order estimates as more of the higher
order effects are contained in X; 3 than in X E'Oi()*,.-
K :

V. EXPLICIT EXPRESSIONS
FOR DISTORTING POTENTIALS
AND DISTORTED WAYVES

Although we have been able to rephrase the ex-
act N-body problem of rearrangement scattering in
more familiar intuitive terms, such as distorted
waves, coupled channel equations, and transition
amplitudes, we have introduced some elements
which are not usually present in phenomenological
theories. These new elements are the off-shell
operator V;G, (unity on shell) and the free three-
cluster Green’s function Gy. Both of these opera-
tors occur in Eq. (4.13), which relates U; to Uf.
The complexity of V;G, and G is due to the fact
that they do not commute with the two-body chan-
nel projector P;. To study them it is sufficient to
consider the operator Hy, since both V; and G can
be expressed in H, plus operators which commute
with P;. For example, V; always operates on the
channel cluster ¥;, so that V;V¥; =(H; —H,)V¥;
=(K; —€; —€j —H,)V;, where K; is the relative
kinetic energy of cluster i and particle { and com-
mutes with P;, whereas €; +€j is the sum of the
binding energy of particle i (¢;) and the total bind-
ing energy of cluster (j,k). Since H contains all
three internal cluster Hamiltonians it does not
change the cluster eigenstates. Therefore, it is very
convenient to expand V; in these states:

g g — pi¥*
(Wi K; | GoUF | Wimi K1) = f dB fint®)
®y

V=Y frtink, ititkti . (5.1)
B,v

Therefore, we will be able to express all relevant
matrix elements in terms of matrix elements be-
tween those cluster states and 7;. The necessity of
knowing the cluster-structure (5.1) of ¥; is, of
course, nothing new: It is exactly this expansion
which one needs for computing the DWBA matrix
element (¥;), and it is, in fact, the nuclear model
and structure information put into (5.1), which one
wants to test in rearrangement reactions. The new
element which is introduced by the exact descrip-
tion is that we also need this cluster decomposition
for the calculation of the appropriate matrix ele-
ments of the optical potential operator U/. It is
really not a surprising result: In elastic scattering
one needs the ground state matrix elements { U/)
of Uf, in inelastic scattering one needs the excited
state matrix elements of U/, and in rearrangement
scattering one needs the “breakup” matrix elements
of UF. Equation (4.13) then ensures that these ma-
trix elements are properly embedded in the dynam-
ical description of the rearrangement process.
Through further experience with Eq. (4.13) one
should acquire a better intuitive feeling for this
phase equivalent transformation. In particular, it
is of interest to see how it affects the behavior of
the distorted wave in the interior, and how it af-
fects their momentum distributions. These aspects
and a number of approximations, which circum-
vent the necessity of knowing the detailed structure
of ¥;, will be discussed elsewhere.**

The equation for U; [Eq. (4.13)] can be written
as a set of two coupled equations:

U,=V,:G,U; (5.2)
and
ﬁii:'UiF+ ﬁiiPiGOUiF- (5.3)

In order to solve this equation for ﬁii) we need
to know {GoUF). Using (5.1) one finds

X

E € +ex+e—

2u;  2M;

PR (fmimBK | UF | Wim,K ;) (5.4)

+i0

where €; (€} ) is the binding energy of eigenstates u (v) cluster j (k). In configuration space this relation be-

comes
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<wl1’lrl IGOU IWU,Q’)___;d f[tv(p
_exp{i[2M; (E +eé el +e—p2/2u)]? | Ti—T) )
X f -
| T;—T
X <nmkn,-ﬁf*| Uf | Wit} . (5.5)

Of course, these expressions still look quite complicated; however, this is due to the fact that they are still
completely general and exact. In actual practice, both the cluster wave functions and the expansion (5.1) are
often trivial, e.g., in the case of nucleons and deuterons. For the nuclear wave functions the shell model

usually gives a straightforward expansion.

One can now solve Eq. (5 3) by setting up integral equations for (17 I pk | U,, | W;m; k ) in terms of
the input (7} Ny BK; | UF | W;m;K ;). These matrix elements of U; are sufficient to determme (U;):

—(fjk—f’}‘—fk)—P2/2ﬂi

(ﬂi’ﬂimﬁfl Ui I\PiniE’) .

(KO | K'Y= $ dB fL(5)*
v

Notice that for on-shell momenta
(k*/2M;=E +¢€;+€j) the p-dependent ratio is un-
ity, so that the integral over cluster states collapses
into ¥;. We can now use this potential to compute
X i ¥, via a standard Schrodinger equation.

There is a more direct and simpler way to com-
pute X, V% namely by expressing this distorted

wave dlrectly into the elastic wave function. Writ-
ing the distorted waves formally as

= | Eg)-’r(Gi)( ﬁ,’,')j(\,-,](’i
or, using Eq. (4.12),
=(14+(G (A )| K;) 5.7)

and using the formal expression for X ,F Ty
X == (G UMK, , (5.8)
one finds, with Eq. (3.11),
©,=(1—(GUN W - (5.9)

This is our basic result for the distorted waves.
Considering the completely different structure of
the operators we started with [Uy; and Uf in Egs.
(3.1) and (3.2)], it is quite amazing that these wave
functions are so simply related. For a calculation
of the distorted waves, Eq. (5.9) is clearly superior
over the indirect procedure [Egs. (5.2) and (5.3)].
Instead of solving integral equations in two con-
tinuous variables one only has to do a quadrature
in one continuous variable. The potentials ( U; ),

E+éi+ef+€—p*/2u;—k*/2M; +i0

(5.6)

I
however, remain useful for the calculation of recou-
pling terms in coupled channel equations, as these
terms cannot easily be calculated in a different
way.

In order to stress the simplicity of Eq. (5.9) we
give it in more explicit notation:
X, ¢ (T =Xy ()

1, i

— [T (F | (GoUf) [ F)X[ 3 (7).

(5.9

This equation is very similar to the ordinary

scattering equation, with the plane wave replaced

by X,.F (1), and the Green’s function G replaced
>R

by G,. Notice, however, that there is a minus sign
instead of the usual plus sign in front of the
scattering term. This may imply that the usual
elastic wave function Xf é overestimates the distor-

tion effects.>* As stated before, one often does not
require the information contained i in Eq. (5.1) to
get a reasonable determination of X, e In particu-

lar, one can make approximations whlch limit the
amount of required information to { Uf), or which
are valid in the high energy limit.>* Hence, an ap-

proximate calculation of X; > is quite feasible.
iLk; q

VI. ANALYSIS
OF THE TRANSITION POTENTIALS

In Sec. IV we derived a nonlinear integral equa-
tion [Eq. (4.23)] for the transition amplitude 7;; in
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terms of the transition potentials ( V;+Uj) and
(V;+Uy;;). We explained how higher order terms
in this equation (the so-called recoupling terms)
could be evaluated using (modified) coupled chan-
nel methods. In this section we want to address
the transition potentials themselves. These poten-
tials contain familiar contributions, such as DWBA
and coupled channel effects (contributions of inter-
mediate excited states in either of the two chan-
nels); however, they also contain other contribu-
tions which have not been considered before in the
context of coupled channel equations.

Provided our guiding principle applies, much of
the strength of the original plane wave transition
operator has been absorbed in the distorted waves,
so that the remaining (Uj; ) is indeed small. What
is more, we will see that the same arguments
which are used in favor of the smallness of (Uj; )
(essentially the elimination of elastic degrees of
freedom) can be used in comparing subsequent or-
ders in the series for (Uj; ), so that we expect to
have a well-behaved, convergent series expansion
for U;. We now want to derive this expansion.

The transition potential satisfies the following
equation [cf. Eq. (3.4)]:

Ui=V;0iG;U; +V;Gy (Vi + Uy;), k#ij#k
(6.1)

where we did put Q; =1 as usual. Eliminating Uy;
in favor of Uj; we obtain

Ui=V;GoT(1+Q;GoT;)+V;(1+Go T} )Q;G; Uy

+V;Go T Q;G; Uy, k#i#j#k , (6.2)
where we introduced the free two cluster T matrix
T =Vi+ViGo(E +i0)T} . (6.3)

Equation (6.2) is our basic result for the expansion
of the transition potential. We now want to pre-
sent some arguments in favor of its convergence.
In the Introduction we stated that many-body de-
grees of freedom (i.e., Q space) cannot be ignored,
but possibly can be treated perturbatively. This
statement was intently vague, as it is very impor-
tant when such an expansion is introduced. For
example, if the optical potential U/ is expanded in
such a series, starting directly from Eq. (3.2), then
one would obtain a first-order folding potential
with free nucleon-nucleon potentials, which is gen-
erally considered inferior to the potentials obtained
in multiple scattering theory.>!* 1In the latter case,
one first introduces the two-nucleon T matrices
which summarize more of the physics of the two

nucleon collision. In addition, these 7" matrices
implicitly contain some aspects of the many-body
problem (since they are T matrices in the nuclear
medium). Using these effective interactions one
can then argue that the remaining series is basical-
ly a correlation expansion,!” and can be expected to
have good convergence properties (although a
quantitative analysis has to confirm such an expec-
tation ultimately). The question we are facing is,
therefore: Is the equation for Uj; in Eq. (6.2) suffi-
ciently developed that a perturbation expansion is
appropriate? We believe that this is the case. The
relevant operators in this equation, the optical po-
tential U; and the intercluster T matrices T} and
T, summarize definite physical processes (more so
than the individual potentials), and in our opinion
provide an optimal starting point for the expansion
in Q space. Notice that the Faddeev method has
automatically ensured that all intercluster poten-
tials can be replaced by intercluster T matrices.
Not only do these T matrices probably ensure a
better convergence of the series, they also are usu-
ally better behaved than the potentials and are
closer to experiment, which is an advantage if we
want to exploit experimental information on
cluster-cluster scattering.

There is one aspect which seems to weaken the
Q-space argument: Whereas in the elastic case one
has to return to the original channel, thereby em-
phasizing the role of P space, in rearrangement
scattering the initial and final channels are dif-
ferent, so that one can imagine that there are
processes which owe their importance to their large
overlap with both the initial and the final channel
states. In fact, the term V;G( T} in Eq. (6.2) is ex-
actly such a process: it proceeds via the third (im-
plicit) channel k, which is closely related to the ini-
tial and the final channel, but not identical to
either of them. As we see from Eq. (6.2) this is the
only contribution to Uy which is not constrained
to excited state propagation, and therefore we
should put special emphasis on this term. It is
another plus of the Faddeev description that it
made this particular process so readily identifiable.

We are now ready to discuss the contributions to
the transition potential more explicitly. The first
term of Eq. (4.23) when used in Eq. (4.19b) pro-
duces a result which can easily be recognized as a
microscopic form of the usual DWBA amplitude:
TRVBAK ), K, E)=( \p,.nj)?;}} |V WX R
In the (p,d) reaction, V; is either the short-range
neutron-proton or the longer ranged neutron-core
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interaction. Since it is more convenient to work
with the former, one should choose j and i to cor-
respond to the deuteron and proton channel,
respectively, i.e., we would in this particular case
consider TDWBA( k3, kl,E ). This amplitude can be
calculated with standard DWBA codes if one re-
places X lF I’,.(F) with X i,T;'_(f'). Notice that by fixing
Jj and i, we have also fixed the off-shell transforma-
tion (¥V3G) and the nature of the inelastic excita-
tions (Q, Uy, i.e., in the proton channel) in Eq.
(6.2). Since we know the deuteron wave function
and the nucleon-nucleon potential quite well the
off-shell transformation only presents a minor com-
plication in the (p,d) case.

We now continue with the first term in Uj:

T};'esc(Ej:Ei’E):( iMj ‘(,_k) | VGOTk |\I’1771 )

(6.5)
This process is illustrated in Fig. 4 for

“He(p,d)’He. As noted before, this term deserves
special attention as the intermediate state is not
constrained to Q space. This term is absent in the
usual DWBA and coupled reaction channel (CRC)
calculations,’?3? and may indicate a severe

T

’

T, ksB)= [ ak; [ak; [aqRizh«;

FIG. 4. Rescattering contribution to the (p,d) direct
amplitude. The ellipses represent the effects of distor-
tion on the initial (final) waves.

shortcoming of these phenomenological theories.
The presence of triangle mechanisms in rearrange-
ment reactions was also discussed by Vanzani®® in
the context of a three-body model of rearrangement
reactions. Since he does not use projection tech-
niques his “distorted waves” are not simple two-
body wave functions and he has to make a further
approximation to obtain distorted waves of the
normal form. For the case of elastic scattering this
rescattering term represents the exchange contribu-
tion, which underlines its importance. Using the
same expansion [Eq. (5.1)] as before we can write
(6.5) as follows:

VB j)*

—Ej+€+ei+er—B ;2 /2,

E+q+#+q—

X i B

where
— mk gl
p]_ mk"‘m, ’
my —
D= K,
Pi q my+m,
. =, m;
=—k;— 6.7
Pk j mj+m‘ ( )
3K m;
Prk= i+ mj+m1 q,
q2
E=E +¢€;,— M
k

As is common in three-body theory we have indi-

| TR E) | nmiB i Mol

r2 1,12

BIOYE (KD, (6.6)

T
cated three-body operators which are reduced to
two-body space with a hat (T}, —> Tk) The physi-
cal region for the scattering process described by
Ty is E > max(—€;—¢f, —€j—¢;). For u=7=0,
T}, describes elastic scattering. Notice that V;G,
only replaces the momentum space singularity of
S, (which is canceled by the numerator of the
off-shell factor) by the three-cluster propagator,
which is energy dependent. The wave function
with its bound-state singularity removed is usually
called the form factor or vertex function. It has
been studied extensively in the case of the deuteron.
Again, we should stress that the complexity of (6.6)
is due to its complete generality; in actual cases the
cluster wave functions and expansions are often
quite trivial. Various approximations can be used
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to make Eq. (6.6) more tractable. In Ref. 28 we
have published results for *He(p,d)’He, which indi-
cate a fairly large contribution at intermediate en-
ergies and forward angles. These calculations were
done in the plane wave approximation using only
the elastic contribution g =7=0, so that we only
had to perform one integral (which could be done
analytically).

There are three other Born terms in Eq. (6.2), all
of which proceed via excited channel states. The
most familiar one is V;Q;G; Uj;, which represents a
typical coupled channel effect (see Fig. 5). Since it
involves the coherent potential U; and no further
rescattering, it may well be the most important one
of the three remaining terms. Coupled channel ef-
fects have been calculated extensively, and they
even seem to give important contributions at inter-
mediate energies.’® According to our theory this
term is given by

TS (K5, K B)
=<‘I’3773XA(3,_;213 | V301G Uy |‘l’1771f(1f§21> .
(6.8)

Since excited states in channel 1 are naturally
eigenstates of H, the Green’s function

G,=(E —H,)~! has a very simple form in this
case. As expected we need inelastic matrix ele-
ments of the distorting potential to compute this
coupled channel effect. Provided we know the ex-
cited states in terms of a cluster dg:\composition,
such as (5.1), we can calculate Q; U;; P; from the
same matrix elements (nfnin;Bk; | Uy | ¥;n;K; ),
which were needed for the computation of P; U P;.
We then can evaluate (6.8) in the approximation
QUi Pi~Q;U; P;.

In principle, one can also calculate this coupled
channel effect via coupled channel calculations. In
Sec. IV we discussed a one-to-one relationship be-
tween the coupled channel equation (2.20) and the

FIG. 5. Multistep effect. The excitation of the inter-
mediate state can also involve the projectile if it is com-
posite. This diagram represents initial excitation of the
nucleus in the proton channel, followed by a transfer to
the deuteron channel.

T-matrix equation (4.9). Such a relationship is not
possible for the transition potential itself, among
others, because of the “free” Green’s function G;
which does not contain the optical potential. We
therefore have to go back to Eq. (2.23) and carry
the excited states throughout. The resulting equa-
tions are probably a straightforward matrix gen-
eralization of the present ones, which in the case of
Eq. (5.9) will mean that we also have to know the
inelastic wave function. Although this would be
an interesting alternative to the present equations
we feel that a direct evaluation of T'$;°, which ex-
ploits the simplicity of G, is preferable.

Let me point out one interesting feature of (6.8).
It seems as if this expression only describes excita-
tions in channel 1. This is quite different from Eq.
(2.23), where both excitations in channel 1 and
channel 3 occur. One can, however, bring out the
excitations in channel 3 by using the left-hand ver-
sion of Eq. (3.4):

Ui =V3GoT,+U3303G3V33+ Uy Gy W, (6.9)

However, now the excitations in channel 1 van-
ished. This duality reflects the fact that it is in-
consistent to include excitations in both channels
unless one renormalizes the potential Uj; at the
same time [which is done implicitly in Eq. (2.23)].
Formally, this renormalization can be accom-
plished as follows. Assume, to be specific, that we
want to include an excitation a in the deuteron
channel. The excitation mode will be represented
by P$, and we also define Q5 =Q;—P§. We can
now define a new potential operator U through

Ur=FGQ¥+¥G QU

=KGQ¥V+UGQV, (6.10)
so that
U=U+(Y+UG(Q— Q) ¥ +U). (6.11)
Thus, we obtain
U =U$; + USG5 PS(V3+Usy) . (6.12)

Using Eq. (6.11) we find
U1 = V3G T, + V3G, U3+ V3G,Q,UY,
FULGLPHV3+Us,) . 6.13)

The structure of (6.13) is similar to that of Eq.
(6.1) for j =3 and i =1, except that we have an ad-
ditional coupled channel term in the deuteron
channel and a different proton optical U¢; and
transition potential U%;. The relation of U;; and
U, is given by (6.11):
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U‘lxlell_(V1+U‘1z3)G3 ?(V3+U31). (6.14)

If the difference between U{; and Uy, is small (it is
a typical recoupling term) then one can replace U{;
by U;; to good accuracy. In that case, we could
add the deuteron channel excitation term to the
original amplitude (6.1) without a serious over-
counting problem. However, the overcounting
problem becomes more serious if the excitation is
stronger, and if more proton channel excitations
are included. In Fig. 6 we give a schematic picture
of the coupling scheme if the deuteron excitation is
included in a rigorous way.

Two other Born terms appear in Eq. (6.2):
ViGoTxQjGoT; and V;G T Q;G; U;;. These are
shown in Fig. 7 for the case of “He(p,d)’He. In
the first diagram the proton first knocks out the
neutron, but instead of forming a deuteron immedi-
ately, it then rescatters with the remaining core nu-
cleons, and finally forms the deuteron. It is this
type of diagram which has recently attracted much
attention at intermediate energies,’’ since it spreads
the momentum transfer over two steps, and there-
fore does not rely on the tiny large momentum
components of the nuclear wave functions. Again,
this term is neglected in standard DWBA and cou-
pled channel equations. The present theory shows
that it can be added to a stripping diagram without
risk for overcounting, provided we use the projec-
tion operator Q3 in the intermediate state, and pro-
vided we are using the distorted waves X; i instead

of X[ . Future calculations will have to show
(|

whether this diagram is still so important if it is
calculated in a consistent way.

The higher-order terms in Eq. (6.2) are essential-
ly repetitions of the previous ones. With each
higher order we introduce another operator
ViGoTxQ;Gj, i.e., another rescattering process and

FIG. 6. Coupling scheme when one excitation in the
final (deuteron) channel is included as well. Both the
inelastic potential in the proton and deuteron channel
have to be renormalized.

an additional propagation via an excited state. The
calculation of higher order diagrams may thus be
quite irrelevant for comparisons with experiment;
however, they are very valuable for testing the con-
vergence rate of the series quantitatively.

VII. SUMMARY AND DISCUSSION

We have developed a microscopic framework for
calculating rearrangement amplitudes. The basic
guiding principle in its development was that the
distortion in the initial and final channel plays a
central role in rearrangement scattering, and there-
fore should be treated in a consistent and construc-
tive way. By constructive we mean that the distor-
ting potential should be derived in the context of
the rearrangement problem itself, rather than by
considerations of other processes, such as elastic
scattering, although we stress the importance of
connecting the distorting potentials with the elastic
optical potentials. Such an approach guarantees a
constructive transition amplitude, i.e., an amplitude
without counterterms [see Egs. (4.7) and (6.2)].
The amplitude can then be expanded in a series
with a well-defined hierarchic structure (not ob-
scured by counterterms with a totally different
structure), and therefore enables a straightforward
analysis of its convergence properties. Also, each
term in the expansion represents a clear dynamical
process which can be represented diagrammatical-
ly.

In Fig. 8 we summarize the present theory. This

Q,

FIG. 7. (a) Two-nucleon mechanism. The proton
rescatters before forming the deuteron. (b) Rescattering
graph preceded by channel excitation.
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diagram illustrates how the problem of construct-
ing the physical amplitudes is reduced to a number
of separate subproblems, which are much easier to
deal with individually. The central input for both
direct and exchange amplitude is the optical poten-
tial operator Uf. The specific cluster structure of
the rearrangement process (i.e., direct or exchange)
determines which matrix elements of U/ are need-
ed. These matrix elements, together with the clus-
ter structure of the asymptotic bound states, enable
a microscopic calculation of the distorted waves
and distorting potentials. The cluster structure of
the asymptotic states is also required for the calcu-
lation of the DWBA and the driving terms in the
transition potential. We see that the Born terms
further to the right require an increasing amount of
input, e.g., nuclear structure information about ex-
cited states and T matrices for intercluster scatter-

Cross Sections

Polarizations

Physical
Amplitudes

4-body
Amplitudes

Direct
Amplitude
First Order

Term

DWBA(V)

Exchange
Amplitude

Recoupling
Terms

Transition
Potential

Higher-Order
Terms

Coupled Rescatt. i
Rescatt. nel. TNM Inel. Dlsloﬂl»ﬂg Distorted
Term Channel Term Potential Waves
] T T
L, 4

L > ‘I’ J Elastic Wave
I 4 xF
] -~
L\\ W
{::ﬂuﬁ» <uf> l

Born Term

:

AF\ \ 4 444

Cluster Struct.| Cluster Struct.
Asymp. States|

Cluster-
Cluster
T-matrices Exc. States

FIG. 8. Schematic summary of the present theory.
This scheme clearly shows the rich structure of the phy-
sical amplitude. Broken lines represent possible approxi-
mations. The decomposition of the exchange amplitude
is completely analogous, although the cluster structure
will be different. The decomposition of four-body am-
plitudes, which are not present for reactions involving
an asymptotic nucleon-nucleus channel, are not dis-
cussed in this paper. Since all of the terms in the tran-
sition potential require knowledge of the potential V;
[the neutron-proton interaction in the (p,d) reaction] we
did not specify this explicitly. Notice the special role of
the DWBA. This term does not occur in the Born term
of the expansion for the transition potential.

ing. The simplest calculation is the one using the
two external lines. This is the standard DWBA.
We see that this approximation requires replacing
the distorted wave by Xf. Although it is natural to
approximate the transition potential in first order
by the DWBA, there is no obvious reason why

Xf % should be a good approximation to X e A
further analysis of Eq. (5.9) may reveal when this
is the case, and may provide a better understanding
of the successes and failures of the DWBA.

One of the practical advantages of this theory is
that it enables one to add various terms [recoupling
effects, inelastic excitations, two nucleon mechan-
isms (TNM), etc.] to the DWBA amplitude
without the risk of double counting. Such con-
sistency is especially necessary at intermediate en-
ergies, where one is considering higher-order dia-
grams (in particular the TNM) which distribute the
momentum transfer over various steps. The
danger for inconsistencies in phenomenological
methods is demonstrated at various occasions in
this investigation. Firstly, we show that standard
coupled channel calculations, which employ unsub-
tracted potentials ({ U )) are only valid for
evaluating the first-order amplitudes, and give the
wrong sign for the second-order recoupling term.
Fortunately, we are able to suggest a slight modifi-
cation of these calculations which can easily be in-
corporated in existing codes. Secondly, we show
that coupled channel calculations which include
excitations in both the initial and final channel
suffer from double counting. Again, we are able to
suggest a modification (in this case of the optical
potentials) which resolves this problem, in princi-
ple. Since we do not expect that the double count-
ing in this case is too serious, the main virtue of
this portion of the theory may be that it provides a
tool to check the importance of this inconsistency.
Thirdly, we find a new rescattering graph (Fig. 4)
which has been omitted from coupled channel cal-
culations so far, probably out of fear for double
counting. There is still a remote possibility that all
these objections do not apply to the standard calcu-
lations because these employ the distorting poten-
tial (U{), and not the (phase equivalent) (U ).
However, we find it very hard to accept that this
phase equivalent transformation would resolve any
of these three inconsistencies. At the very least we
have demonstrated that there may exist severe in-
consistencies in the standard coupled channel cal-
culations, and we have presented a theory which is
free of such problems.

Since the off-shell transformations are responsi-
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ble for many of the nonstandard features in the
theory, we may ask whether one could have avoid-
ed these by using a different starting point. For
example, we could have started with the so-called
distorted Faddeev equations and introduced the
microscopic optical potential { UF) in the left-
hand side of Eq. (2.9), so that this would constitute
the distorting potential in lowest order. However,
this approach has the common disadvantages of a
nonconstructive approach, and leads to counter-
terms in the right-hand side of Eq. (2.9). Also,
after projecting out the Q states we still end up -
with additional (very complicated) contributions to
the distorting potential and introduce a host of
nonorthogonality terms (characterized by products
of P; and P; without interactions in between).
Another approach—advanced for inelastic proton
scattering and (p,2p) reactions by Picklesimer,
Thaler, and Tandy®*—is to introduce the elastic
wave functions directly into the exact matrix ele-
ments. Apparently, the resulting transition opera-
tor in the new basis still has a constructive nature
in the cases they consider,’® however, its applica-
tion to rearrangement reactions would most cer-
tainly lead to a nonconstructive transition operator.
It therefore seems that some kind of off-shell or
phase equivalent transformation is necessarily part
of any microscopic theory of rearrangement reac-
tions,?* unless one is willing to accept nonortho-
gonality terms, uncertain counterterms, and a large
amount of arbitrariness in the theory.

Let us now comment on possible variations of
the present approach and its relation to some other
methods. Since we are dealing with a three-body
problem embedded in a many-body problem, one
might ask whether it would not have been more
appropriate to develop true three-body equations
instead of the effective two-body equations. The
problem is, however, that the corresponding projec-
tor Py, which projects out product wave functions
of the three clusters, defines a small space, which,
in general, does not contain the asymptotic bound
cluster states. Only if these asymptotic two-cluster
states can be written as a product wave function
would this be the case. If, however, we would al-
low all possible excitations of three clusters to Py,
then Py would just be the unit operator. Hence,
such a theory only becomes practical if we employ
a three-body model of the reaction which ignores
important many-body aspects of the reaction. Na-
turally, the three-body scattering problem is also
an order of magnitude harder to solve than the
two-body problem. The embedding of the three-

body problem in the many-body context is also a
central theme in the theory of Tandy, Redish, and
Bolle.® However, their theory aims at a simultane-
ous description of elastic scattering, knockout, and
pickup, which in our opinion is too ambitious and
too inflexible as far as the pickup problem is con-
cerned. One price they have to pay for this ambi-
tious scheme is that their optical potential is limit-
ed to the single-scattering approximation. Also,
the three-body nature of their theory limits its
practicality.

Finally, we want to discuss the further develop-
ment and application of this theory. First, one will
have to develop reliable approximations** to calcu-
late the distorted waves from X7. If we succeed in
this, then we can use rearrangement scattering to
test the (microscopic) optical potential { Uf) which
is put in. In a sense this is already done at present
when one modifies the optical potentials in DWBA
calculations to fit the data. However, now that we
understand the role of the optical potential micros-
copically, we can perform such a test with more
confidence. Other aspects of the theory which
could be tested are the convergence of the series ex-
pansion for the transition amplitude and the transi-
tion potential. Especially, the latter test will not be
easy; however, the very existence of this series ex-
pansion may give enough encouragement to such
an undertaking. At intermediate energies one
would put more emphasis on certain rescattering
terms, such as the two-nucleon mechanism. In this
respect we notice that relativistic kinematics can
easily be introduced in the present theory, as most
of the processes can be represented by diagrams,
which can be formulated with relativistic kinemat-
ics. This feature was already employed in the ap-
plication in Ref. 28.

This work was supported in part by the Natural
Sciences and Engineering Research Council of Ca-
nada.

APPENDIX A

In this Appendix we prove the identity
(14+P;G {4y ))(1+P,Gi{4;)) " =1+P,G;(A;) .
(A1)

Both (4, ) and (A4 ) can be expressed in terms of
(U; ), which enables us to relate them. From (4.6)
we have
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(Ui y=(4;Y(1+P,Gi{4; )", (A2) We now consider the expression in brackets and
write

and from Egs. (3.7) and (3.12) we infer that

[..... ]=[1+(z‘?ﬁ)PiGi—PiGiwléi—<Ai5i>]

(B3)

(B4)

(BS)

(B6)

(B7)

(C1)

(Ug) =144 ) PG) ™ ((A) — () . (A3) N
ii i /i i i ] X(1+<A,-i)PiGi)_].
Eliminating {U; ) we obtain: i
. Using the equation
(45 ) =(43) — A, (1+P,Gi{4;)) . (A4) A ~
1=PiG,‘_ G,' _ < Uii >PiG,' >
One easily verifies that this is equivalent to (A1).
one can write
{ ..... }=<//1\,,>P,G,—(<Uu>+<A,>)PI§,.
APPENDIX B: PROOF OF EQUATION (4.17)
We have to prove that Using
(1+P,G;{ A [1—P;G;(1+(A; YP;G;) (A ) ]—1 GG, '=1—G;(Uy)
=0. (B1) one easily finds that
The left-hand can be written easily as follows: {..... }=((A; ) —{4; YP,Gi{U;)
lhs=P;G;[1 — (G " ANG; (1 +(4;)P;G) 1A . —{(U;Y—{(A;))P,G; ,
(B2) which according to Eq. (3.7) is zero, Q.E.D.
APPENDIX C: IDENTITY
OF DISTORTED WAVE AND PLANE WAVE
TRANSITION MATRIX ELEMENTS
The transition matrix element in the distorted wave basis is given by Egs. (4.20) and (4.15):
Tf,':(j(\j’i’j | (IG+Uji>Pi[1_Gi<I/i+Uij)Pj6j( Vj'f‘Uji>] |5(\,"§’i> .
Using the identity (4.10) one rewrites this as
Tfi=(52jj(j [{V;+ Uy YG.P,[G; ' — Uy —(1+A4,P,G) " (A;)] |5(\i,i’i>
=X,z | (V4 U GRIG ™ =1+ 4ePiG) ™ 431 | X, )
=<)?j,?j | (V;+ Ui )GiPiGi~ (14 P,Gedi) ™) [ X, )

(C2)

where Eq. (3.7) has been used to obtain the second line. From (4.10) and the explicit form of (A;) one easi-

ly derives the identity
P,(V; +Uy)P;G; =P;(1+4;P,G) " (4 + V)G, P ,
so that (C2) can be written as follows [interchange i and j in (C3)]:

Tr=(X,x, |1+ 4,P,6) i+ V)U+PGA) ™ | Xz, ) =K, | Ay +V; | Ko)

Using Egs. (3.6) and (3.8) one can show that Ag satisfies the Faddeev-type equations

Axi'__sim Tmsmj +5im T, GOArIrjj ’

so that V; +4 ]f is the exact transition amplitude in the plane wave basis. Therefore, ‘a\ﬁ +V; is on-shell

equivalent to the exact T matrix.

(C3)

(C4)

(C5)
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