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Particles and holes equivalence for generalized seniority
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An apparent ambiguity was recently reported in coupling either pairs of identical fer-
mions or hole pairs. This is explained here as being due to a Hamiltonian whose lowest
eigenstates do not have the structure prescribed by generalized seniority. It is shown that
generalized seniority eigenstates can be equivalently constructed from correlated J=0 and
J=2 pair states of either particles or holes. The interacting boson model parameters re-
cently calculated can be unambiguously interpreted and then are of real interest to the shell
model basis of the interacting boson model.

NUCLEAR STRUCTURE Shell model description of interacting bo-
son model; particle-hole equivalence in generalized seniority.

In a recent paper' the derivation of parameters of
the interacting boson model (IBM) from the shell
model is considered. It is claimed there that they
depend sensitively on whether shell model states are
constructed from correlated pairs of nucleons or
pairs of holes. In Ref. 1, this is presented as an am-

biguity and is attributed to "the shell-model trunca-
tion inherent in the IBM." It is concluded that "it
is crucial to include renormalization effects from
outside the S-D subspace. "

The aim of the present report is to clarify the ori-
gin of the effects observed in Ref. 1. We show that
states with generalized seniority J=0, u =0 and
J=2, v =2 can be equivalently obtained by cou-
pling either identical particle pairs or hole pairs. It
then follows that the lowest J=0 and J=2 eigen-
states of the Hamiltonian of Ref. 1 do not have the
structure prescribed by generalized seniority as as-
sumed there. There is no ambiguity in the mapping
of shell model states on boson states, which is the
microscopic foundation of IBM. It is based on the
lowest J=0 and J=2 states of valence protons and
of valence neutrons having well defined generalized
seniorities.

The lowest J =0 states of identical valence nu-

cleons, like ground states of semimagic nuclei, were
constructed by

(s')"
I
0&,

St=XaJSJ =Xal( , X( —1)'™ajat —). (1)

In (1),
I
0& has only closed shells, aj~ are nucleon

creation operators, and the summation extends over

j orbits in a major shell. Such states as (1) are
eigenstates of the (one body and two-body) shell
model Hamiltonian H (normalized by H

I
0&=0)

provided

HS'Io&=[H, S'] Io}=V,S'Io&, (2)

[[H,S'],S']=n(S')',

X&(jtrtj'trt'
I jj'2M)a, ~toj'~ . (4)

Also such states, assigned generalized seniority
v =2, are eigenstates of H if, in addition, the fol-
lowing conditions are satisfied

HDM Io&=V2DM Io&,

[[H,S ],DM ]=b,S+DM .

The parameters pJI in (4) can be calculated from
(5). This amounts to calculating the eigenvector

where Vo and 5 are numbers. The parameters nJ
can be calculated from the eigenvector of the J=0
submatrix of H, with lowest eigenvalue Vo, in the
two nucleon configuration. Such states as (1), as-

signed generalized seniority U =0, can be mapped
onto boson states (s ) IO& of valence protons or
(s „) I

0& of valence neutrons.
Similarly, lowest states with J=2 of semimagic

nuclei were constructed by
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with lowest eigenvalue Vz of the J=2 submatrix of
8 in the two nucleon configuration. The states (4}
can be mapped onto boson states (s ) 'der ~. 0&

for valence protons or (s„) 'd~
~
0& for valence

neutrons. It was shown in Ref. 2 that a conse-
quence of conditions (2), (3) and (5), (6) is that the
separation between the J=0 states (1) and the cor-
responding J=2 states (4) is independent of N and

equal to Vg —Vp. In the boson model this separa-
tion is identified with the energy difference
e=e~ —e, between single d boson and single s-boson
energies.

In Ref. 1 matrix elements of a certain quadrupole
operator were calculated between states constructed

hke (1) and (4), properly normalized. When such
states were constructed by coupling hole pairs the
results turned out to be different. Obviously, the
states constructed in Ref. 1 with hole pairs were not
identical to those in which particle pairs were used.
Let us now consider the case that (1) and (4) are
eigenstates of the shell model Hamiltonian and con-
struct hole states corresponding to them.

The (only) state, with 1=0, of the completely
closed major shell is obtained by putting X=0 in

(1), where 2Q=X(2j+ I). The hole pair creation
operator S' operating on that state should give a
state proportional to (S t )

'
~
0&. By induction we

obtain

S'(St)n
~
0& =Q(S')"-'[S',St]

~
0&+ —,

'
Q(Q —1)(S')"-'[[S',S'],St]

~
0& . (7)

%e can express S' as a linear combination of the
Hermitian conjugates of SJ as XaJSJ . The well
known commutation relations of the quasispin
operators SJ,SJ, and SJ ———,[SJ,SJ ] yield for the
commutators in (7)

[S',St]=Xaj aq [S~,SJ ]

2XcEJ QJ SJ

[[S',St],St]= —2Xaj aj [SJ,SJ~]

2——2+J cxJ. SJ

The rhs of (7) will be proportional to (S t )n '
~
0&

if, for every nonvanishing value of a~ we set

a~ = I/aj. Apart from normalization, the hole pair
creation operator is

When the operator S', given by (9), operates on
the state (S t )+

~
0& with any value of 1 &N &Q, it

gives a state proportional to (S t )
'

~
0& as seen by

replacing Q by N in (7). Hence, eigenstates of H
with E=Q—N hole pairs can be obtained by N
successive applications of S'. In particular, the
coefficients aj ——1/aj will be obtained by diagonal-
izing the J=0 submatrix of H in the two hole con-
figuration.

The J=2 states with generalized seniority v =2
can be obtained by operating on J=0, v =0 states
with a single nucleon quadrupole operator Q~ given

4, 5

D~= —,[Q~ S ].1

(10)

Using this Qsi and S' we similarly construct the
J=2 hole-pair creation operator

D~= —,[Q~ S'] .

To see it we first calculate with the help of (8) and
the Jacobi identity

[D~,S ]=[DM S ] [[DM S ],S ]=2D~

(12)
We obtain by induction, making use of (12),

Dsr(S )
~
0& =N(St) '[DM, St]0

~
&+ , N(N —1)(S~) —[[DM,S ],St]

~
0&

=N(N —1)(S ) DM i0& . (13)

The term linear in N in (13}does not contribute as
can be readily verified [cf. Eq. (11) in Ref. 2].
Hence, the operation of (S') 'D„' on the state with
closed shells (S t )

~
0& yields a state proportional

I

to (St) 'Dz ~0&, where N=Q N. All these—
states are eigenstates of H, and in particular, the
state D&(S t )

~
0&. Hence, the exact form of D&

[the coefficients similar to those in (4)] can be ob-
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tained by diagonalizing the J=2 submatrix of the
Hamiltonian in the configuration of two nucleon
holes.

The shell model basis for IBM is the mapping of
states constructed from J=0 and J=2 pairs onto
states with s and d bosons. Since states with dif-
ferent numbers nd of d bosons are orthogonal, the
corresponding shell model states should also have
this property. This is achieved by removing out of
any state constructed by nd operators D corn. -y

ponents with generalized seniorities lower than
2nd '6 .The latter have the general form SfBt

~

0).
When n~ is larger than Q all states have this form
and will not survive the procedure. Therefore,
beyond the middle of the shell the mapping onto
states with N bosons is of shell model states con-
structed by N pairs of nucleon holes. s 6

The parameters of the quadrupole operators of
protons and neutrons which appear in the boson
Hamiltonian are determined from states with gen-
eralized seniorities v =0 and v =2. They can thus
be obtained from those states constructed from ei-

ther particle pair or hole pair states. No ambiguity
will arise from using the boson description
throughout the shell. %ith the convention made
above, for every N, boson states correspond to de-

finite nucleon states. Also in the exact middle of
the shell, N=Q/2, states with J=0, u =0 arid

J=2, u =2 are the same, whether obtained from
particle pairs or hole pairs. Thus, the boson model
and its parameters are well defined also in that case.

Let us now return to the Hamiltonian of Ref.. 1

and see why its lowest eigenstates do not have the
form of (1) and (4). The two-body interaction used
there is the surface delta interaction (SDI). Arvieu
and Moszkowski have shown that the lowest J=0
states calculated with SDI have indeed the form of
(1) with all coefficients aj equal [more precisely,
ai& ——( —1) which causes a trivial change in the de-I

finition of the quasispin operators]. This is true,
however, only if all single nucleon energies are
equal, which is far from the situation given in Ref.
1. As a result, eigenstates have no more definite
seniorities. This fact can be checked by comparing
the separation between the J=0 ground state and
the lowest J=2 state, in the two particle and the
two hole configurations. Using the Hamiltonian of
Ref. 1, they are not equal, whereas they should be
exactly equal for Hamiltonians whose eigenstates
have definite generalized seniorities. ~ SDI is very
ingenious and easy to work with. A realistic effec-
tive interaction between identical nucleons should,
however, reproduce the rather constant 0-2 separa-

tion which is a characteristic feature of semimagic
nuclei also where single nucleon energies are far
from degenerate.

The results of Ref. 1 are still of great interest.
Once the pair creation operators S~ and D~ were
obtained from SDI in the two nucleon configura-
tion, we may well disregard that interaction for oth-
er nucleon numbers. Instead, we can construct
another shell model Hamiltonian (Hamiltonian I)
which will have the same gt ~0) and . D ~0)
states as eigenstates and also satisfy conditions (3)
and (6) (cf. Ref. 4). The states (St)~~0) and
(St) 'DM

~

0) will then be eigenstates of this new

Hamiltonian, with generalized seniorities v =0 and
u =2. These are the states actually used in Ref. 1

and, as shown above, may be used throughout the
shell. The other set of states defined in Ref. 1 as
arising from hole pairs may be similarly interpreted.
They can also be eigenstates of a certain shell model
Hamiltonian (Hamiltonian II) which is different
from the one introduced above (and is not the one
with SDI).

Matrix elements calculated in Ref. 1 and result-

ing IBM parameters can be interpreted as being due
to two different Hamiltonians I and II. Both have
eigenstates with well defined generalized seniorities
but differ in their two-body interactions and single
nucleon energies. %ith this interpretation, we see
for the first time, the IBM parameters calculated
from a semirealistic case of several nondegenerate j
orbits. It is very interesting to compare the depen-
dence of the parameters a, and X„ofthe quadrupole
operator with those obtained for a single j orbit (or
equivalently, equal a~ parameters). '

For equal aj the dependence of ~„on neutron
number n is given by v'2Q —n for n &Q. The
mapping of bosons on hole pair states beyond the
middle of the shell leads to Mn dependence for
n & Q. The behavior of s, given in Fig. 1(a) of Ref.
1 is not symmetric but does not differ very much
from the case of equal aj. This dependence on n is
seen in both cases I and II and is similar to the
behavior of ~„determined by fitting experimental
data. '"

Much more interesting are the results of Ref. 1

for the parameter X„. In the case of equal aj its
dependence on neutron number n is given by '
(Q —n)/v'2Q n. It should —decrease, in absolute
value, for increasing n, go through zero, and change
sign in the middle of the shell. The values of X,
determined empirically ' show a similar behavior.
On the other hand, values of 7 so determined" are
appreciably different. It was conjectured that if the
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aJ are far from equal the dependence of g could be
very different. The results of Ref. 1 give a beautiful
demonstration that this is indeed the case. Both
sets of values in Fig. 1(b} of Ref. 1 show a depen-
dence very different from the one with equal aj.
The set corresponding to Hamiltonian I changes

sign twice, whereas set II changes sign only at the
very end of the shell. These results show that gen-
eralized seniority is a powerful scheme on which the
interacting boson model can be based. This can be
done provided the aj are properly chosen in agree-
ment with the experimental data.
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