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Starting from a simplified model, treating proton two-particle two-hole excitations in in-

teraction with low-lying quadrupole vibrational configurations, we calculate the low-lying

levels in even-even ""Cd. %e also present configuration mixing calculations within the

framework of the interacting boson model. Both approaches give a good description of the

quintuplet of levels occurring below E =1.5 MeV in "'"Cd (energy spectra and a

detailed account of E2 and EO decay properties). Finally, we point out some similarities

between both approaches and. try to interpret the interacting boson model mixing

parameters in terms of shell-model quantities (two-body matrix elements and single-particle

energies).

NUCLEAR STRUCTURE Collective excitations in "2*"Cd; shell-

model intruder states; interacting boson model configuration mixing.

I. INTRODUCTION

The energies and decay properties of the four
lowest excited states (J; =2~+, Oz+, 2q+, and 4~+) of"Cd and "Cd (Z =48) are known to agree quali-
tatively with the spherical quadrupole vibrational
model. This simple picture, however, is strongly
disturbed by the occurrence of low-lying extra
Jt =03+ and 23+ levels forming, together with the
normal two-phonon triplet, a quintuplet of states. '
The structure of these extra states is not well under-
stood as yet. According to certain authors, some
levels in even-even Cd nuclei could have a deformed
character, thus having deformations larger than
those of the ground state. Meyer and Peker point-
ed towards possible y softness in explaining a low-

lying J; =03+ three-phonon level. All of these ex-
planations, aowever, remain speculative without the
support of detailed calculations.

In this article, we would like to stress the impor-
tance of particle-hole excitation across the Z=50
proton closed shell in order to generate shell-model
intruder states that can explain the salient features
of the even-even " '" Cd nuclei. Near the Z=50
closed proton shell, odd-mass nuclei such as 49In
(Refs. 7—9) and s~Sb (Refs. 10—12) exhibit rota-

tional-like bands on top of an intrinsic —, [431]
and —, [404] orbital, respectively. In order to ac-9+

count for all low-lying levels in these nuclei, proton

particle-hole (p-h) excitations across the Z=50
closed proton shell have to be introduced, thereby

providing an explanation for the observed bands on

op of the J 2 and 2
levels in In and Sb,

1+ 9+

respectively. ' Recently, experimental evidence

for the observation of excited J =0+ states in

even-even 5oSn (Refs. 13—17) and Cd (Refs. 6 and

18—20) isotopes became available. These levels are

strongly excited via (r,n) two-proton transfer reac-

tion studies, ' thus suggesting the importance of in-

corporating proton 2p-2h excitations in explaining

all low-lying levels in the even-even ""Cd nuclei.

Therefore, in Sec. II, we suggest to explain the

quintuplet of levels as a mixing of the normal,

quadrupole two-phonon excitation with proton 2p-
2h excitations across the Z= SO closed proton shell.

A similar approach has been suggested to serve as
an explanation for J =0+ excited states and the
EJ=2 quasirotational bands in even-even Sn nu-

clei. ' 3 In Sec. III we discuss a related approach,
introducing 2p-2h excitations in an approximate

way, in the framework of the interacting boson
model (IBM). In Sec. IV the results of both calcula-

tions are compared to experimental data.
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II. PROTON TWO-PARTICLE
TWO-HOLE EXCITATIONS

%ithout discussing in too much detail the for-
malism of how to introduce proton 2p-2h excita-
tions in the particle-core coupling model (see Refs.

22 and 23), we will indicate the main steps and ap-
proximations made.

A general Hamiltonian, describing the interacting
system of vibrational excitations coupled to a few
fermion degrees of freedom, can be written as:

H = Q bipbip(Wi. + i )+ g Eucuc~ —g
A,p

Ap

1+ 4 ~ ~apys Aiics y+ I coulomb ~

aPy5

' 1/2

(2.1)

where the first and second terins describe the unper-
turbed energy of the quadrupole vibrations and fer-
mions, respectively. Here, Aco2 denotes the quadru-
pole phonon energy and e, the single-particle (-hole)
energy. The third term describes the particle
(-hole)-core coupling interaction with gz as the cou-

pling strength (see Refs. 24 and 25 for its defini-

I

tion); the fourth term describes the residual fermion
interaction. Also the Coulomb contribution for
proton p-h residual interactions is included.

The nuclear wave function describing possible
proton 2p-2h excitations in the even-even Cd nuclei
can now be expanded as:

I
i;JM ) =g c'(NR; J)

I
NR; JM )+g d'I (p ipse )Jp [(h i h 2 )Ji„NR]I;JI

X 1(pip2)J~[(h ihi}J„3NR]I;JM), (2.2)

with

H'
I
k;IM) =co(I,k)

I
k;IM) (2.3)

where N(R) denotes the number (angular momen-
tum) of the quadrupole vibrational excitations, and

p&,pi (h&,hi) the proton-particle (-hole) configura-
tions, i.e., 1g7/2 2d5/2 2d3/2 3s1/2, 1h11/2, and

lg9/2, 2p3/2, 2pi/q ', lf5/2 ', respectively.
whenever summation indices are not written below
the summation symbol [see Eq. (2.2)] we imply
summation over quantum numbers that occur in
both the expansion coefficients (c',d') and the basis
configurations

I

. ) (except the total angular
momentum J). The expansion coeffficients (c',d'}
are obtained by diagonalizing the nuclear Hamil-
tonian (2.1) within the basis discussed above.

Instead of carrying out the full calculation im-
mediately, we proceed in different steps in order to
obtain better insight in the final results.

(i) In a first step, only a particular part of the nu-

clear Hamiltonian is diagonalized (i.e., that part H
only containing the single-hole energy, the collective
quadrupole vibrations of the Cd nuclei, and the
hole-core and hole-hole residual interactions) in or-
der to obtain a description of the Pd eigenstates.
Thereby, we solve the secular equation

I
k;IM) =pa "[(h hi)J2iNR;I]

x
I (h ibad)Ji, NR;IM), (2.4)

where co(I,k) gives the energy spectrum (describing
the Pd nuclei) and a "(... ) are the expansion coeffi-
cients. In our calculations, the wave functions (2.4)
only serve as an intermediate step to build more
complicated configurations.

(ii) In a second step, we couple the proton 2p con-
figurations with the eigenfunctions (2.4) and obtain,
as a new basis, the collective vibrational configura-
tions INR;JM), and the proton 2p-Pd coupled
configurations

I (pip&}J~ 3Ik;JM). The wave
function (2.2) can therefore be transformed into the
more transparent form:

I
i;JM ) =g c'(NR; J)

I
NR; JM )

++1'[(pip&)J&,Ik;J]

X
I (pipi)J& SIk;JM) . (2.5)

This wave function is obtained by solving the secu-
lar equation corresponding with the full Hamiltoni-
an (2.1) [see Eq. (2.7) or Ref. 23 for full details].
Since many (+200—300) proton 2p-Pd core coupled
configurations constitute the second part of the
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wave function (2.5), a still more transparent repre-
sentation for describing the wave function can be
obtained. Diagonalizing within the proton 2p-Pd
core coupled configuration space only, bands with
LLJ =2 spin sequence are obtained. The particular
wave functions are obtained as

i rot(i};JM)=Jr'[(pipe)J&, Ik;J]

X
~ (pip2)J~ SIk;JM), (2.6)

for i =1, 2,...N, where N denotes the dimensian of
the 2p-Pd core coupled configuration space and rot
stands for rotational, owing to its apparent similari-
ties with callective, rotational energy spectra for the
lowest bands. One should, however, be cautious in
interpreting the label i for classifying energy eigen-
values E'(rot; J) obtained from

H
~
rot(i);JM) =E'(rot;J)

~
rot(i);JM), (2.7)

and take into account the remarks of Ref. 23 (Sec.
IIA). Mareover, in the following discussions (Sec.
III), we will use "rotational-like. .." for excitations
corresponding to the lowest bands obtained within
the 2p-Pd core coupled subspace. Finally, the wave
function of Eq. (2.5) becomes

~i;JM)=pc'(NR;J) ~NR;JM)

pling strengths f2 have been obtained from the
known B(E2;2i+~0i+) value in Cd and Pd, respec-
tively. ~ They are given in Table I, as well as the
quadrupole phonon energy i)hei, taken as the excita-
tion energy E„(2i+) of the first excited J =2+
state.

(iv) Unperturbed values for the lowest proton 2p-
2h excitations, i.e., 2(eis —eis ), are taken from

g7/2 g9/2

proton separation energies as 2[S~(Z
=50)—S~(Z =51)]. The relative single-particle
(-hole) energies obtained from a recent study of
odd-mass In nuclei ' are also used here (see Table
I).

In order to carry out the calculations discussed
above, certain approximations in the calculation of
the matrix elements af the Hamiltonian (2.1) within
the basis described by Eqs. (2.5) or (2.8) have been
considered. We use the approximations outlined in
Eqs. (2.12} and (2.13) of Ref. 23 in the calculation
of the residual matrix elements. Thereby, numeri-
cal efforts are simplified without loss of the general
physics content of the model.

The electromagnetic E2 and EO decay properties
are calculated using the transition operators as dis-
cussed in Ref. 23. The proton effective charge used
was eg =1.5e and the experimental B(E2;2 i+

~0i+) values for Cd and Pd nuclei, respectively, are
used to determine the collective E2 transition
strength.

+ gs'[rot(j)]
~
rot(j);JM) . (2.8}

J

In this representatian, the possible mixing of law-

lying quadrupole vibrations and other coHective de-
grees of freedom (rotational-like) is clearly ex-
pressed in terms of the amplitudes c' and s'.

Calculations have been carried out for " "Cd.
In these nuclei, most evidence far a quintuplet of
levels near E„=1.5 MeV exists. The following
parameters have been used:

(i) For the nucleon-nucleon interaction P"~~, we
use a surface delta interaction (SDI) with strength
6=25' MeV (Ref. 26).

(ii) For the Coulomb interaction, only the direct
term is considered, which becomes for the diagonal
proton p-h configurations almost state independent
and equal to —0.25 MeV. The nondiagonal terms
are generally small. The importance of the attrac-
tive Coulomb interaction for proton 2p-2h excita-
tion was already pointed out earlier by Flynn and
Kunz since the nuclear residual p-h matrix ele-
ments are almost negligible (—0.1 to 0.1 MeV).

(iii) The hole-Cd core and particle-Pd core cou-

fin)2(Cd)

%co2(Pd)

gi(Cd)
(i(Pd)

2P1/2

P3/2

f5/2

'g7/Z

2ds/2

2d3/2

1/2

1511/2

2(e~ —eq )
EEI,

0.617
0.375
6.0

12.0
0.7
1.3

2.1

0.0
0.2

, 2.95

2.10

9.49+0.04
2.39+0.01

TABLE I. Parameters in approach A (see Sec. II) (us-
ing the explicit introduction of proton 2p-2h excitations)
used to calculate energy spectra of " '" Cd. All parame-
ters given are in MeV, except for the dimensionless cou-
pling strengths gQ $3.
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III. CONFIGURATION MIXING
IN THE INTERACTING BOSON MODEL

The neutron-proton interacting boson model (n-p
IBM) proposes a description of a nucleus in terms
of a system of neutron and proton interacting bo-
sons. 3z33 The number of bosons of each type is
computed as half the number of the corresponding
nucleons outside the closed shells or, if the shell is
more than half-filled, as half the complementary
holes. A normal n-p IBM calculation of the "Cd
(" Cd) nucleus would imply N~ = 1 proton bosons
and N„=7 (N„=8) neutron bosons. In the pres-
ence of proton 2p-2h excitations, however, two pro-
tons are excited across the closed Z=50 shell. This
introduces an additional hole boson in the
Z=28 —50 shell and a particle boson in the
i=50—82 shell. Therefore, three active proton bo-
sons can be associated with this particular type of
configuration. Both the normal configuration and
the one containing a proton 2p-2h excitation are
shown in Fig. 1 for "Cd. The configuration mix-

ing, for simplicity, does not distinguish between bo-
sons being in different major shells and describes
both the configurations within the standard scheme
of the n-p IBM. Moreover, it introduces an ap-
propriate term in the Hamiltonian which mixes the
two types of configurations. The Hamiltonian used
in these calculations is the usual n-p IBM Hamil-
tonian, '4-"
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FIG. 1. A schematic representation of the particular
N =1 and N =3 configuration in the n-p IBM configu-
ration mixing calculation, in "Cd. The distribution of
particles over the available single-particle orbitals as well
as the ordering of levels are drawn in order to guide the
eye.

H=eg d +eg, d„+V +V

+aQ Q„+I
where

V~ —— g , ct.p(2—L+1)'~
I =0,2,4

(3.1)

X[(dg )' '(d d )' ']'", (3.2)

Q~ =('A~+de~)"'+~~("A~)"' (3.3)

with p=m, v. Moreover, the Majorana term M
reads

M = —g 2$„(dg„}'"'(d d„}'"'
x=1,3

+$2(d~„—sg„)' '(d s„sd„)' —'. (3.4)

Here, e and e„stand for the energies of the proton
and neutron bosons, respectively, and for simplicity,
we take e =e The interactions among identical
bosons are expressed by V, V, and the term
a'Q Q„denotes the quadrupole-quadrupole interac-
tion acting between neutron and proton bosons. Fi-
nally, M is the Majorana operator which effects
the energy of those states which are not fully sym-
metric in the neutron-proton degree of freedom.
The mixing Hamiltonian used is the one suggested
in Refs. 37 and 38,

H;„=a(s~ +s s )' '+/3(d+++d d )'o'

(3.5)

One has to remark that the quadrupole operator
in Sec. II, Eq. (2.1), describing the particle-core cou-
pling, has the standard expression obtained from
the residual interaction between collective surface
quadrupole vibrations and single-particle degrees of
freedom. ' Using the IBM description C'see Eq.
(3.3)], a term that is proportional to (d d)' ' in the
collective quadrupole operator results. Therefore,
differences between both approaches do occur. We
think, however, that the underlying physics allows
one to draw a close parallelism between both ap-
proaches, as will be discussed in more detail in Secs.
III and IV.

The calculations are carried out in two steps. In
the first step, the Hamiltonian (3.1) is diagonalized
for each configuration separately in the usual
basis
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l[(d ) (I (I) )(s.) (d„) '"(L„P„)(s„)
" "]"'~0&, (3.6)

where P,P„denote the additional quantum. numbers which characterize the states uniquely. In the second
step, H+H;„ is diagonalized in a basis provided by the lowest eigenstates of the X =1 and N =3 configu-
rations. In this step, an energy 6 is also introduced which, added to the eigenvalues of the configurations with
N =3, represents the extra energy needed to excite such a configuration. (This latter value is related to

2(eq —ep, ) —[[Sp(Z =50)—Sq(Z =49)]—[Sq(Z =52)—Sq(Z =51)]]

in the approach discussed in Sec. II; see also the
Appendix. Here Sz(Z) denotes proton separation

energy. )
All the important parameters used in the calcula-

tions are given in Table II. The parameters of the
Hamiltonian (3.1) are close to the ones used in cal-
culations for nearby nuclei. ' The parameters of
the mixing Hamiltonian a and P are kept equal and
constant and, for b„a value of 5.45 MeV is used. A
short chscussion on a possible relation between the
parameters a, P, and b„and the parameters of the
approach of Sec. II, is given in the Appendix. The
electromagnetic transitions are evaluated using an
E2 operator of the form

T(E2)=e,(Q, +Q„,)+e,(Q +Q„,), (3.7)

where Qz(p:—v, ir) are the operators (3.3), the sub-

scripts 1 and 3 refer to the two configurations, and

el (j=1,3) are the bos~n effective charges. If only
relative B(E2) values are considered, only the ratio
es/ei is important. In the calculations presented
here a ratio e3/ei ——1.6 was considered.

Pf STUDY OF 112'1l Cd NUCLEI

A. Energy spectra

The energy spectrum as calculated using the ap-
proach in which proton 2p-2h excitations are in-

cluded explicitly (approach A) is shown in Fig. 2

I

for "~Cd, up to an excitation energy of E,=4 MeV
(left part of the spectrum). On the right hand side
of the same figure, we show the result of the IBM
mixing calculations. In the latter case, only eight
levels of each J value have been calculated
(J =0+, 2+, 4+, 6+, 8+, 10+, and 12+). We are
aware of the fact that, already at E„=2 MeV, the
experimental level density becomes much higher
owing to the neglect, in approach A, of explicit neu-

tron excitations in obtaining the final spectrum.
The thickened lines contain important components
within the 2p-Pd core coupled configuration space
(A) or within the N =3 configuration space (ap-
proach B) and generate a kind of rotational-like
band. The experimental data are taken from Ref.
20.

For the rest of the discussion, however, we will

mainly concentrate on the quintuplet of states near
E„=1.5 MeV. The wave functions describing the
lowest J =0+, 2+, 4+, and 6+ levels show large
mixing and in many cases it becomes difficult to as-

sign a main component to the state (see Tables III
and IV).

A more detailed comparison of the calculated lev-

el scheme with the experimental data for " '" Cd
[also containing the 8(E2) reduced transition pro-
babilities; see Sec. IV B] is given in Fig. 3.

Before describing in detail the energy spectra, ob-
tained from the n @IBM mixi-ng calculation (ap-

TABLE II. Parameters in approach B (see Sec. III) (the neutron-proton IBM configuration
mixing calculations) used to calculate energy spectra of " '" Cd. All parameters are in MeV,
except for g„and 7 (dimensionless). The parameters for the configurations with N =1 and
N =3 are denoted explicitly.

a=P b,

'48Cd64 N =1 0.9 —0.15 —0.9 —0.2 —0.22 —0.08
N~= 3 0.4 —0.2035 —0.9 —0.22 —0.08

0.06 0.08 5.45

'48Cd66 N = 1 0.83 —0.14
N =3 0.40 —0.19

—0.9 —0.2 —0.19 —0.045 0.06 0.08 5.45
—0.9 —0.19 —0.045
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proach B), we will discuss the main contributions
from the Hamiltonian (3.1) in producing the quint-
uplet of states near E,=1.5 MeV. In Fig. 4, we
show in a schematic, although detailed way, how
the N =3 configuration (dashed lines) interacts
with the %~= 1 configuration (full lines). Only lev-

els necessary to explain the quintuplet of states near
E„=1.5 MeV are shown. In this figure, one clearly
observes how the proton-neutron ~Q Q„ interac-
tion can lower the E =3 configuration owing to
the much larger binding energy relative to the ener-

gy of the N =1 configuration. Finally, in the re-

gion —0.15&a& —0.20 MeV, the mixing Hamil-
tonian (3.5) can connect both subsystems and induce
the necessary configuration mixing to lead to good
agreement with experiment at s= —0.19 MeV for
"4Cd. A simple estimate of the excitation energy of
the intruder 2p-2h configurations in even-even Cd
nuclei can be obtained from the IBM mixing calcu-
lations. Neglecting the change in binding energy as
a function of the neutron boson number in the
Xv=1 configurations, one can calculate in an ap-
proximate way the relative excitation energy for the
iV~=3 configurations. Since the major terms con-
tributing to the energy are given via the Hamiltoni-
an

FIG. 2. Comparison of the experimental level scheme
of "Cd (Ref. 47) with the theoretical calculated energy
spectrum, using both approach A and B. The levels
drawn with a thickened line have their main components
within the 2p-Pd core coupled configuration space (A)
[see also Eq. (2.8)] or within the N =3 configuration
space, for approach B. E(~ 3 ~ )

-= 6+vN~Ev . (4.2)

+(N =3,N„)=~++Qn Qv ~

the expectation value, for a particular nucleus
N =3, N„, becomes

TABLE III. %ave functions for the lowest J =0+, 2+, 4+, and 6+ levels in "Cd, using approach A (see Sec. II). The
amplitudes of the wave functions, using the expansion of Eq. (2.8) are given (only amplitudes )0.10). The notation

i
1 ),

i 2), i 3),
i
4) and

i T), i 2),
i
3), i

4) stands for the lowest four vibrational and rotational-like configurations, respec-

tively, compatible with the angular momentum of the particular level.

)2& t4& i4)

()+ )
0+ )
()+ )
0+)
2+ )
2+ )
2+ )
4+ )
4+ )
4+ )
6+)'
6+ )

0.86
—0.34
—0.12
—0.20
—0.76

0.32
OA7

0.68
—0.63

—0.40
—0.81

0.11
0.65

—0.41
—0.52

0.71
—0.45

—0.16
0.94

—0.06
—0.72

0.55

—0.33

0.44
0.61
0.36
0.55

—0.60
—0.42
—0.61

0.70
0.69
0.16
0.90

—0.42

—0.15
0.43

—0.16

—0.11
—0.37

0.34
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TABLE IV. See caption of Table III, using approach 8 (see Sec. III) for "Cd and for
"Cd. Here the notation (1), [2), )3), (4) and )1), (2), )3), (4) stands for the lowest

four N =1 and X =3 eigenstates, respectively, compatible with the angular momentum of
the particular level.

N~=1, N„=7
(2&

112Cd

14&

N =3, N„=7
i3&

()+ )
()+ )
O+ )
(4+)
2+ )
2+ )
2+ )
2+ )
4+ )
4+ )
4+ )
6+ )
6+ )

0.99

0.99

0.97
0.23

0.62
0.78

0.72
—0.69

0.86
—0.50

—0.15
—0.98

0.98

—0.16
—0.98

—0.10

114cd

0.69
0.71

—0.50
—0.84

0.16
0.23

—0.96
0.15

—0.78
0.62

0.17 —0.10

N~=1, N„=8
l4&

N~=3, N„=8

O+ )
p+ )
o+&
o+)
2+ )
2+ )
23+ )
2+ )
4+ )
4+ }
4+ )
6+ )
6+ )

0.99

0.99

0.97
0.22

0.63
0.77

0.71
0.70

0.84
0.54

—0.15
0.98

0.98

0.16
0.98

0.70
—0.71

0.53
—0.82

0.18
—0.23

0.96
0.15

—0.78
0.62

0.13 —0.10

In Fig. 5, we show the particular dependence for the
even-even Cd nuclei, using 6=5.45 MeV and
k= —0.20 MeV.

In Fig. 6, we show, for the particular value of
x= —0.19 MeV, the unperturbed energy spectrum
(putting a=p=O) of "Cd. One observes that dif-
ferent levels will be mixed strongly by the Hamil-
tonian (3.5), especially the N =1 (Oz+, 22+) and the
%~=3 (O~+, 2~+) levels. The wave functions ob-
tained are given in Table IV and the energy spectra
are compared with the experimental data in Figs. 7
and 8.

In comparing both approaches, one observes that
the energy splitting of the quintuplet is larger in ap-
proach A. This same feature is reflected in the

larger mixing of the wave functions in approach A
(compare Tables II and IV). The difference is relat-
ed to the small values of the a and p mixing param-
eters in approach 8 whereas, in approach A, the
coupling matrix elements are related to the SDI
two-body pairing and quadrupole matrix elements

(see the Appendix). This results in much larger ma-

trix elements affecting the final states in a much
more profound way.

8. Electromagnetic transitions (E2,EO)

Before discussing in detail the E2 decay proper-
ties of the ""Cd quintuplet of levels near
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ed values using approach A. The thickness of the arrows is proportional to the B(E2) values and serves to guide the eye.

E„1.5 MeV we indicate that the experimental
data are taken from Refs. 1, 2, 18—20, and 39—47,
and that averaged B(E2) values are used when dif-
ferent experimental data exist (except for the
J; =4i+ lifetime where the measurement of Akker-
man et al. is discarded).

The E2 decay pattern of the quintuplet of states
in "Cd and in "Cd is remarkably similar. There-
fore, we will discuss the general features at the same
time. Extensive comparison with the experiment is
carried out in both approaches A (see Fig. 2) and B
(see Figs. 7 and 8) [B(E2) values relative to B(E2,
2~+~0~+) are given]. Notice that in the case of"Cd, fewer data on B(E2) values between levels
n~ Ex —-1.5 MeV exist as compm& with 114Cd,

the latter nucleus being studied in a more detailed
way (Refs. 20 and 47).

First of all, it is evident that, although the
J; =02+, 22+, and 41+ levels show a remarkable vi-

brational structure (apart from the presence of the
intruder J~=O+ and 2+ states), non-negligible devi-
ations in the E2 decay are observed. In "Cd, the

B(E2; 02+~2~+) and B(E2; 22+~2t+) are approxi-
mately half of the pure vibrational intensity rule.
On the contrary, the J =4i+ state follows the nor-
mal trend rather well. In the IBM configuration
mixing calculations, such an anomalous behavior
can be explained as follows. As is seen in Table IV,
the J; =02+, 03+ and 22+, 23+ states are strongly ad-
mixed. Moreover, since the intruder J =0+ and
2+ states originate from configurations with
E =3, the above J; =02+, 03+ and 22+, 23+ states
will have large components both in the configura-
tions with X =1 and X =3. Since the J; =21+
state mainly belongs to the N =1 configuration
space and since the E2 operator cannot connect lev-
els belonging to different subsystems, it follows that
the N =1 component of the wave function of the
J~ ——02+ and 22+ states will mainly contribute to the
decay towards the Jf ——21+ state. In this IBM calcu-
lation, the particular component is also 50% (see
Table IV) and will produce a decay rate which is in
satisfactory agreement with the experiinental data
(see also Table V where the contributions to the E2
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matrix element in the different subsystems N = I
and N =3 are given for some important transi-
tions). To this respect, the approach A gives B(E2;
Oz+~2i+) and B(E2; 2q+~2i+) which are somewhat
larger. The cause is to be found in the fact that the
J; =2i+ wave function contains large admixtures of
the intruder 2p-Pd core coupled configurations (see
Table III) and, therefore, the contribution to the
B(E2; Oz+-+2&+) value resulting from the transitions
within the 2p-Pd core coupled configuration space
is too important (see also Table VI, where the
separate E2 contributions adding up to the total E2
matrix element are given).

Another very interesting phenomenon is the de-

cay of the J; =03+ level. This state decays preferen-
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FIG. 6. Part of the unperturbed N =1 and N =3
level scheme, using the parameters of Table II for "Cd.
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TABLE V. Partial (for the separate N = 1 and N =3 configuration spaces) and total E2
matrix elements in approach B (using arbitrary units) for some important transitions. The
upper (lower) rom numbers refer to the "~Cd ("Cd) nucleus, respectively.

J1f J1F

03+~2+(

2'

0+ 2+

22

2+ 0+

~03+

2.75
2.97
1.97
2.04
2.39
2.58
2.39
2.49
0.45
0.53
0.36
O.A4

—1.20
—1.29
—7.06
—8.33

1.23
1.35
6.84
8.12

—12.02
—12.80

12.42
13.19

(Jf [JM{E2)[/Ji )
E2 (N =1) E2 (N =3) E2 (Total)

1.55
1.68

—5.09
—6.29

3.62
3.93
9.23

10.61
—11.57
—12.27

12.78
13.63

tially into the Jf ——22+ level rather than to the

Jf ——2i+ level, the latter transition being almost for-
bidden. When studying the separate E2 contribu-
tion for these E2 transitions, we observe that for
both approaches, large E2 matrix elements result in
both the normal and intruder configuration space
(see Tables V and VI). It is, however, the particular
feature of constructive and destructive interference
between two strongly collective E2 decay ampli-
tudes (normal quadrupole vibrational and
rotational-like) which is able to explain this very
peculiar decay pattern. This interference pattern is
even more pronounced in the approach taking pro-
ton 2p-2h excitations explicitly into account. The
same interference mechanism was necessary to ex-
plain the E2 and EO decay properties in " "sSn
nuclei. 2'23

Finally, the large B(E2; 2s+~Os+) value is also
predicted in both approaches A and B. The partial
contribution to the E2 matrix element are again
shown in Tables V and VI.

In order to indicate the possibility to go beyond
the quintuplet of states near E» 1.5 MeV, we have
calculated within both approaches for "Cd the E2
decay properties from the next higher group of
J; =4&+, 24+, 04+, and 3i+ levels. The comparison is
carried out with experimental data from Schrecken-
bach et al. o In these data, the most intense E2
transition was normalized to 100 for the relative
B(E2) values, assuming moreover pure E2 gamma
decay. Here again a satisfactory agreement results
(see Table VII).

The quadrupole moments Q (2+i) have been deter-
mined in an accurate way ' ' and are

TABLE VI. Partial E2 matrix elements for the vibrational [Coll. {I)]and rotational-like
[Coll. (II)] configuration space, in approach A for some important transitions in "4Cd. Also
the total E2 matrix elements are given. The units are e b.

JS' JS' Coll (I) Coll (II) Total

0+ 2+ 18.6
—32

—17.3
—20.5

1.3
—52.5

0+ 2+
0+ 2+

—7.1
—3.2

—45.4
—14.0

—52.5
—17.2

2+~0+
2+~0+

—13.1
—15.2

—51.5
16.2

—64.6
1.0



25 DESCRIPTION OF THE LOW-LYING LEVELS IN i&z, i&4Cd 3171

TABLE VII. The experimental relative 8(E2) values for the J& ——42+, 24+, 04+, and 3~ ini-

tial states in "Cd. The most intense E2 transition (assuming pure E2 decay, marked with an
asterisk) is normalized to 100. Comparison with calculations of both approach A and B is
given.

J; —+Jf 2p-2h n-p IBM Exp.

4+ 2+
22'

~4+
2+

2+ 0+
~2$
—+0+
~2
~0+

23+

04 —+2)+
2'
2+
2~+

2+
~4+

23'

16
72
60

100
2.3
2.3

77
20
35

100
1.3
0.5

100
1.3

100
36
22

0.04
48

6
100

0.4
0.12

14
5

144
100

0.3
113
100

1

100
47
42

0.5
29
20~

100
0.2
3.5~

48
6.2*

38
100~

13
(5

100
2.7+

100~
41~

14~

—0.39+0.08 and —0.36+0.8 e b in "Cd and "Cd,
respectively. The calculated values, in the configu-
ration mixing IBM are —0.34 and —0.36 eb,
respectively. Approach A gives a value of —0.25
eb. Thus, calculation A still underestimates the
quadrupole moment in the even-even " '" Cd nu-

clei. In approach A, the proton 2p-2h excitations
induce correlations which act coherently with the
pure quadrupole vibrational contribution (the latter
being only —0.10 e b) so as to build up a quadru-
pole moment of sizeable magnitude. In the IBM
mixing calculation (see Table IV) the J; =2&+ wave
function is mainly N =1. Here also Q(N =1, 2~+)

and Q(N =3, 2~+) act coherently.
Using the calculated 8(E2) and 8(M1) values in

approach A (effective gyromagnetic factors have
been used: gs ——Z/A, gt=l, and g, =2.79 and
4.20}, the half-lives for the J~ ——2&+, 22+, 23 Oz 03,
and 4~+ levels have been calculated (using the exper-
imental Er deexcitation energies). Partial T

& ~2

(E2), T&zz (M 1), and total T&&2 values are given in
Table VIII and compared with the available experi-
mental data. From the table, one observes the fol-
lowing features:

(i) The 2q+~2&+ transition contains about 30%
Ml admixture. This calculated value is in good
agreement with the experimental results of Schreck-
enbach et al.20

(ii) The 23+~2~+ has an E2jM1 ratio of 50%.
The results of Schreckenbach et al. give M 1 as
the most important component, and with much less
E2 admixture ( &2.5%%uo).

(iii) The T&&2(03+) value is always calculated too
small. This quantity, however, is very sensitive to
the 8 (E2; 03+-+2|+), which results from destructive
interference between two large numbers and there-
fore cannot be calculated very reliably.

Finally, we discuss some EO decay rates (Table
IX) in both " '" Cd (Refs. 18 and 47). The calcu-
lations were carried out using the same EO operator
and methods as outlined in Ref. 23. Also EO tran-
sitions between J +0+ states are calculated and are
shown to contribute in a non-negligible way to the
decay of a particular level. The theoretical results

give a satisfactory reproduction of most of the ex-
perim. ental data although the 02+~0&+ and the
03 ~0~+ states are somewhat too high. With
respect to the structure of the Oq and 03+ states, we
note that the situation in ""Cd (and especially in
"4Cd} is considerably different from that seen in
"6Sn (Ref. 23). In the latter nucleus, in fact, a very
intense 03+~02+ transition was observed (p )&10
=100) which was explained as being due to a mix-

ing of largely different equilibrium shapes for both
J; =Oz+ and 03+. From our wave functions (see
Table II) one indeed can see that the structure of the
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TABLE VIII. Partial Tjq2 (E2), T~q2 (M 1) (using g, =2.79 and g, =4.2, respectively) and

total T~&2 half-lives (using g, =2.79) in ps compared with the experimental data for "Cd and
114Cd

J; —+Jf T)g2(E2) T)g2(M 1) T1/2 T&~2(Exp)

112Cd

2+ 0+

p+
4+ 2+

2+
0+~2+

4.9
1.8
3.9
0.83

120
7.6
2.5

890

4.3

7.0

3.8

4.9
1.0

0.83

2.5
2.5

890

6.0
1.7

0.9

2.9
4.2

1900

114Cd

2+ O+,

p+
4+)~2)+
2+ P+

2+
0+~2)+

8.1
2.4
5.8
1.3

173
10
3.2

1380

8.5

5.1

8.1
1.9

1.3
3.1

3.2
138O

9.1
2.8

1.4
3.8

6.6
5500

02+ and Oi+ states is different from what was ob-

tained in the " Sn core (Table III of Ref. 23) where

orthogonal combinations of only two configurations

[ ~
20;0) and

~

rot(1);0+ )] occur.
In the IBM mixing calculation, also EO transi-

tions can be calculated. If, as one would expect,
only protons contribute to these transitions, the
most general one-body EO operator becomes

T(EO)=aN +b(dg )' ', (43)

where the operator N: (s~ + d .d —) counts the
number of proton bosons. In a normal n pIBM-
calculation, the first term can be neglected because

TABLE IX. Theoretical EO decay matrix elements us-

ing approach A (p )&10 ), compared to some important
experimental EO transition rates in "Cd and "Cd.

it is diagonal in the eigenstates of the Hamiltonian
(3.1). In a mixing calculation, however, this term
has to be included because the mixed states have
components in the configuration spaces with both
N~=1 and N~=3 different for each level (conse-
quently different states have different eigenvalues of
N ). However, since the coefficients a and b of the
operator (4.3) are expected to be different in the two
subspaces N =1 and N =3, the calculation of EO
transitions would imply a number of parameters
comparable to that of the well known EO transi-
tions indicated in Table IX. Therefore, no defini-
tive conclusions can be reached about these EO
transitions in the IBM approach.

V. CONCLUSION

JI ~Jf

o+ 0+
p+ ~p+
o+ o+

37
0.48
8.1

27
1.5
0.4
(8

61
34

Eo rates (p )&10 )
112Cd 114Cd Theory

77
4.6
1.1
2

26
3

In this study, we have tried to point out the im-

portance of proton 2p-2h excitations across the
Z= 50 closed proton shell in order to describe in de-
tail the low-lying quintuplet of levels in even-even" '" Cd nuclei. Within a simple model (approach
A), containing proton 2p-2h excitations interacting
with quadrupole vibrational excitations of the
underlying Cd core, we were able to show how in-

truder states can occur at low excitation energy and
in which way they modify the standard vibrational
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two-phonon multiplet structure as well as its E2 de-

cay properties.
Starting from the neutron-proton IBM, and ap-

proximating the proton 2p-2h configurations via the
addition of two extra s or d bosons, a configuration
mixing calculation was carried out for " "Cd (ap-
proach B). This approach gives results similar to
the former one (approach A).

Extensive comparison between both approaches
and the existing experimental data was carried
through. One of the most interesting features, i.e.,
the very peculiar decay pattern of the 03+ level is
well reproduced through constructive interference
between two strong collective E2 decay amplitudes:
a vibrational and a rotational-like amplitude. This
same feature is also observed in the adjacent
doubly-even "Sn nucleus.
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APPENDIX:
RELATION BETWEEN THE

TWO APPROACHES A AND 8

From the discussion of Secs. II and III, it be-

comes clear that both approximations to describe
the quintuplet of levels in "*"Cd nuclei are relat-
ed to each other. Exciting a proton pair across the
Z=50 closed shell will form proton 2p-2h configu-
rations. Since the excited pairs most likely occur as
J =0+ or 2+ angular momentum coupled pairs,
the analogy with the mixing term in the n-p IBM
approach, see Eq. (3.5), containing the creation (an-

nihilation) of a pair of s or d proton bosons is im-

mediately clear.
In order to relate the parameters of both ap-

proaches, two-body shell-model matrix elements can
be put equal to the corresponding n-p IBM matrix
elements. In particular, information on the mixing
parameters n and P should result.

The basic coupling matrix element connecting
both parts of the wave function of (2.5) (see also the
Appendix of Ref. 23) becomes

L[N'R';(p)p2)J~, Ik;J]:(N'R';J
~

H
~

—(p)p2)Jp, Ik;J), (Al)

or, using the explicit form of the
~

k;IM ) wave function of Eq. (2.4), one gets

(I~R'"(("~"2)«» )(»» JP I
I'I klk2 J«)&J J„&NN&RR

h)k2JI,

NR

(A2)

When lifting a J' =0+ coupled pair across the Z=50 closed shell, one has J« =Jz ——0 whereas for J =2+
coupled pairs, one has J« =Jz ——2. Specifying now the interaction matrix element with the

~

N'=0, R'=0;0)
vibrational, zero phonon state, and only considering pair states in the summation, i.e., h

&

=—h2 =—h, one gets

L(N'=0, R'=0;(P)'J, =0,0;;0)=—ga"[(Z),',N=o, R =00]((p),'~ I ~(P, ) )
h

(A3)

1.(N'=0, R';(p) J~=2;2&+;0)=—+~a5"[(h) ,2N0, R =0;2]((p)2
~

V ~(h)z ),
h

(A4)
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1p Jp 2 J
] 1——02 2

J'I 2

0
(A5)

Jp
1 1——02 2

Ja JI
1

2 0

For typical orbitals near Z=50, taking Jp = 1g9/g

L(N'R', rot(i);J}=(N'R';J
I
H

I
rot(i};J)

for the 0+ and 2+ pair creation coupling matrix ele-

ments, respectively. Therefore, the ratio of the
coefficients a and P in the n-p IBM mixing Hamil-
tonian could be taken proportional to the ratio of a
typical pairing and quadrupole two-body matrix ele-
inents. Using, as discussed in Sec. II, the SDI force,
we can write

and j» = lg7/z 2d5/Q an average ratio P/a=0. 25
results.

In order to determine both a and P, we will have
to equate a typical matrix element in both ap-
proaches. Therefore, we have to transform from
the basis

I (pipi)J», Ik;JM) into the more ap-
propriate basis

I
rot(i};JM) of Eq. (2.6) in order to

have matrix elements conform with the mixing ma-
trix elements in the n-p IBM calculation where
N =1 and N =3 eigenstates (obtained after
separate n pI-BM calculations) occur. This
transformation [Eq. (2.6)] results from a diagonali-
zation of the nuclear Hamiltonian (2.1) within the
2p-Pd core-coupled configuration space only. The
latter eigenstates

I
rot(i); JM ) with energies

E'(rot; J) [Eq. (2.7)] are now in some way equivalent
to the N =3 IBM eigenstates, and so we are able to
equate corresponding matrix elements. A typical
vibrational, rotational-like coupling matrix element
becomes

(A7)

= g r'[(pip2)J», lkJ](N'R'III I(pip2)J» Ik J) (A6)
P]P2&p

Ik

Within the latter representation [see Eq. (2.8)] of the wave function, the final secular equation reads (fully
analogous with the N = 1, N =3 IBM mixing Hamiltonian secular equation),

Nifuui5~»/ 5s», L (rot(i},NR; J}
L(NR;rot(i); J) E"(rot;J)

» specifying the matrix element (A6) to the particular case of coupling of the J =(}+stat~, we c~„s,der
the zero-phonon vibrational configuration'

I
N'=0; R'=0,(}) (equivalent to the N =1 lowest J =0+ state)

and the lowest rotational-like J =0+ state obtained from
I
rot(i);()+) (equivalent to the N =3 lowestJ =0+ state). Making use of the expansion (A6), one gets

L(N'=o, R'=0;rot(1);0+)=—0.40 MeV .

The same matrix element, within n-p IBM mixing calculation becomes

M(N =1,N =3)=(oi+(N =1,N„=8) Ia(s~s~)+p(d~d ) 'Ioi+(N~=3, N„=S)) ~ (AS)

We now assume that the X =1 lowest J =0+ state is the zero-phonon state, i.e.,

nd. =O, nd =O), (A9)

and, furthermore, we use the following expansion of the N =3 lowest J~=o+ state

I
oi'(N~=»N =g) &= o og41&d 0 ~d„

+0.203
I

nd ——O, nd ——2) +0.189
I

nd = l, nd = 1)+0.052
I

nd 2, nd 0), ————

(Alo)
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which is obtained fram the diagonalization of the
n p-IBM Hamiltonian in the N =3, N„=8 basis.
Calculating further the matrix element (A8), one
obtains the value

a= —0.82 MeV, P= —0.21 MeV. (A13)

The difference between the fitted values a =P=0.08
MeV in the IBM approach and the calculated
values of (A13) is quite important. A possible ex-
planation can result from different causes:

(i) The fact that a & P, in approach A seems to re-

M(N =1, N =3)=0.206a+0.074P . (All)

Assuming a wave function for
~
Oi+(N = 1,

N„=8}) which also includes components with

ng +ng =2, one obtains the following improved

expression for the matrix element (A8) in terms af
u and Pas

M(N =1,N =3)=0.448a+0. 155P. (A12)

Using naw the ratio P/a =0.25 and the value af the
shell-model matrix element of —0.40 MeV, one gets

fleet the importance of exciting 0+ pairs over 2+
pairs with respect to the boson description,

(ii} For each different coupling matrix element
within the shell-model approach, calculating (A6)
will result in different values of the a and P param-
eters that are needed to fit the corresponding IBM
matrix element precisely. Averaging over all matrix
elements of the Hamiltonian (2.1) for each J value
will result in an important lowering with respect to
the values given in (A13). For the J =0+ matrix,
average values of a, and P, when taking the lowest
ten basis configurations, results in a= —0.25 MeV;
P= —0.16 MeV.

From the shell-model calculations, as already stated
in Sec. II B of Ref. 23, there is a very specific
dependence on J for the L-coupling matrix ele-

ments:
(i) For growing J, the L-coupling matrix ele-

ments became on the average smaller.
(ii) For a particular J~, the larger the "unper-

turbed energy difference" of interacting J states,
the smaller the interaction matrix element, thus

L(N =1,R =2;rot(1);2+)&L(N =2,R =2,rot(2);2+)»... L(N =3,R =2;rot(3);2+} .

The parameter 5 is related to the proton 2p-2h energy, lowered by the proton 2h and proton 2p pairing en-

ergy ~&s and &&~, respectively. Empirical estimates can be made (see also Table I) for the Z=50 Sn mass re-
gion thus, ane can approximately equate:

(A14)

or

6=2[$r(Z =50)—$~(Z =51)]—[$~(Z =50)—$~(Z =49)]—[$~(Z =52)—$r(Z =51)] . (A15)

I

Using the Wapstra and Boss mass tables, 3 one gets
values for 6 of 5.19, 5.37, 5.18, and 4.77 MeV for

Sn respectively; thus, the value af
8=5.45 MeV, as chosen here for the study af""Cd, is not unreasonably large. In the n-p IBM
mixing calculation, contributions of the nuclear
Hamiltonian (3.1) to the N =1 and N~=3 energies
are such that for no proton-neutron interaction in
the latter N =3 system [a(N =3)=0],an effective
spacing of b,E=5.9 MeV between the lowest
J =0+ levels from both the N =1 and N =3 sub-
systems results (see also Fig. 4).

In the shell-model approach, contributions from
the nuclear Hamiltonian (2.1) into the configuration
space of 2p-Pd core coupled configurations (still for
g2 ——0 but inc1uding the L-mixing matrix elements)
'give an additional shift to E ~ to enlarge this value
to almast 6 MeV (see also Figs. 2 and 3 of Ref. 23).

' 1/2.

H;„,=—— gzhco2I'z(r~). (bz+ +b2),m (A16)

we cannot discriminate between the particular

From the discussion given above, a relation be-
tween g'2 and ~ becomes clear. In the n pIBM c-al-

culations, the term nQ Q„brings the N~=3 sys-
tem down, relative to the N =1 system, owing to a
very large binding energy gain via the quadrupole
interaction acting among proton and neutron bo-
sons (see Fig. 4), In the shell-model approach (see
Sec. II) no distinction between proton and neutron
degrees of freedom is made. Since we couple expli-
citly praton shell-model degrees of freedom (proton
2p-2h excitations) to collective quadrupole core vi-
brations (unspecified) via the interaction Hamiltoni-
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proton-neutron contribution relative to the proton-
proton energy gain. One knows, however, that in
single-closed shell nuclei, i.e., Sn nuclei, the lowest
J =2+ quadrupole vibrational excitation is mainly
built out of neutron quasiparticle configura-
tions so that one can expect that the largest

contribution to H;„, comes from the proton-neutron
interaction, and can write approximately

'.1/2

~int — 42™2~2«~l'[&2+i»+b2ivl] .
5

(A17)

'Also at: Ryksuniversitert Gent, STVS, 4 LEKF,
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