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The equilibrium deformations of nuclei in the rare earth and transition region
(146&A &192) are studied with the self-consistent quadrupole plus pairing interaction

model, by considering all the nucleons in the nucleus explicitly in the configuration space of
the first seven major oscillator shells for both protons and neutrons. The present results are
in agreement with those obtained earlier by assuming an inert core and employing the re-

normalized strengths for the quadrupole and pairing interactions. The experimental B(E2)
values are correctly reproduced by employing bare nucleon charges in large configuration

space.
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The equilibrium deformations of nuclei has been
a topic of sustained interest in nuclear physics for
many years. The equilibrium deformations of
heavy nuclei were first studied' by employing the
Nilsson model. The generalized Nilsson model cal-
culations ' led to the conclusion that all the rare-
earth nuclei favor an axially symmetry prolate
shape (yo

——0) with deformation Pa=0.3, whereas in
the still heavier nuclei in the transition region
(A —190), the deformation is small (P0-0.15) and
could very well be axially asymmetric (yo+0). The
equilibrium deformations of heavy nuclei were also
studied extensively with the self-consistent quadru-
pole plus pairing (Q+P) interactian model by con-
sidering only the valence nucleons outside an "inert
core" af 40 protons and 70 neutrons. The equilibri-
um deformation parameters Pu and yu obtained
from the Q+P model and the generalized Nilsson
model ' are found to be very similar over the entire
mass region 150&3 &200. There is, however, a
clear distinction between the calculations based on
the Nilsson and the Q+P models to obtain equili-
brium deformations. In the Nilsson model, all the
nucleons must be taken into account explicitly,
while in the Q+P model, one can assume an inert
core and obtain equilibrium deformations by a
proper choice of the strengths of the quadrupole
and pairing interactions.

The Q+P model has recently been applied to
study the properties of the high spin states of the
nuclei in the rare earth and the transition region. It
was found from these detailed investigations that
the assumption of an inert core necessitates the

modification of the nucleon charges and excitation
energies by a suitable renormalization to reproduce
the experimental 8(E2) values and energy spectra.
In order to justify this renormalization prescription
in the Q +P model, it is necessary to investigate the
effects of the neglected core on the properties of the
nuclear states projected from the intrinsic states of
nuclei. Before considering the effect of the neglect-
ed care on the properties of the nuclear states, it is
thus worthwhile to find its effects on the equilibri-
um deformations of the nuclei. It is first necessary
to know whether proper equilibrium deformations
can be obtained in the Q+P model by considering
all the nucleons in the nucleus explicitly, without
the assumption of an inert core. The present calcu-
lations in a large configuration space of the first
seven major oscillator shells indicate that it is possi-
ble to obtain proper equilibrium deformations by a
suitable choice of the strengths of the quadrupole
and pairing interactions. Furthermore, the experi-
mental 8(E2) values are also correctly reproduced
by our calculations with bare nucleon charges for
all the nucleons.

The many-body Hamiltonian H for the nuclear
system can be written as

~= g T~pu~up+ 4 g I ~prsa~a Jpsar, (1)

where T is the kinetic energy operator and V &&5 is
the antisymmetrized matrix element of the
nucleon-nucleon (N1V) interaction. The spherical
basis states are denoted by Greek letters and the de-
formed states will be denoted by Latin letters. The
subscript a in Eq. (1) denotes all the quantum num-
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—(q„') s(q„)~pj (2)

hers (n,lj ~,m ) necessary for the specification of
a single particle state ~a). The general Hartree-
Fock-Bogoliubov (HFB) equations can be obtained

by introducing an auxiliary Hamiltonian H —A,Ã,
where N is the number operator and A, the Lagran-
gian multiplier to conserve the number of nucleons
in the system. The HFB equations can be simpli-
fied by employing the quadrupole (V ) and pairing
(V ) interactions with their matrix elements given

by

VPp„s ———g ~XQq [(q„') r(q„)sp
78@

g(T'r+I" A,P—)C"=rl,'C",
y

u;, = —, t 1 —[1+(b,slit,')2]

(10)

The chemical potentials A,, and the pairing gaps 6,
are determined from the number conservation con-
dition

N, = , g [1——[1+(6,/q, '. )']-'"j (12)

The coefficients C~ and the occupation probabili-
ties u;, (=1—u;, ) in Eqs. (5) and (7) are to be
determined self-consistently by solving the equa-
tions

Vers ———QG,5 y5 g, (3)
and

G
—1 i g [( &)2+g 2]—1/2 (13)

where r(r') stands for neutron or proton, X, and G,
are the strengths of quadrupole and pairing interac-
tions, respectively, and q& ——r F& is the quadrupole
operator. The barred state P in Eq. (3) is obtained

from the state P by the time reversal operator. The
HFB equations can be further simplified by neglect-

ing (i) the exchange term in V~prs, (ii) the contribu-
tion of V prs to the pairing potential, and (iii) the
contribution of V prs to the HF potential. The va-

lidity of these approximations has been justified.
%ith these approximations, the HF potential I ~&

and the pairing potential 4~& can now be expressed

I'„=—Xg Q„(q„), , (4)

where the intrinsic mass quadrupole moment

Q„=g (qq )spC p Cs'(u;, )
rP5

and

b,'.r—hPr. ,

where the pairing gap

~~=Gr g iitWr~ ~ (7)

The strength X and the operator q in Eq. (4) are re-
lated to the corresponding quantities in Eq. (2) by

X=X,(b/&, )'; q'=q'(«/&)',

where

5'=A/m~= —', ( —,
' )'"ro'A '",

(9)

&~ =(2Z/A)'; 8„=(2N/A)'

The HFB energy is then given by

EHFB g 7 &u 2 XgQ 2 gg 2/G

(14)

The HFB calculations in this Q+I' model are to
be carried out self-consistently to determine the
chemical potentials A,„pairing gaps A„and intrin-
sic quadrupole moment Q„at the minimum of en-

ergy E " . The equilibrium deformation parame-
ters Pp and yp of the generalized Nilsson model
are ' related to the intrinsic quadrupole moment

Q„by the relations

XQp =fkoPocosyp,

XQz =irioiPosinyo,

where irido is given by Eq. (9). The 8 (E2) values for
the y transitions are computed in a variational pro-
jection formalism which determines the wave func-
tion 1(r' projected from the intrinsic HFB state cor-
responding to the minimum in energy (i)j

~
H

~
P).

The HFB calculations with the Q+P model re-

ported here are carried out in the configuration
space of the first seven major shells for both kinds
of nucleons to obtain deformation parameters for
nuclei in the mass region 146 &A & 192. The
minimum of energy E " and the corresponding
parameters Pp and yp are obtained by solving Eqs.
(10)—(15) self-consistently by an iterative pro-
cedure. The single particle energies corresponding
to the spherical basis states employed in the present
calculations are the same as those employed in Refs.
3 and 4. The present realistic calculations in large
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configuration space show that the strength of the
quadrupole interaction required to obtain appropri-
ate equilibrium deformations of nuclei in this mass
region depends sensitively on the mixing caused by
the quadrupole operator across the major shells. It
is necessary to include the mixing across the major
shells in order to investigate the renormalization ef-
fects caused by the assumption of an inert core.
The HFB calculations are, however, substantially
involved if one includes the mixing across the major
shells since the dimensions of the HFB matrices in
Eq. (10) increase. For the configuration space of
seven major shells employed in the present calcula-
tions, the dimensions of the matrices for both pro-
tons and neutrons are 50X50 for positive parity
states and 34)& 34 for negative parity states.

Following Kumar and Baranger we assume the
same A dependence of the strengths of the quadru-
pole and pairing interactions as

X=Spy '; Gp
——Gpp A '; G„=G„pg

By assuming an inert core of 40 protons and 70
neutrons and the configuration space of N=4 and 5

shells for protons and X=5 and 6 shells for neu-

trons, Kumar and Baran ger obtain reasonable
values for the deformation parameters and the pair-
ing gaps 4p and h„by employing Xp ——70 MeV,

G&p ——27 MeV, and G„p——22 MeV. The values of
these three constants Xp Gpp and G„p have to be
determined, so as to obtain similar results from the
present calculations performed without the assump-
tion of an inert core. We have performed a series of
self-consistent calculations to obtain the equilibrium
deformation parameters and pairing gaps hz and

h„by varying the strengths Xp, G&p, and G„p. We
find that the equilibrium deformation Po and both
the pairing gaps Az and h„are sensitively depen-
dent on the strength Xp of the quadrupole interac-
tion. The variation of Gzo and G„o Q'o remaining
fixed) has a very insignificant effect on the equili-
brium deformation parameters. However, the pair-
ing gaps 6& and 6„ increase significantly with the
increase in Gzc and G„o, respectively. After study-

ing the variations of the equilibrium deformation
parameters and pairing gaps, we find that our re-
sults obtained with Xp ——36.5 MeV, Gzp

——18.5 MeV,

TABLE I. The equilibrium deformation parameters Po and yo (in degrees), the pairing gaps h~ and b,„, the intrinsic
quadrupole moment Q, and the deformation energy bE for a few nuclei are tabulated. These results are obtained with the
values (in MeV) p0——36.5, G~0——18.5, and G„0——16.5, in the configuration space of W=o to 6 ma&or shells for both protons
and neutrons. The values in parentheses are those obtained with the assumption of core and employing the values (in
MeV) g0 ——70, G~0

——27, and G„0——22.

Nucleus Po $0 (MeV) (MeV)
AE

{MeV)

sm
"4Sm

1560,d
1606d
160Dy

1640y
164Er

168Er

166yb

170Yb

166Hf

170Hf
172~
176~
186p

188ps

192ps

184pt

188p

192pt

0.00(0.00)
0.39(0.31)
0.00(0.00)
0.38(0.31)
0.35(0.33)
0.36(0.31)
0.33(0.33)
0.34(0.31)
O.31(O.33)
0.33(0.30)
0.30(0.32)
0.31(0.25)
0.29(0.29)
0.26(0.26)
0.25(0.28)
0.17(0.20)
0.15(0.18)

—0.11(—0. 15)
0.18(0.20)
0.14(0.17)

—0.11(—0.14)

0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0{0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0(0.0)
0.0{0.0)
0.0(0.0)

10.0(21.4)
0.0(0.0)
0.0(0.0)

10.0(20.2)
0.0{0.0)

1.77(1.78)
1.01(1.01)
1.77(1.79)
0.99(1.04)
0.95(0.94)
0.89(0.98)
0.86(0.90)
0.83(0.93)
0.82(0.85)
0.83(0.94)
0.82(0.85)
0.99(1.06)
0.93{0.96)
0.96(0.96)
0.89(0.92)
0.73(0.76)
0.75(0.79)
0.84(0.85)
o.79(o.75)
0.71(0.67)
0.69(0.68)

1.00(0.86)
1.04(0.90)
0.97(0.85)
1.02(0.90)
0.86(0.84)
0.91(0.87)
0.81(0.75)
0.83(0.82)
0.74(0.68)
O.83(O.82)
0.73(0.68)
0.91(0.91)
0.80(0.76)
0.83(0.82)
0.73{0.75)
0.75{0.97)
0.76(0.99)
0.74(0.93)
0.77(0.94)
0.82(1.05)
0.82{0.82)

0.25
8.05
0.26
7.87
7.44
7.70
7.33
7.53
7.10
7.41
6.94
6.95
6.64
5.79
5.74
4.08
4.10

—2.65
3.85
3.69

—2.51

0.00
15.03
0.00

14.48
14.02
13.65
13.03
12.46
11.69
10.98
10.45
8.91
9.01
7.11
6.76
2.22
1.50
0.40
2.28
1.15
0.34
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TABLE II. As in Table I, these results are obtained with the values g0——39 MeV,

Gp0 = 18.5 MeV, and G„0= 16.5 MeV in the configuration space of X=0 to 5 major shells for
protons and N=O to 6 major shells for neutrons with the reduction factor (see text) for the up-

permost shell for protons and neutrons.

Nucleus Po $0 (MeV) (MeV) {eb)

AE
(MeV)

'~Sm
14sod
1606d
1640y
168Er

170Yb

170Hf
176~
186O

188Os

192Ps

184pt

188p

192p

0.00
0.00
0.34
0.32
0.30
0.29
0.28
0.24
0.17
0.15

—0.11
0.18
0.15

—0.12

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

10.0
0.0
0.0

10.0
0.0

1.77
1.77
0.96
0.89
0.83
0.82
0.87
0.82
0.72
0.75
0.82
0.70
0.65
0.66

1.00
0.97
0.90
0.86
0.78
0.78
0.85
0.78
0.79
0.80
0.73
0.82
0.81
0.81

0.25
0.26
6.46
6.34
6.22
6.03
5.68
5.01
3.63
3.90

—2.70
3.42
3.32

—2.65

0.00
0.00

18.88
17.51
15.89
14.33
12.44
9.59
3.76
2.50
1.14
3.87
2.26
1.11

and G„o——16.5 MeV are similar to those obtained
by assuming an inert core with go ——70 MeV,
Gp 0——27 MeV, and G„o——22 MeV. In Table I, we
show our values for the deformation parameters PD

and yo, the pairing gaps 4z and 4„, the intrinsic
quadrupole moment Q obtained from Eq. (5) by
summing only over proton states, and the deforma-
tion energy AE which is the difference between the
energies corresponding to the spherical and equili-
brium shapes for a number of nuclei in mass region
146&3 &192.

It should be pointed out here that the earlier re-
sults with the assumption of an inert core are ob-
tained by introducing an arbitrary reduction factor
to decrease the influence of the uppermost shell
(N=5 for protons and N=6 for neutrons). It may
be worthwhile to examine the effect of such a
reduction factor on the results of our calculations
by introducing the same reduction factor
r=(2N+l)l(2N+3) for the uppermost shell for
protons and neutrons. %e find that the introduc-

TABLE III. The 8(E2) values (in e2b ) for the y transition 2+~0+ and 4+—+2+ states
obtained by employing bare nucleon charges in a configuration space of seven major shells
are listed for some typical nuclei.

Nucleus Calc.
8(E2 2+~0+)

Expt. (Ref. 9)
8 (E2;4+~2+)

Calc. Expt.

154S

156~d

164Dy

166Fr
16sYb
166Hf

170Hf
184~
186O

192O

192p

0.86
0.89
1.07
1.10
1.07
0.75
0.90
0.61
0.47
0.40
0.34
0.28

0.92+0.04
0.93+0.04
1.11+0.01
1.16+0.04
1.09+0.05
0.70+0.03
1.01+0.03
0.73+0.03
0.58+0.08
0.42+0.04
0.34+0.02
0.30+0.02

1.22
1.27
1.53
1.56
1.52
1.07
1.28
0.87
0.66
0.58
0.48
0.41

1.39+0.04

1.06+0.06
1.43+0.15

0.58+0.03



25 EQUILIBRIUM DEFORMATIONS OF HEAVY NUCLEI 3159

tion of this reduction factor results in the increase
of the value of Xo from 36.5 to 39 MeV so as to ob-
tain the same equilibrium deformations over the
whole range of nuclei. The results obtained in the
configuration space of N=O to 5 shells for protons
and N=O to 6 shells for neutrons with the reduc-
tion factor ~ are displayed in Table II.

The assumption of an inert core necessitates the
introduction of effective nucleon charges, 5 s in order
to explain the observed E2 transition probabilities.
It is, therefore, interesting to see whether B(E2)
values can be reproduced by ascribing only bare nu-
cleon charges in large configuration space as em-

ployed in the present calculations. We have deter-
mined the B(E2) values by employing the bare nu-
cleon charges in large configuration space and the
results are shown in Table III for some typical nu-

clei in the mass region of interest. The values are in

good agreement with the experimental data wherev-
er available.

The present results thus indicate that it is possi-
ble, within the framework of the Q+P model, to
arrive at similar results on equilibrium deforma-
tions of the nuclei in the rare earth and transition
region by performing calculations with and without
the assumption of an inert core. The only differ-
ence is in the strength of the quadrupole and pair-
ing interactions to be employed in the two calcula-
tions, It is gratifying to note that the observed E2
transition probabilities are correctly reproduced by
employing the bare charges for all the nucleons in

the present calculations in the large configuration
space of the first seven major shells.
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