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Excluded bound state in the S&&2 a N-interaction and the three-body
binding energies of He and Li
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The effect on the ground-state A =6 three-body binding energies of representing the
S&~2 a-S interaction by a repulsive potential compared to an attractive, excluded-bound-
state potential is examined. The theory underlying construction of an attractive, excluded-
bound-state potential is reviewed and then applied in the construction of an S~~2 a-S in-
teraction. The role of Levinson's theorem from potential theory as opposed to its modified
form for composite-particle scattering is stressed in comparing the repulsive and
attractive-excluded-bound-state interactions. The A =6 three-body equations are general-
ized to accommodate an attractive S~q2 a-N interaction with a forbidden bound state and it
is shown that the limit to exclude the forbidden state leads to a set of well-defined three-
body equations containing no spurious, deeply-bound solutions. Results for the He and Li
binding energies suggest that the attractive, excluded-bound-state interaction gives a better
representation of Pauli-exclusion effects in the S&q2 a-E interaction than the repulsive
form, based on the marked improvement in the predicted He binding energy compared to
experiment with essentially no degradation in the Li value, This conclusion can be further
tested by using the new wave functions to calculate the Li ~a+d momentum distribution
which is sensitive to the components in the 6Li wave function that are present solely due to
the S1~2 a-E interactions.

NUCLEAR STRUCTURE He and Li, Pauli-exclusion effects, three-

body calculations, Levinson's theorem.

I. INTRODUCTION

The 2=6 nuclei, He and Li, are especially in-

teresting, because their structure appears to be
understandable from three-body dynamics; that is,
from the dynamics of two nucleons and an alpha
particle treated as an elementary particle. ' Such
a model also seems to work well for elastic and in-
elastic alpha-deuteron scattering below the thresh-
old for formation of iHe and 3H in the final
state. Although the alpha particle is taken to be
elementary, its compositeness is imbedded in the
alpha-nucleon (a-N) phase shifts that are used to
generate a-N potentials for the three-particle
dynamics. In particular, the Si~i a-N phase shift
has a form that emphasizes that the Pauli exclusion
principle plays a role in this wave of the a Nin--
teraction. The Si&2 phase shift appears to originate
from either a repulsive interaction or an attractive
interaction that supports a single bound state. The
absence of a five-nucleon bound state in nature has
led most investigators to represent the S~~2 a-N in-
teraction by a repulsive potential, with the source of

the repulsion being the Pauli principle: The fifth
nucleon resides outside the filled ls shells of the al-
pha particle. Phase shifts, 5(E), where E is the
scattering energy, originating from such repulsive
potentials, satisfy Levinson's theorem' in the form

5(0)—5( oo ) =0 .

It can be argued that this form of Levinson's
theorem is incorrect, since we are dealing with the
scattering of composite systems. Specifically, when
the Pauli exclusion principle comes into play,
Levinson's theorem is modified to

5(0) 5( ao )=no—.=(n, +n, )m,

where the number of bound states, n =n, +n„ is
the sum of the number of bound states excluded by
Pauli's principle and the number of actual bound
states. 9' The correctness of this form of
Levinson's theorem for composite-particle scatter-
ing has been demonstrated by Sloan. "

Sloan compared the s-wave doublet and quartet
phase shifts for neutron-deuteron scattering from
an exact three-body calculation (Amado model). In
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the doublet channel, there is a bound state, H, and
we expect the phase shift to satisfy Eq. (2) with
n =n, = 1. Qualitatively, the Pauli exclusion princi-
ple is satisfied in the doublet channel by having the
two neutrons with opposite spins and s-wave relative
orbital angular rnornentum, quite in contrast to the
quartet channel where the two neutron spins are
necessarily aligned forcing p-wave relative orbital
angular momentum. Thus, the strong attractive in-

teractions present in the doublet configuration due
to primarily s waves for the relative motions are lost
in the quartet and the possible bound state is ex-
cluded. Sloan's calculations support this picture:
Both the quartet and doublet phase shifts satisfy
Eq. (2} with n =1, where for the former n =n, =1
and for the latter n =n, =1. To back up his calcu-
lations and to see more clearly how the results come
about, Sloan applies a simple analytically solvable
model that has two spin- —, N particles and an infin-

itely heavy P particle. The two E particles do not
interact when their spins are aligned, but the N-P
interaction is strong enough to support a single X-P
bound state. There is no bound state of the NNP
system for aligned N spins, because the Pauli princi-
ple keeps the two N's from occupying the same
two-body bound state with the P. Nevertheless, the
presence or absence of an N-particle bound to the
target I' particle makes no observable difference on
the scattering of an N particle from the target, thus
the modified Levinson theorem is satisfied for N
scattering from the bound N-P system. Clearly,
Levinson's theorem is modified for composite sys-
tems by the Pauli principle and effort should be
made to construct S~~2 a-N interactions that are
used in A =6 three-body models that satisfy it in
modified form.

The modified form of Levinson's theorem cannot
be satisfied by a repulsive potential for the S&j2 a-N
interaction, but simply resorting to an attractive po-
tential that reproduces the S~~2 a-N phase shift
leads to a single spurious A =5 bound state. Clear-

ly, a projection procedure must be applied that com-
pletely removes the spurious A =5 bound state
without altering the phase shift so that the modified
Levinson theorem is satisfied. Several projection
methods exist in the current literature, ' ' two of
which are of interest to us here. ' ' The key ele-
ment of all projection methods is that the scattering
wave function be orthogonal to the excluded state(s)
as required by the Pauli principle. The well-known
method of Saito' implements this requirement ex-

plicitly by adding such (a) boundary condition(s) to
the Schrodinger equation, thus, in effect, making

the Schrodinger equation inhomogeneous. Saito's
procedure amounts to constructing a potential that
produces excluded states and then eliminating from
the potential all terms which project onto the ex-
cluded states. Similar in spirit, but different in ap-
plication, is the pseudopotential method of
Krasnopol'skii and Kukulin. ' Their method adds
to the original potential a projector onto the exclud-
ed states, each excluded-state term multiplied by a
constant parameter. The original potential plus the
projector make up the pseudopotential. In the limit
that the multiplicative parameters go to infinity, the
forbidden states are removed and the allowed states
are unchanged. Unlike the Saito method, where the
total Green's function has a pole at E =0 corre-
sponding to the excluded states, the method of
Krasnopol'skii and Kukulin leads to the forbidden
states being completely removed from the spectral
decomposition of the Green's function. " For this
reason and the fact that the method of
Krasnopol skii and Kukulin is much easier to im-

plement in practice than that of Saito, we adopt
their method to construct an S~~2 a-X interaction
that satisfies the modified Levinson theorem
without introducing a spurious A =5 bound state.

The purpose of this paper is to examine the effect
on the He and Li three-body binding energies of
using an attractive excluded-bound-state representa-
tion of the S~~2 a-N interaction compared to the
standard repulsive interaction. ' ' After construct-
ing such an interaction the practical question arises
as to implementing the projection limit (parameter
to infinity} in the three-body equations. We show
that this limit is well-defined in the three-body
equations and that'all spurious states are removed. '

The projected equations are solved with the result
that an attractive excluded-bound-state representa-
tion of the S~~2 a-N interaction, relative to the
repulsive form, affects He and I.i differently, pri-
marily owing to the difference in size o~ their
respective three-body binding energies.

The structure of the text is as follows: In Sec. II,
we review the theory of Krasnopol'skii and Kukulin
for projecting excluded states from a two-body
problem and apply it to set up an S~~2 a-N interac-
tion. Section III contains an illustration of how a
projected two-body interaction is implemented in
three-body theory and how it modifies our previous-
ly derived He and I.i three-body equations. ' Fol-
lowing this development, the results obtained from
numerically solving the new equations are com-
pared to our earlier results' obtained with a repul-
sive S&&2 interaction. These results along with dis-
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cussion are in Sec. IV. Finally, a summary and
conclusion are given in Sec. V.

II. EXCLUDED BOUND STATE
IN TWO-BODY PROBLEM

A. Review of theory

responding pole is removed from the t matrix and

~ y~& is not part of the spectral resolution of the
resolvent.

With the pseudo-Hamiltonian defined as

(9)

(10)

In this subsection, we briefly review the pseudo-
potential projection method of Krasnopol'skii and
Kukulin. ' We limit our discussion to the case of a
single forbidden state,

~ y~ &, for simplicity, but it is
easy to generalize to n forbidden states. Three as-
pects are of interest to us: (1) Schrodinger's equa-
tion, (2) the full resolvent, and (3) the t matrix.

I.et us begin from Schrodinger's equation

the pseudoresolvent is

G(E)=(E H)—

+ dE', (q, (E')&&q, (E')
~

E—E'+ie

G(E)
'9

I Pf Pf

(12)

(HO+V E)
~
y&—=0, (3)

where Ho is the free two-body Hamiltonian, E is
the energy, and V is the two-body interaction that
generates the forbidden state. More specifically, we
shall assume that V generates one forbidden state,
one allowed bound state, and the continuum. The
pseudopotential equation is obtained by replacing

V+r1 Imp&&ty I

(E Ey) 1 ——
E—Eg

where

G(E)=(E—H)-' .

(13)

(14)

G(E)=Go(E)+Go(—E)t(E)GO(E),

The pseudo-t matrix is defined from the pseu-
doresolvent:

where
~ yy & is the forbidden state and r) is a param-

eter that controls the projection of ~pry&. The
pseudo-Schrodinger s equation is

where

Go(E) =(E—Hp) (16)

(H, +V+n lmq&&ff ~

E)
~ f & —0,

where

~gf&= ~qf& whenE EJ'+q

~g, &= (y, & when E=E, (0,
(6)

(7)

Clearly, the pseudo-t matrix can be written as

t(E) = —(E—Ho)+(E —Ho)G(E)(E —HD), (17)

r(E)+A—r{E),
where

and
b,t(E)=(E—Ho)

n I my & & ~y I .-(E—Ho) .
~ g, &=

~ p, & when E=E, &0.

~ y, & and
~ y, & represent the allow bound state and

the continuum states, respectively. It is clear that
the allowed bound state and the continuum states
appear in the pseudoproblem unchanged from the
way in which they appear in the original problem.
This means that the scattering phase shifts remain
unaltered. In addition, however, through the
parameter g,

~
q&~ & can be moved about in the spec-

trum; for example, it can be made degenerate with

~ p, & by choosing r)=E, Ey or it can be im—bed-
ded in the continuum by choosing gy —E~&0.
We shall see that by letting g —+co,

~ y~& is com-
pletely projected from the problem; that is, the cor-

(E Ey) 1——
E—Eg

(19)

r(E) =r(E); (20)

the phase shifts remain unaltered. Off shell, t(E)
and t(E) differ markedly due to their different
singularity structure. Moreover, in the limit q —+ oo,
the pseudoresolvent and pseudo-t matrix become

G(E)=G(E) (21)

For the fully on-shell t matrix (EQE~), b,t(E)—:0
and
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and I80

t(E)=t(E)—(E—Ho) (E—Ho),E—Ey

(22)

respectively. The forbidden state
~ yy) has been

completely removed from the problem, but
Levinson's theorem applies in its modified form,
Eq. (2).

B. Application of theory to S~qq a-N interaction

I60
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IOO
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60 ~

Amdt - Roper (l973)
(Exp. )——Repulsive Potential

--—-- Attractive Potential

I I I

8 IO I2

E„, , (M8V)

I I

I4 i6 I8 20

For the S~~2 a-X interaction, the theory of sub-
section A applies without the allowed bound state.
We begin with an attractive s-wave separable poten-
tial

(23)

where

FIG. 1. Comparison of fitted phase shifts to Arndt-
Roper phase-shift analysis (Ref. 18).

the three-body problem is

(k
~

V
~

k ') = — h(k)h(k')+r)y(k)p(k'),
2p

h(k)=(k +P ) (24)
(26)

Nh(k)
k'+y' (25)

where N is the normalization constant and y is re-
lated to the binding energy by Ey= 5y lSM = 13.46
MeV. Therefore, the pseudopotential to be used in

TABLE I. S)g2 u-N interaction parameters.

@=4M/5, M is the mass of a nucleon, A is the in-
teraction strength, and p is the inverse range of the
interaction. The parameters A and p are deter-
mined by fitting the phase-shift parametrization of
Amdt and Roper. ' Their parametrization covers
the laboratory-energy range of 0 to 21 MeV. Our
values for A and P are given in Table I under "at-
tractive" and our fit is compared to the Arndt-
Roper parametrization in Fig. 1. These parameters
yield a single forbidden bound state at 13 46 MeV
which must be excluded in any three-body applica-
tions of this interaction. The forbidden-bound-state
wave function is

where the limit g~ao is applied to the resultant
wave equation.

For comparison purposes, we also use a repulsive

S&&2 a-N interaction, the same one used in our ear-
lier work. ' The parameters are given in Table I
under "repulsive. " The low-energy phase shifts
predicted by this repulsive interaction are essentially
identical to those of the attractive interaction (see
Fig. 1). At higher energies, they differ markedly as
can be seen in Fig. 2. The repulsive interaction sa-
tisfies Levinson's theorem of Eq. (1), but the attrac-
tive interaction satisfies the modified form of
Levinson's theorem, Eq. (2). However, this is not
the only way the two interactions differ. For nega-
tive energies that arise in the bound-state solution of

I80
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A P Er y N
Interaction (fm ') (fm ') (MeV) (fm ') (fm '

)

20

IOO 200 300

E„, , (Mev)

to 04

400 500

Attractive 0.7277 1.482 13.46 0.7203 1.074
Repulsive —0.6373 0.7496

FIG. 2. Comparison of phase shifts from attractive
and repulsive S&~z potentials beyond the threshold re-
gion.
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the three-body problem, the off-shell behavior of
their respective t matrices is quite different. The t
matrix of the repulsive interaction is always positive
for fixed k and k', and varies slowly with energy.
The only role of the form factors h (k) is to vary the
amplitude. In contrast, the fully-projected,
attractive-interaction t matrix has more structure.
For k and k' small, it is negative, but as k and k'
take on larger fixed values, as a function of the ab-
solute energy, it starts out positive and then be-
comes negative. Thus, it imitates a repulsive in-
teraction over a limited range of its variables, i.e., k
and k' large enough and the absolute energy below a
certain value.

III. BOUND-STATE THREE-BODY EQUATIONS
WITH AN EXCLUDED-BOUND-STATE

TWO-BODY INTERACTION

A. Spin independent case

In order to keep the details to a minirnurn, we

consider the simple model problem of three spinless

particles, two of them identical of mass M, and a
third particle of mass 4M. The two identical parti-
cles will be called the X particles and labeled 1 and

2, while the third particle will be the u particle. All
interactions will be assumed representable by s-wave

separable potentials and the u-X interaction will

possess a single forbidden bound state. Specifically,

and

~NN

2I NN
(27)

Vii
——— ih)„&h i,

2p~z

(ij,k =31,2 or 23, 1) .

We write for the pseudopotentials

VJ=I'1+rlIeij &&a J I

(28)

(29)

F(p )

we are led naturally to the wave function form

(31)

(32)

(33)

where
~

q&;J. ) represents the forbidden bound state.
We begin from the three-body pseudo-Hamil-

tonian and write the Schrodinger equation as

(Ho+ I'12+ I'31+ V23) ~

q'& = —E
~

q'&, (30)

where 80 now represents the three-body free Ham-
iltonian and E)0. When Eqs. (27) and (29) are
substituted into Eq. (30) spectator functions are de-
fined as

0( k, p )= Ag(k)G(p)+ [h(k»)F(p, )+h(k23)F(p1)]
8

+M2)[tp(k31)4(p2)+qr(k23)4(p1)] /(k + —,p +K ), (34)

symmetric under exchange of particles 1 and 2, and where E =ME, the subscripts on the lambdas have been
suppressed, k is the relative momentum of particles 1 and 2, and p is the momentum of the third particle re-
lative to the NX center of mass. The vectors k;J and pk have analogous meanings and can be expressed in
terms of k and p: k» ——( —4k/5) —(3p/5), etc. The coupled, homogeneous integral equations obtained from
the Schrodinger equation for the spectator functions are

(1—AI~(p))G(p)= —,A I d kA(k, pg) F(k)+™4(k) (35)

O' F(p) =Afd k [ (1 M,rII~~(p))A(p, k;g)+ M— 2)I1,~(p4f(p, k;g) j G(k)

+ —,A J d k I (1 Mr)I„~(p))B(k,p;g)—+MrlI„~(p)9F (p, k;g) jF(k)

+Mr) f d k j (1 MrII~~(p))3f(k, p;g—)+MrIIs~(p)C(k, p;g) j 4(k), (36)
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~@(p)=& f d'k j g AI~/(p)&(p, k;g)+(1 —IAIDO/(p))~(pykyg) ]G(k)

+ g
A f d k 'l 8 AIq)$(p)B(k, p;g)+( 1 ——,AIqq(p))&(p, k;g) JF{k}

+My f d k j —,AI+s(p)8P(k, p;g)+(1 —IAI~s(p))C(k, p;g) J4(k),
where

&=(1 Mrl—I~~(p) )(1——,AII s (p) )——,
AM pe(p)Is (p),

I (p)= dkSf k2+ 3 2+@2+s&+

Isa(p)= f d'k
s

h (k)
S k2+ 3p2+g2

Iqq(p)= f d k,—k + —p +E

I~r(P) =I~s{P)= d k, 2, 2

h(k)q)(k)

, k2+ ,p—+E—

g{lk+-p l}h{l s k+p I}
A(k,p;g) =

k2+ —p +E +k'p

M(k,p;g) = A(k,p;g),
h

h{
I
k+ —, p I»( I

—k+p I
}

B(k,p;g) =
(k +p )+—E +—k'p

m( I
—, k+p

I
}

8t(k,p;g)=, B(k,p;g),
h(l —, k+p l)

C(k,p;g)= 4'(k,p;g),
h

(37)

(3g)

(39)

(41)

(42)

(43)

(45)

(46)

(47)

and )=k p. Now, we exclude the forbidden two-body state by taking the limit g~ 00 in the above equations.
Note that as ri~oo, & is directly proportional to g. Thus, from the 4(p) equation, we see that ri@(p)
remains finite as q~ ao. Therefore, we define

lim Mq@(p) = —,A@(p), (4g)

and derive in the g —+00 jimit

'0( k, p }~%'(k, p }=j Ag(k}G(p)+ —,A[h{k3~ )F(p2}+h (k23)F(p] )]

+ —,A[y(k3~)@(p~)+q(k23)@(pt )] I l(k'+ ,p'+&'), —

where

(49)

(1 AI~(p))G(p)= , A—f d kA(k, p;g)—(F(k)+4(k)),

&F(p)=A, f d'kj I (p)A(p, k;g) Iq (p)W(p, k;f) jG—(k)

+—', A f d'kj I (p)B(k,p;g) Ig~(p)3t(p, k;g) JF(—k)

+ —,A f d'k jI~~(p)$'(k, pg) Is~(p)C(k, p;g) j4(k—),

(50)

(51)
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&4(p) = — f d k I , A—Is~(p)A(p,k;g)+(1 ——,AII h(p))W(p, k;g) J G(k)

—f d k I 8 AIs~(p)B(k,p;g)+(1 —
8 AIpI, (p))3P(p, kg) IF(k)

—f d k I 8 AIsq(p)%(k, p;g)+(1 —
8 AII~(p))C(k, pg) IC(k),

(52)

& =I~~(1—, Aug )—+, AIg~— (53)

To summarize, we began from the three-body
pseudo-Hamiltonian and derived the unprojected
three-body bound-state equations. Then, we showed
that the projection limit (gazoo ) is well defined'
and proceeded to derive the fully projected three-
body equations, the latter being the basis for the
work of this paper.

When one compares Eqs. (49)—(53) with those
where the a-S interaction is represented by a one-
term repulsive potential, the striking difference is
the new spectator function 4(p). The presence of
this function adds extra terms to 4 and leads to an
extra integral equation.

Finally, it is not difficult to show that any con-
tamination due to the forbidden state

~ y) has been
completely remove from %. Specifically, we can
prove that

lim|(p ~%')~|(y
~

4}—=0.

B. Application to ~He and 6Li

Once Eqs. (49)—(53) are at hand, it is straightfor-
ward to modify the equations of Ref. 1 ( He) and
Ref. 2 ( Li) for the forbidden-state studies of this
paper. Each wave function now has an extra term
for each S~~2 spectator function due to the presence
of C(p) as in Eq. (49). Thus, the number of coupled
equations to be solved increases from 4 to 5 for He
and from 9 to 11 for Li. Owing to space limita-
tions, we leave the details to the reader.

TABLE II. He binding energies.

S)g2 interaction N-N interaction
E

(MeV)

Attractive (bound
state excluded)

Attractive (bound
state excluded)

n-p best fit

n-n best fit

0.735

0.556

I

repulsive Si~q a-N interaction as a comparison.
Results quoted in this paper for that interaction are
taken from Refs. 1 and 2.

Our results are displayed in Tables II and III.
The most distinct feature is that the attractive
(bound state excluded) interaction increases the
binding energy of He by &0.2 MeV, but decreases
the binding of Li by -0.16 MeV, compared to the
repulsive interaction results. Qualitatively, this can
be interpreted as a binding energy effect. The loose-

ly bound He nucleus is such that, on the average,
the a %pairs in the-S~~2 wave are far enough apart
to experience more of the attractive part of the S»z
interaction (recall discussion at the end of Sec. II).
On the other hand, the more tightly bound Li nu-

cleus is such that, on the average, the 0;-X pairs are
closer together in the Si&2 wave and experience
more of the repulsion (due to the Pauli principle)
that is present in the interaction. Percentage wise,
the effect is much larger for He (owing to the
small-size of the binding energy) than for

IV. BINDING ENERGY RESULTS

All the results discussed in this section are based
on the N-E interactions and the I' wave, form 8 a-
N interactions described in Refs. 1 and 2. The
reader will find all details about parameters and nu-
merical methods in those papers. Only the Si~2 e-
N interaction is changed in the present work as
described above. However, we do use the Shanley

Repulsive
Repulsive

Attractive (bound
state not excluded,
i.e., g=O)

Attractive (bound
state not excluded
i.e., g=O)

n-p best fit
n-n best fit

n-p best fit

n-n best fit

Experiment

0.542
0.359

ground 42.3
excited 0.680

ground 41.5
excited 0.497

0.969
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S)g2 interaction N-N interaction (MeV)

Attractive (bound
state excluded)

Attractive (bound
state excluded

0%'

4%

4.294

3.903

TABLE III. Li binding energies. the Li~a+d momentum distribution which is
sensitive to the S~~2 component. Such work should
also help decide whether a repulsive or attractive
excluded-bound-state interaction gives the better
representation of the Pauli principle in the a-N S~~2
interaction.

V. SUMMARY AND CONCLUSION
Repulsive
Repulsive

0%
4%

4.446
4.070

Attractive (bound
state not excluded,
i.e., g=O)

Attractive (bound
state not excluded,
i.e., g=O)

0%

4%

ground 55.6
excited 3.222

ground 53.0
excited 3.098

Experiment 4.53

'Percentage D-state component in the deuteron for the

S)—D) NN interaction.

Li;+ 36% (np) or + S5% (nn) for He and —3%
(0%) or —4% (4%) for 6Li.

An interesting question concerns what happens
when the bound state is not excluded from the at-

tractive interaction. For both He and Li, we find
a deeply bound ground state of the order of 50 MeV
and an excited state located close to the predicted
ground states for the case where the forbidden state
is excluded. It appears that the projection removes
the spurious, deeply-bound ground state, while the
excited state becomes the real ground state after a
slight shift in value. A puzzling question is the
reason for this slight shift in energy from the excit-
ed state to the ground state after projection. The
answer probably resides in the different off-shell
behaviors of the two-body interactions, but we have
been unable to construct a convincing argument.

Does the use of an attractive excluded-bound-
state S&&2 a-E interaction alter the calculated spec-
tator functions significantly compared to the repul-
sive form? Except for the S&&2 spectator functions,
the other spectator functions change only slightly.
The S~~2 spectator functions have changed dramati-
cally compared to the repulsive case due to the pres-
ence of the 4(p) term(s). The net effect of this res-
tructuring of the S&~2 component of the wave func-
tions is not evident by simply examining the tabu-
lated results, but must await testing of the wave
functions by calculating He P decay and especially

The question addressed in this paper concerns the
most appropriate representation of the Pauli-
exclusion effects in the S,&z alpha-nucleon interac-
tion: Are these effects best represented by a purely
repulsive interaction or by an attractive, excluded-
bound-state interaction? To shed light on this ques-
tion, we compared the predicted three-body binding
energies of He and Li from these two types of
S~&2 a-lV interactions. Both interactions used give
equally good fits to the low-energy (0 to 21 MeV
laboratory energy) phase shifts, but they differ at
higher energies. The repulsive-interaction's phase
shifts satisfy Levinson's theorem in standard poten-
tial theory form, 5(0)—5( oo ) =0, whereas the at-
tractive, excluded-bound-state interaction yields
phase shifts that satisfy the modified Levinson
theorem, 5(0)—5( ap ) =n, m =n, where n., represents
the number of excluded bound states. We found
that the attractive, excluded-bound-state interaction
predicts -0.2 MeV more binding for He and
-0.16 MeV /ess binding for Li compared to the
repulsive interaction. These results are interpreted
in terms of the absolute (theoretical) binding ener-
gies of the two nuclei: -0.5 MeV for He and
-4.0 MeV for Li. The S&~2 a-N pairs in He are
far enough apart on the average to experience rnain-
ly the attractive aspects of the attractive, excluded-
bound-state interaction; whereas, just the opposite is
true for Li. In Li, the S~~2 a-X pairs experience
primarily the Pauli repulsion present in the attrac-
tive interaction owing to the complete removal of
the forbidden state. Besides the binding-energy re-
sults, we also noted that only the components of the
He and Li wave functions which are directly asso-

ciated with the S~~z a-N interaction changed appre-
ciably. Thus, we conclude from the A =6 ground-
state binding energies that the attractive, excluded-
bound-state S~~2 a-N interaction gives a better rep-
resentation of Pauli effects than the repulsive in-
teraction, since the binding of He is increased by
-40% to give better agreement with the experi-
mental value while only shifting the binding of Li



D. R. LEHMAN

away from experiment by (4%. Nevertheless, fu-
ture work involving the wave functions e.g., the
6Li—+a+a momentum distribution which is partic-
ularly sensitive to the Q,-N S~~2 interaction, should
prove more decisive in distinguishing between the
two forms of interaction.
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