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The strength function for deep-lying hole states in an optical potential is studied by the
method of Green's functions. The role of isospin is emphasized. It is shown that, while
the main trends of the experimental data on hole states in isotopes of Sn and Pd can be
described by an energy independent optical potential, intermediate structures in these data
indicate the specific nudear polarization effects have to be included. This is done by intro-
ducing doorway states of good isospin into the optical model potential. Such states consist
of neutron hole plus proton core vibrations as well as more complicated excitations that are
analog states of proton hole plus neutron core vibrations of the parent nuclear system.
Specific calculations for ' Sn and ' Pd give satisfactory fits to the strength function data
using optical model and doorway state parameters that are reasonable on physical grounds.

NUCLEAR STRUCTURE " Sn, ' Pd; calculated single hole strength
functions. Green s function method for optical potential, intermediate

structure doorway states. Good isospin.

I. INTRODUCTION

Deep-lying hole states in nuclei have been the
subject of several recent experimental' and theoret-
ical ' studies. In the last few years, neutron pickup
experiments for the tin and palladium isotopes have
been extensively studied using (p, d) and ( He,a) re-

actions, and the fragmentation of the 1g9/2 inner-
hole strength is clearly observed in these data. To
date, a full theoretical understanding of this
strength function data is still lacking.

In this paper we present a method of calculating
a strength function from an optical model point of
view, as opposed to the previous nuclear structure
calculations. ' %e regard the neutron hole as mov-

ing in an optical potential at negative energies. In
its simplest form, this model depicts the observed
gross structure in the data as a giant resonance in
the optical potential.

In general, one knows that the optical potential
seen by a nucleon in a nucleus, i.e., its self-energy
X(co), is energy dependent. X(co) is obtained by en-

ergy averaging the nuclear polarization caused by
the nucleon motion, and thus the energy dependence
is associated with an underlying nuclear structure
problem. If the nuclear states are essentially excited
with random strength, the resulting energy varia-

tion of the nucleon self-energy is a smooth one;
however, if doorway states play an important role in
regulating these excitations, one expects energy
variations in X(to) over an energy range that is
small compared with the giant resonance width.
Such an energy dependence, which gives rise to in-
termediate structure in the strength function,
represents a nuclear polarization involving select ex-
citations that are strongly coupled to the nucleon
state. It is clear from the structure inherent in the
data that doorway mechanisms are present, and it
has been suggested by Koeling and Iachello that
these mechanisms are provided by prominent vibra-
tional states of the core. Therefore, by including an
energy dependence characteristic of the doorways
involved for the particular nuclear system, we ob-
tain a natural description of the intermediate struc-
ture resonances observed.

The strength function to be compared with exper-
iment is obtained directly from the method of
Green's functions. In this connection, the repre-
sentation of the single particle Green's operator
6 (co) has to be specified. The appropriate represen-
tation for our problem is given by eigenstates of the
average nuclear potential piece of X(co) that does
not involve any polarization of the medium. Since
we are dealing with a finite system, G(co) is not di-
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agonal in this representation. It thus proves con-
venient to obtain its matrix elements from equations
that are reminiscent of the two-potential problem in
scattering theory, with the polarization part of
X(co) playing the role of the second potential. This
method for constructing the Green's function is
developed in Sec. II. While the procedure is quite
general, it can only be implemented once assump-
tions are introduced about the behavior of X(co) in
coordinate space. Analytic results for a local, corn-
plex well form for X(co) are given in Sec. III. This
approximation, which is not too bad for deep-lying
hole states, also indicates what form calculations
using more realistic well shapes would take.

A problem of considerable importance is the iso-
spin character of hole states formed during neutron
pickup. Assuming that nuclei carry good isospin,
one knows that pickup from states occupied by the
2TO ——(X—Z) excess neutrons produce states of
unique isospin. However, this is not the case for
deep lying neutrons, whose remova1 excites both

analog and antianalog states of isospin T =To+ —,

in the residual nucleus. The role of isospin is dis-

cussed in Sec. IV in terms of neutron quasihole
states of good isospin, in an effective single particle
potential of the type proposed by Lane and Soper.

Section V presents specific calculations for the" Sn and ' Pd systems for which detailed strength
function data relating to the 1g9/2 shell model state

are available. ' It is shown that the complex
square well potential model of X(co) is able to repro-
duce the gross features of these data satisfactorily.
The question of intermediate structure is also dis-

cussed in terms of doorway states of good isospin

that consist of coupling neutron and proton holes in
"sSn to the collective vibrations of its proton and

excess neutron shells, the latter coupling providing
for parent doorways in " In, whose analogs give

doorway states in "Sn. These calculations are
schematic to the extent that the doorway widths

and coupling strengths to the quasihole states have

been regarded as adjustable parameters. However,
the satisfactory description of the experimental data
that results from using parameters whose values are
also adjudged to be reasonable on physical grounds

suggests that the main features of a more realistic
calculation are already present in the model.

II. THE GREEN'S FUNCTION FOR HOLES

As outlined in the Introduction, we want to ex-
amine the spreading of hole states in nuclei, inter-

preted as giant resonances at negative energies in

the nuclear optical model potential.
The optical model problem arises by considering

the propagation of a particle or hole that has been

added to an A-nucleon target system. By energy
averaging over the many excited states of the A+1
compound systems that result, one retrieves an ef-

fective single-particle wave equation for the added

particle or hole that has the general form

[E—T —X(E)]gx=0, (2.1)

with T being the kinetic energy. The self-energy

X(E) describes the effects of the nuclear medium on
the additional particle or hole. A formal theory of
deriving X(E) from first principles has been

developed by many authors. ' For our purposes,
we merely note that X(E) is, in general, nonlocal in

the coordinates of the nucleon, in addition to de-

pending on the energy E, and is complex:

X(r, r', E)=V(r, r', E)+i%(r r', E) . (2.2)

[co T —X(co)tG(co)=1—. (2.3)

Here m is an energy variable that ranges over the ex-
cited states of the A —1 system, with ~=0 corre-

While the result (2.2) for X is formally quite sim-

ple, actual calculations of the self-energy have until

quite recently not received serious attention. On
the other hand, the many successes' of the optical
model, using phenomenological local potentials to
mimic Eq. (2.2), are by now well established for a
variety of targets and projectiles. Moreover, recent
approximate calculations of the real and imaginary
parts of X, using a parametrized form of the two-
nucleon scattering matrices, have been surprisingly
successful, both in fitting scattering data, as well as
in providing a theoretical underpinning for the
phenornenological approach. Thus, except for cer-
tain theoretical developments to follow, where the
precise form of X will not matter, actual calcula-
tions in this paper will employ a local approxima-
tion for X. In fact, we take the approximation one
step further for hole states, and employ square well

potentials, because these can be handled analytically
for arbitrary angular momenta. Later studies will

employ more realistic potential shapes. The
theoretical estimates of X referred to above, howev-

er, suggest that a constant potential in the nuclear
interior (which determines the properties of deep
hole states) is not unreasonable.

A direct access to the giant resonance character
of the single particle or hole states in the complex
potentia1 X is provided by the Green's operator
6 (co) associated with Eq. (2.1)
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sponding to the ground state of the target system.
The distribution of strength of such giant reso-

nances is given explicitly by the imaginary part of
6{co}.Our interest is in the spreading of the hole
state introduced by the imaginary part of X. We,
therefore, consider G (co) in the representation pro-
vided by the eigenstates of Eq. (2.1) with the ima-

ginary part of X suppressed. Call these eigenstates
Such eigenstates thus refer to single particle

levels in a real potential well that are occupied in
the target system. Removing a particle from the
system creates an excited hole state that is then
spread over the excited states of the A —I system in
a manner described by ImG„„(co), where

G„„(co}=(g„~G(co)
( g„) .

Since the Green's operator G(co) is not diagonal
in the representation f„,Eq. {2.3) is not useful as it
stands for calculating G„„(co). A convenient pro-
cedure is to split off the imaginary part of the self-

energy operator explicitly, X=V +i8' and then ex-
press G„„(co)in a form reminiscent of the scattering

by two potentials. Call —e„, where e„&0, the
bound eigenenergies of the single particle Hamil-
tonian H, =T+ V, with eigenstates g„. Then, us-

ing the standard operator identity

(co H) '=(co —H~) '+(co—H~) 'iW(c—o H)—
(2.4)

where

~=T+X=H)+i 8',
one finds, by inverting Eq. (2.3), that the matrix ele-
ments G„„(co)of G(co) in the g„basis satisfy

G„„(co)=(co+a„) '5„„

It is a simple matter to reexpress 4„(co) in terms
of the operator

t(co)=iW+i W(co H—
) ) 't(co), (2.8)

which might be called a t matrix due to the distort-
ing field i W. The associated Moiler operator Q(co)
connects t (co) to i W, and 4„(co) to f„

t (co)=i WQ(co) (2.9a)

and

4„(co)=Q(co)g„, (2.9b)

This result will prove to be a very convenient way
of actually constructing the G„„(co)required for the
strength function calculations in the next section.

We now specialize the indices in Eq. (2.10) to ap-

ply to a hole state (n Pj) ' that is created in an even
A target by removing a particle from an occupied
state (nPj) of V, where 8 and j are orbital and total
angular momenta, and n refers to the radial quan-
tum number. Using this representation, t„„(co)gets
replaced by

t&,(n', n, co)=. (u„r; ~iW
~ ct„r,(co)), (2.11)

where r 'u„rj(r) and r 'P„rj(co,r) are the radial
parts of P„and 4„(co). The corresponding Green's
function generated by tr(n', n, co) is Grj(n', n, co) and
Eq. (2.10) still relates them, with e„becoming e„r .
Equation (2.11) assumes that W cannot change the
orbital or spin angular momentum of the particle.

which shows that the last term in Eq. (2.6) is just
t„„(co) Our . final expression for G„„(co}is thus
given directly in terms of t„„(co)as

(co+@„}G„„(co)=5„„+(co+@„) 't„„(co) .

(2.10)

=g„+(co H~ ) 'i W+„(co—) . (2.7)

Note that 4„(co) is offshell to the extent that
co+ e„, the energy —of the "incident" state g„, to
use the analogy of scattering by two potentials, V
and i 8'.

(2.5)

Multiplying this equation by (co+@„),one obtains

(co+e„)G„„(co)=5„„+(co+e„)

X ( tj„~i W
~
4„(co)), (2.6)

where we have introduced the auxiliary vector

4„(co)=[I+ (co H) 'i W]g„—

III. THE STRENGTH FUNCTION
FOR A COMPLEX SQUARE WELL

It is clear from Eqs. (2.10) and (2.11) that it is
computationally advantageous to construct
Gr~(n', n, co) via trj(n', n, co) since the wave func-
tions entering the latter need only be known over
the nuclear interior. This would be especially im-
portant where these wave functions can only be ob-
tained numerically, as for example, in nuclear
Hartree-Pock theory. In this section we construct
t«{co) =tr(n, n, co) for a spinless hole state
g„r=r 'u„r(r)I'z~ of angular momentum P. For
this we require the radial part of 4„(co,r)
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where ge(r, r', co) is the radial part of the full
Green's operator, G(co) =(co—T —X) '. In Eq.
(3.1), outgoing wave boundary conditions are re-

quired for co positive and real, so ge(r, r', co) has the
familiar structure (we have set irt /2m = 1)

with

gt(r & r & ~)=( )"'4e—(~~,r & )fe
X( Vco—,r )/V co, (3.2)

1

fe( Vco—,r)~expi (V cor —,n8)—
for large r Thi. s asymptotic form is also suitable
for negative co if the square root is taken as

I

=r PneYem in Eq. (2.7).

P„e(co,r) =u„e(r)+ dr'dr "ge(r, r', co)i W
0

X (r', r ",co)u„e(r "), (3.1)

i V'l col, co&0, which ensures that ge remains
bounded. Here Pe and fe are regular and irregular
solutions of the homogeneous wave equation associ-
ated with g~. The former is given in terms of the
latter and its linearly independent partner fe(v co, r)
by

pe(v co, r)=i I fe( vco—)fe(V co, r) fe(—v co)

Xfe( ~~,r) j/2fe( ~~), (3.3)

where fe(V co,0)=fe(v co) defines the Jost func-
tion.

The solutions fe(+v co, r) are easily obtainable
analytically in terms of spherical Bessel and spheri-
cal Hankel functions of the second kind, je(x) and
he'(x); if X is approximated by a complex square
well, X=—Vo+iS'0 for r &R, and X=O other-
wise. (Recall that Wo &0 for holes. ) The resulting
expression is

fe( —v co) =fe( —v co, Q) =(—)e iv coRj e(QR)he '( vcoR—) [De(Q) ge( v co)+i se( v co)]

(3.4)

for the Jost function. Here Q =(co+ Vo i Wo)'e—is
the complex wave number inside the well, while

De(Q) and b, e( vco) —i se( ——V co) gi've the loga-
rithmic derivatives of xje(x) and xhe' at x =QR
and —V coR, respectively. For co on the energy
shell, co=k, the b,e and se are the familiar shift
and penetration factors for the scattering of a parti-
cle of wave number k. For negative co the factor
sp ——0.

I

It is now a simple matter to construct P„e(co,r) in

terms of ge and the wave function u„e, which is
given by

u„e A„e(K„——r)J'e (K„r)

inside the real well. Then, for r &R

A„e(K„r)iWo Q fe( Vco,K„)—
P„e(co,r) =A„e(K„rj)e(K„r) — "

Qrj e(Qr) K„rje(K„r),—(3 5
co+e„e i Wo — K„ fe( — co, Q)

fe( —i V'e e)=0=De(K„)—bg ( i ~e„e)—.
A„~ is a normalization constant.

The calculation of te(n, n, co)= te(co) now—proceeds via Eqs. (3.5) and (2.11) to yield

IA.e I'
te(co)=iWo i (K„R) j e(K„R) je+i(K„R)je i(K—„R)

n

N+6~g
. ar+e„~—iS'o

where eze is —the binding energy of the state nP in the real square well, and K„=(—e„e+p'0)ie2 is the asso
ciated wave number. As the notation suggests, fe( —V co,K„) is given by Eq. (3.4) with Q replaced by K„.
The e„e are given by the roots of the transcendental equation

(K„Rj)e(K„Rj)e(QR)[De(Q) De(K„)]"—
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where the normalization constant is given by the relation

—~Any
~

VpR(KnR) j/+)(KnR)jr )(KnR)I2Fn/ 1——. (3.7)

and

[Dr(Q) Dr(K„)]—

[Dr(K„)—hp( v tp)+—i sr( —v to)]

vanish, respectively. Then, making use of the rela-
tion

The Jost functions appearing in Eq. (3.6) are given
explicitly by Eq. (3.4).

While somewhat complicated in appearance, Eq.
(3.6) is an exact expression for tr(cp) in closed form.
The associated Green's function is, therefore, also
known exactly. The singularities of tr(cp), and,
therefore, of Gr(tp)=G/(n, n, co), can be read off
directly. These are given by the zeroes of the Jost
function fr( —~co, Q) associated with the complex
square well potential. Note that tr(co) is not singu-
lar at to= —Enr+EIVp and Gr(cp) is not singular at
to= —en/ of Eqs. (3.6) and (2.10) might suggest.
This can be seen by expanding the logarithmic
derivatives in Eq. (3.6) about the above two values
of co where

IV. QUASIHOLE STATES
OF GOOD ISOSPIN

We now improve on the assumption that a hole
state carries neither spin nor isospin, by including
these two degrees of freedom. Both effects can be
incorporated in the square well potential model by
making the well depth spin and isospin depen-

1

dent, Vp=—V~~z., where j=F+—,, and T=Tp+ 2,
where 2Tp ——(X—Z) is the neutron excess of the

target. However, the inclusion of isospin is more

subtle than this simple prescription reveals. The
importance of isospin derives from the fact that it is
(nearly) a good quantum number for a heavy nu-

cleus. However, only neutron holes in the valence
shell of a target system

~
C) have good isospin. In

contrast, neutron holes in any of the core states that
are also occupied by protons do not carry good isos-

pin. Instead, such neutron holes are only a com-

ponent of the analog and antianalog states,

gq
——[ ~

nC) +2Tp ~pA—)](2Tp+1)

(4.1a)

fr x (luff) = — [f/ fr ~fr+—~], —2 d d 1

dx dx X

(3.8)

and

g„=[+2Tp
~
nC)+ ~pA)](2Tp+I) '",

(4.1b)

where f/(x) is any spherical Bessel function, one
obtains the approximate form

tr (tp ) =iyn/(~—+&nl')(+ en r t yn/)— (3.9)

for tt(c0), leading to

Gr(to) =(to+ e„r —iy„r)— (3.10)

for the Green's function. In these expressions
y„/=a„/IVp, where a„r is the probability of find-
ing a particle inside the square well in state nF.
The strength function, given by I/nlmGr(co), then
shows a Breit-Wigner resonance at —e„~ of half
width y„~, and total strength unity. The form of
Gr(tp) given above, which is exact for infinite sys-
tems, is an approximation for the finite potential
well case that involves replacing the self-energy
contribution from the absorptive potential by its
average value i (P„r ~

W'
~
t/i„r )=ia„r IVp

Vr r ——Vrj+ U)(t. Tp) r (R, (4.2)

where U& is negative for holes. With this interpre-
tation gz or gz provide the appropriate basis, pre-
viously called gnr, in which to represent the Green's
function. In this basis, Gr(to) becomes Ger(co),
and satisfies Eq. (2.3) with the self-energy in that
equation replaced by

~djT [ VPJT+t IVp57;Tp —f/2] r (R (4.3)

which have good isopsin T=Tp+ , . Here,
~

nC—),

~
pA ), etc., refer to neutron or proton holes in the

target system
~

C) or its analog
~

A ). The addi-

tional component ~pA) in Eqs. (4.1a) and (4.1b)

that is required to build a state of good T has a 2-
hole-1-particle character. Thus, gz and fz are no
longer single-hole states. We, therefore, call such

states quasihole states. They carry quantum num-

bers (nfj T), and are approximate eigenstates with

binding energy —enrjr of the Lane potential
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S/J(ro) =C S/Jr = C I—mG//r(r0)
7T

(4.4)

with the appropriate Clebsch-Gordan coefficient C
for T =Tp+ —,.

The much higher level density of compound states
with isospin Tp ——, over those carrying Tp+ —, im-

plies that absorption is essentially confined to the
antianalog channel. This is the reason for the
Kronecker delta in Eq. (4.3). The analytic results of
Sec. III are retained with V~jz replacing Vp. The
strength function is then given by

0.4—
I

CO

X

3 02-
v)~

-20
~ ~ ~ I I I ~ ~ oJ

-l4 -12
w (Mev)

V. SPECIFIC CALCULATIONS

The strength function S/. (co} for the lg9/p neu-J
1

tron hole state has been measured in the Tp ——, iso-

spin channel in isotopes' of Pd, and in both isospin
channels in isotopes' of Sn. We have taken the neu-

tron hole strengths as measured by the ( He,a) reac-
tion on " Sn and ' Pd as typical of the data in this
region. In all the figures to be discussed, the
strength function S/J(co) is plotted as a function of
the binding energy of the distributed quasihole state
in the target nucleus. This means that co=0 corre-

sponds to zero binding, and that larger negative

binding corresponds to higher excitation energies of
the residual system. It must also be noted that we

have assumed in all the following calculations that

Wp is energy independent over the width of the res-

onance. Strictly speaking, '
Wp is a slowly varying

function of energy, which in an infinite system

would go to zero at the Fermi energy. The low

density of states in the finite system near its Fermi
surface precludes a precise definition of Wo in this

region, so that the calculated curves only have a
qualitative significance there.

A. Gross structure

Figure 1 presents a comparison between the opti-
cal model calculation for '"Sn and the measured

strength function of the 1g9/2 neutron hole in this
nucleus. The calculated curve has been obtained
from Eq. (4.4) using

X//z =[—49.1+0.96(t To)+i (1.0)] MeV

for r &R =1.2A'/ =5.8 fm for the self-energy
that determines t/Jz. (co} in Eq. (3.6), and hence the
associated Green's function using Eq. (2.10). The
values for X/Jr, which have been chosen to give the

FIG. 1. Strength function for the 1g9/2 neutron hole

component of the T =—antianalog state in "Sn, plot-

ted as a function of the binding energy. The solid curve

represents the calculation with the hole self-energy given

by [—49.1+0 96t To.+i (1.0)] MeV inside a nuclear ra-

dius R =5.8 fm. The experimental data (Ref. 1) are
shown in two ways, as a dashed histogram and a dotted
curve, which were obtained by averaging the individual
measured strengths over discrete energy bins of 0.5
MeV, and with a running Breit-%igner weight function
of width 0.3 MeV.

correct binding energy of the lg9/i isospin analog-
antianalog doublet, are typical for a neutron optical
potential. The experimental data of Gerlic et al. '

have been redrawn for Fig. 1 by averaging the mea-
sured strength in 0.5 MeV energy bins. These mea-
surements locate about 45% of the total lg9/2
strength allowed by the sum rule. ' The calculated
curve is given approximately by a Breit-Wigner
shape, and thus encompasses 50% of the total
strength within its own width. Judged on this cri-
terion, the gross structure in the experimental data
is well represented as a giant resonance in S/Jr(co)
due to a single quasihole in an optical potential.
However, the substructure seen in the data cannot
be so described. Such structure is made clearer by
performing a running average of the data with a
suitable weight function. We have used a Breit-
Wigner weighting of width 0.3 MeV to generate the
dotted curve in Fig. 1, which shows two prominent
substructures. It has been suggested that this frag-
mentation comes about via some intermediate door-
way' mechanism. Calculations of Koeling and
Iachello consider neutron holes coupled to collective
vibrations of the neutron valence shell in Sn as pos-
sible doorways. These calculations neglect excita-
tions of the proton core and hence, lead to states of
mixed isospin. An alternative suggestion has been
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made by Nomura, who considers the doorways as
consisting of collective vibrations of the proton core
coupled to neutron holes in the valence shell in Sn.
This scheme has the attractive feature of giving
doorway states of good isospin To ——,.

B. Intermediate structure

Nuclear structure calculations like those just
mentioned provide an important link for establish-

ing a possible structure for doorway states in " Sn.
However, independent of the nature of their struc-
ture, one knows quite generally' that the presence
of doorway states must cause Xq~r to vary with en-

ergy over an energy range that is small compared
with a giant resonance width -2$'0. Such an ener-

gy variation, which leads naturally to intermediate
structure in the strength function, may be incor-
porated by adding a "proper polarization part, '"'

due to the excitation of doorways, to X~jr in Eq.
(4.3), in the nuclear interior

(5.1)

The doorway states d in this expression lie at excita-
tion energies Ed relative to the quasihole energy

e„=e„~jz, to which they are coupled by H„d. The
doorway states are themselves not eigenstates of the
nuclear Hamiltonian, and are consequently spread
over the actual compound states in their vicinity by
an amount symbolized by b,~. The poles of X~jr(co)
are properly located for hole states by choosing b,d
positive in the above expression.

While Eq. (5.1) follows from formal many;body
theory' by considering the propagation of a
quasihole in the nucleus, its imaginary part can be
understood physically by recalling the expression'
(n/b, )X,

~ H„,
~

for the absorption of a shell model
state n due to its coupling to compound states de-

generate with it to within b, . If, however, this state
can only access the compound states via a doorway,
then ~H~

~

and the coupling ~H„q
~

are related

by

The distribution
~
a,d ~

of the doorway state over
compound states in its vicinity has a Breit-Wigner
shape on the average, ' with a half width given by
b,~. The contributions to ImX(r0) from several such
(nonoverlapping) doorways add incoherently, and

one obtains the form (5.1). If we approximate the
potentials H~, which are strictly nonlocal operators
in coordinate space, by constants over the nuclear
interior, we regain the complex square well model,
but with real and imaginary potential depths that
depend on the energy variable co.

The well-studied vibrational levels' in the even

isotopes of tin suggest that doorway states consist
of hole excitations coupled to vibrations. One can
construct two classes of such states for "sSn that
carry good isospin. The first type of doorway state
is formed by (quasi) neutron holes in the valence
shell of " Sn coupled to its proton core vibrations
that carry good isospin; the second type of doorway
consists of the analog state to that formed by cou-
pling (quasi) proton holes of the core of the parent" In to its neutron core vibrations. Note that this
analog doorway state (ADS) carries good isospin to
the extent that the charge exchange operator, and
the operator creating the neutron core vibrations
commute. Accompanying the ADS, which has
isospin To+ —,, is an orthogonal antianalog door-

way state (AADS) of isospin To ——,.
The lowest proton core vibration is estimated to

lie at

Sz(" Sn) —Sz(" Sn)=4. 5 MeV

excitation. Consequently, if we couple the 2d&~2

neutron quasihole S„=9.56 MeV to this, we build a
core polarization vibration corresponding to a door-
way of type 1 which lies below the "bare" Igs&2 an-

tianalog quasihole at 1S.2 MeV binding, by 1.1
MeV. Since the lg9/2 analog state' falls at
S~+6,=23 MeV above the ground state of "6Sn,
including a 2+ vibration at 1.27 MeV in the parent
system will correspondingly place the ADS at 24.27
MeV. Likewise, the AADS will lie at 1.27 MeV
above the quasihole energy. While a full nuclear
structure calculation would involve several such
states, we restrict ourselves to the above cases. The
solid curve in Fig. 2 shows a calculation of the neu-
tron hole strength function for " Sn in the analog
channel with doorway states included. The values
of the parameters for the interactions H„~ and the

spreading widths for these doorway states have been
inferred from the experimental data, and are listed
in Table I. The other parameters of the optical po-
tential model have remained the same as for Fig. 1.
The infiuence of the AADS on the strength func-
tion is shown by the shoulder at around 17 MeV
binding, and would probably not be visible as a
resolved "state" in experimental data. On the other
hand, the type 1 doorway state giving rise to the
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FIG. 2. The same calculation for "Sn as presented in
Fig. 1, but with doorway states included in the self-

energy of the hole. The relevant parameters are listed in
Table I. The self-energy parameters determining the gi-
ant resonance are the same as for Fig. 1. The experimen-
tal data (broken histogram) have also been redrawn. The
calculated strength function for the fragmented 1g9/2

17
neutron hole component in the T =—analog channel is

shown as an inset.

TABLE I. Doorway state parameters for '"Sn.

Isospin E„(MeV) a, (MeV) Hnd (MeV)

1
Tp+ 1.27 0.05 0.7

1
Tp 2

1.27
—1.1

0.85
0.25

0.7
0.3

lower bump at 14 MeV binding causes a definite
structure, which can be clearly recognized in the
data. The assumed difference in damping widths
between these two states is 600 keV, which is in ac-
cordance with the expected increase in the optical
potential over this energy range. ' The inset in Fig.
2 shows the expected strength function for the ana-

log channel, where an ADS is inserted into the self-

energy.
It should be noted that the AADS and ADS

necessarily have the same H~ and E~, but the ADS
has a much smaller width. Hence, a rather unambi-

guous determination of H~ and b d can be made in
the analog channel. The resulting width distribu-
tion of 31 to 89 keV between the lower and upper
analog states compares well with the measured'
values 31+10 keV and 50+15 keV. The fact that
the higher state carries the larger width arises in the

0
-20 -18 -14 -12

(MeV)

FIG. 3. Strength function calculation for '"Sn as in

Fig. 2, but with Wp increased to 1.5 MeV. The analog
states are not shown again, as they are unaffected by the
choice of 8'p.

model from the assumption that absorption can
only enter the analog channel via the damping of
the doorway state component; see Eq. (5.1). It is
also interesting to note that the value of H~ re-
quired to reproduce the analog state splitting is
close to the estimate (see Ref. 18, page 419).

l j& f(»+1)~pl(g~&~)]'"
Bp'

X(J-, XO
~
J-, ) =—O. g MeV, (5.2)

0.4- l03pd

3 02—
~~
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} I
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I

0 ~
-18 -16 -14 -12 -10
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FIG. 4. The calculated strength function for ' Pd
using a single antianalog doorway state in the hole self-
energy. Self-energy parameters determining the giant
resonance parameters are the same as for Fig. 3, but
with the smaller nuclear radius R =5.6 fm. Doorway
parameters are described in the text. Experimental data
(broken histogram) have been taken from Ref. 2, and
also averaged with a Breit-Wigner weight function of
width 0.8 MeV (dotted curve). The neutron binding en-
ergy S„=9.99 MeV is also indicated.
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for the coupling of the A, =2+ surface phonon to a
shell model state j= —, in " Sn (for which

fuu2 ——1.27, C2 ——2.53, and (j ~

r t) V/Br
~ j ) -50, all

in MeV). This value of the coupling also leads to
the correct value of the polarization charge in " In
(see Ref. 18, page 533). On the other hand, the
value of the absorption strength is rather imprecise-

ly determined by the antianalog channel data. Fig-
ure 3 shows the same calculation as for Fig. 2 with

Wo increased to 1.5 MeV. The fit does not differ
essentially from that shown in Fig 2,. apart from
the fact that the giant resonance is lower and more
spread. the data is still we11 represented, and the in-
termediate structure remains visible.

A similar calculation for the 1g9/2 strength func-
tion in the antianalog channel has been carried out
for ' Pd; see Fig. 4. The same optical potential
parameters as in Fig. 3 for " Sn have been used, ex-

cept for R =5.6 fm. The type 1 doorway state in
this case has the parameters H„d ——0.63, 6& ——0.40,
and Ed = 1.0, all in MeV. A satisfactory representa-
tion of the data is obtained.

tation for such states, and can be used to display the
gross structure with reasonable physical values of
the necessary parameters. Modifying the potential
to something more physical, but less tractable
mathematically, is not expected to change the
present results qualitatively, since deep lying states
are insensitive to surface effects.

Intermediate structure features are described by
including doorway state excitations of good isospin
in the self-energy. Our parametrization of such nu-
clear polarization effects on the motion of a hole in
the nucleus yielded good representations of the in-
termediate structures, with doorway parameter
values that are reasonable. Independent predictions
of the coupling strength are in good agreement with
the values used. The overall satisfactory results do
suggest that the main features of the model will be
retained in a more detailed treatment of the prob-
lem.
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