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Elastic isovector vibrations and the boundary conditions
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The elastic model, which successfully explains the isoscalar giant resonances, is now ap-
plied to study the isovector giant resonances. In solving the Lame equation, we employ the
boundary condition that the displacement shall vanish at the surface. The results are com-
pared with those obtained under the contrasting boundary condition that the stresses shall
be absent at the surface. It was found that the results are dependent on the type of boun-

dary conditions. Future experimental data will allow the assessment of the correct choice
of boundary conditions.

NUCLEAR STRUCTURE Nuclear giant resonances, isovector vibra-

tional nodes. Electric and magnetic multipoles.

I. INTRODUCTION

In the description of the isovector giant di-

pole resonances, the hydrodynamical model of
Steinwedel and Jensen has been fairly successful in
explaining the experimental data. ' Recent refine-
ments in admixing the Steinwedel-Jensen states with
the Goldhaber-Teller states improve the theoretical
results, but the basic hydrodynamical description
of the fiuid is unaltered. The hydrodynamical
model is, however, not adequate in describing quan-
titatively other nuclear phenomena such as rotations
and vibrations involving isoscalar giant resonances.
The homogeneous elastic solid was introduced
phenomenologically for rotational nuclear states.
Bertsch treated the giant resonances as elastic vi-

brations for the first time. Subsequently, the Lame
equation was derived by using the concept of the
quantum stress tensor. ' Still later, it was de-
rived by taking the moments of the Vlasov equa-
tion. "' By solving the Lame equation exactly, it
was found that the observed isoscalar giant Eo, E2,
and E3 resonances can indeed be well explained in a
unified manner as an elastic vibration of a nu-

cleus. "
Based on the earlier success of the elastic model

of the isoscalar giant resonances, Bertsch and
Stricker' examined the giant electric dipole oscilla-
tions as an elastic vibration of the proton medium
against the neutron medium. An irrotational flow
was assumed in their study, and a trial form of dis-
placement vector was used in a variational calcula-
tion.

Another approach to study isovector giant reso-
nances is to solve the Lame equation appropriate
for the elastic sphere and to impose boundary con-
ditions to obtain the eigenenergies and proper dis-
placement vectors. In such an approach, the boun-
dary conditions are very important. An examina-
tion of the importance of the boundary condition
may proceed through two parallel paths: One can
vary the boundary conditions and study how well
the results agree or disagree with experiment, rely-
ing on present or future experimental results to
favor one boundary condition over the other. This
has been the traditional approach. One can also
take a theoretical approach to see which of the
boundary conditions can be justified from a more
fundamental point of view. We shall take the first
path in this paper and leave the examination of the
second for future investigations.

In the isovector giant resonances, there are two
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different boundary conditions which one can plausi-
bly impose at the surface. There is the boundary
condition that the total stress tensor at the nuclear
surface must vanish so that there is no net force
across the boundary. This means that the proton
and neutron fluids are free to move away from each
other at the surfaces of the nucleus. Results have
been obtained previously for isovector giant reso-
nances using such a boundary condition. ' Besides
the 1 state at 80.9 MeV/A'/, there are now 2+
states at 55.7 and 119.5 MeV/A '~ and an isovector
monopole state at 144.8 MeV/A '~ . Another plau-
sible boundary condition is that of Steinwedel and
Jensen which requires that the neutrons oscillate
against protons with the surface fixed. The argu-
ment is that an excessive energy would be involved
in displacing protons beyond the volume occupied
by the neutrons. Such a boundary condition is
equivalent to a vanishing relative displacement vec-
tor for neutrons against protons at the nuclear sur-
face. We shall examine in this paper the isovector
giant resonances in the elastic vibration model using
such a boundary condition. The true physical situa-
tion may be expected to be in between the two ap-
proaches as has been observed earlier by Myers et
a/. , in the case of the hydrodynamical approach.

where kz is the Fermi momentum, no is the equili-
brium total density, and K3 is the isospin "in-
compressibility" related to the isospin symmetry en-

ergy s3, by

K3 ——18s3 . (2.5}

In Eq. (2.1) the effective mass m~ is introduced in
order to take into account the nonlocality of the ex-
change interaction, the additional velocity depen-
dence of the interaction, and the coupling of the
phonon to the nucleons.

We seek solutions for the displacement vector in
the form

D (r, t) =& ( r )e'"' .

Then Eq. (2.1) becomes

(V +k )8'=(1 k /k —)V(b, ),

(2.6)

where 6=V S' is the dilatation, and k and Ii are re-
lated to the frequency co by

and

h =m~noco /(A, +2@,)

k'=m'noaP/p .

(2.8)

(2.9)

After taking the divergence of Eq. (2.7} we see that
the dilatation 6 satisfies the Helmholtz equation

II. ELASTIC ISOVECTOR VIBRATION
(V +h )V=O. (2.10)

p= k~no
5m

npE3
p,

(2.3}

(2.4)

Starting with the density and velocity fields of
each spin and isospin component, we can show that
the equation of motion for an isovector displace-
ment is given by the Lame equation '

BD
m no ——(A, +p)V(V D)+@V D . (2.1}t'

The isovector displacement field D( r, t) is a linear
combination of the displacement fields d of neu-

trons and protons

D( r, r)=d„,( r, r)+d„,( r, t)

—d~, ( r, t) —d~, ( r, t), (2.2)

where the first subscript of d denotes the isospin
component (neutron or proton) and the second sub-

script the spin component. The Lame coefficients,
as derived from the quantum stress tensor, are given

by

Thus, the dilatation 5 will be a linear combination
of products of regular Bessel functions and spheri-
cal harmonics. A particular solution of (2.7) is
given by

(2.1 1)

or

S i(r)= —,, V gji(hr)Yi (8,$)( —1)'.
k +'

(2.12}

The homogeneous equation

(V'+k') 6 —0 (2.13)

g2( r )=pi(kr)( r x V)&i (r,&,P) (2.14)

has two independent solutions &q and S'3 such
that their corresponding dilatation d is zero, that is,
they are isovolumetric solutions. They may be writ-

ten as
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S'3( r )=pi(kr)V X[( r X V)&im(r t) 0)]

(2.15)

where gi and Q~ are related to the Bessel function
and the spherical harmonics by

Owing to the fact that we use the Thomas-Fermi
approximation to derive the Lame constants, ' the
speed of shear elastic waves C2 depends only on the
Fermi momentum and the effective mass.

The general solution of (2.1) is then given by

and

gi(kr) =( —1)ji (kr) /(kr)' (2.16) &( r )=A|&'|( r )+A2&q( r )+23&3( r )

(2.20)

Qi~(r, 8,$)=r Yi(B,P) . (2.17)

%Rile &i and &3 give rise to electric multipole
states with natural parity, Q'2 generates magnetic
multipole states of unnatural parity. It is easy to
see that the compressional perturbation will travel
with speed

where V &&+0, V &2——0, and V.&3—0.
In order to make some comparison with the

available experimental data, we shall concern our-
selves with the electric multipole only, that is, the
case when A2 is assumed zero. The boundary con-
dition that the displacement is zero at r =8 yields
the eigenvalue equation

1/2
A, +2@
m*np

(2.18)
ji (kR)[jI( kR)l kR+ji (kR)] —jI(hRj)I(kR)

l(l+1) .
hkR z

and the pure shear perturbation will travel with

speed
1/2 where

=0, (2.21)

p
m*np

(2.19)
(2.22)

TABLE I. The isovector giant multipole eigenenergies are shown. The predictions given in
the two first columns were obtained using the boundary condition of zero displacement at the
nuclear surface while those of the third column correspond to the boundary condition of no
stress at the surface.

Boundary
condition
&=0

(m ~/m )„=0.64
kp ——1.00 fm

Eigenenergies (MeV) A '

Boundary
condition
&=0

(m*/m )„=0.87
kF=1.10 fm

Boundary
condition
5P; =0

(m*/m )„=0.64
k~ ——1.15 fm

0+ 123.6 120.2 144.8

80.5
112.3
167.7

79.2
107.5
155.7

80.9
174.2
223.4

113.0
153.6
197.7

108.0
145.0
182.5

55.7
119.5
209.5

138.8
192.0
230.6

130.6
179.0
212.8

88.2
160.8
244.4

162.8
224. 1

151.6
206.6

116.9
201.6
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When the eigenvalue is obtained, the coefficient A3
is given by

ji (hR)kR

A, h l(t+1)j((kR)
(2.23)

III. EIGENENERGIES OF ISOVECTOR
GIANT RESONANCES

In order to solve for the eigenenergies of isovec-
tor giant resonances, we need to specify the Fermi
momentum k~, the isospin symmetry energy s3, and
the effective mass m*. Myers and Swiatecki' give

s3 ——27.612 MeV which leads to an isovector in-

compressibility of E3——497.02 MeV. For the effec-
tive mass, we chose the form prescribed by Brown
and Speth. '

IV. RESULTS AND DISCUSSIONS

1 (m~/—m) ao+
E„; (MeV)A'~3

82

It has been observed by Mahaux et al. ' that the
prescription for the effective mass given by Brown
and Speth may not be correct and consequently, our
results will vary accordingly. We examine two sets
of parameters. When the value (m*/m)„ is set to
be 0.64 as given by Brown and Speth, k~ must be
small to give an electric dipole close to the experi-
mental value of 80 A '~ MeV. The eigenenergies
for electric multipole states obtained with
(m*/m )„=0.64 and kz —1.00 fm ', and also with
(m~/m) =0.87 and k~ ——1.10 fm ', are given in

Table I. For comparison we also provide the results
of previous solutions obtained with the boundary
condition of vanishing stress at the surface, calcu-
lated with (m~/m)„=0. 64 and k~ ——1.15 fm

boundary condition of & =0. There are the tenta-
tive results of Pitthan et aL' which suggest the pos-
sible existence of an isovector E2 resonance at 53
(MeV)A '~3. Recently, Drake et al. found an E2
isovector giant resonance at about 23 MeV for Pb
which corresponds to Pic@2-136 A ' (MeV). So
far, the experimental data are not sufficient to draw
conclusive statements in favor of one boundary con-
dition over another. There is uncertainty experi-
mentally in the existence of the lower Eq isovector
states and theoretically in the effective mass as a
function of the multiple excitation energy. Thus,
the location of the isovector resonances of various
multipolarities with different experimental probes
will be of great help in testing the different boun-
dary conditions. Theoretically, it is not enough to
calculate only the locations of the collective states;
it is necessary to obtain the transition matrix ele-
ments for collective excitation to the different states
and to compare with the observed transition
strengths.

As expected, the boundary conditions play an im-
portant role in the isovector giant resonances. The
actual physical situation may require an admixture
of the boundary conditions, analogous to the situa-
tion in hydrodynamics as was observed previously.
It is desirable to investigate how a more fundamen-
tal theory allows a better determination of the boun-
dary condition. Looking at the second order dif-
ferential equation (2.7), one can impose the more
natural boundary condition that S' (r )—+0 at
r~ 00. Such a boundary condition is not unlike the
one we encounter in the search for eigenstates in a-
potential well. Whether such a boundary condition
leads to a better description and less arbitrariness
remains to be seen.

There is an additional ambiguity with regard to
the velocity dependence of the interactions which
may alter the conclusions we draw here. Investiga-
tion into these problems will enhance our under-
standing of the giant resonances.

The results in Table I indicate that while the two
solutions for the two different sets of parameters
with the boundary condition & =0 are very simi-
lar, the solutions with different boundary conditions
are significantly different. Looking at the results in
detail, we see that the two different boundary condi-
tions give distinctly different predictions on the iso-
vector 2+ and 3 states.

With the boundary condition 5P,
&
——0 there are

2+ and 3 states at 55.7 and 88.2 (MeV)A
These states are absent in the case of the other
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