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A relativistic distorted-wave Born approximation model is developed for (p,7*) reactions
within the framework of the one-nucleon mechanism. The nucleon motion is described by
solutions to the Dirac equation with appropriate nuclear potentials. Distortion effects in
both the proton and pion channels are taken into account and are found to be important.
Both pseudovector and pseudoscalar forms of the 7NN vertex are considered. The former
is found to lead invariably to better agreement with the data. Calculations have been car-
ried out for proton energies <200 MeV. Good agreement is obtained with the cross section
data for reactions on “’Ca and %0 leading to the ground state of the residual nucleus. For
reactions on '2C, the cross section shapes, but not their magnitudes, are reproduced. The
calculated analyzing powers are found to be in good agreement with the forward angle

data.

NUCLEAR REACTIONS (p,7*) reaction, relativistic one-nucleon
model, DWBA, Dirac phenomenology, pseudovector and pseudoscalar
wNN vertex, calculated o(6) and 4,(0), comparison with experiment.

I. INTRODUCTION

Owing to the high momentum transfer involved
in (p,m%) reactions, it has been hoped that these re-
actions would yield valuable information on the
high momentum components of nuclear wave func-
tions. These hopes have not yet been realized, due
to a lack of understanding of the underlying reac-
tion mechanism. Currently there are two proposed
models for the reaction,”? known as the one nu-
cleon model (ONM) and the two nucleon model
(TNM). Among these, the TNM is the more so-
phisticated one, at least in that it is closer to a mi-
croscopic description of the process. It is based on
the assumption that the incident proton interacts
with a target nucleon, producing two nucleons and
a pion. These two nucleons end up in bound nu-
clear orbits while the pion is set free. The TNM
calculations have several difficulties associated with
them.>=3 There is, in general, a nine-dimensional
integral to be done. The NN — NN amplitudes are
required off shell, for which a model must be used.
Such a model would undoubtedly introduce more
uncertainty into the calculations. Double counting
of distortion effects can be a problem and, finally,
since three nucleon wave functions are involved, in-
formation on the high momentum components of
each one is not directly accessible. On the more op-
timistic side, the assumption of a A dominance® for
proton energies above 200 MeV simplifies the calcu-
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lations. A simple phenomenological model by
Ruderman,’ later reexamined and expanded to in-
clude distortion effects by Fearing,® has been suc-
cessful in interpreting the data on light target nu-
clei, such as H and *He, for incident proton ener-
gies in the range from 350 to 600 MeV. These cal-
culations can generally reproduce the shape of the
angular distributions and for energies near 470 MeV
give the correct normalization to within a factor of
2. The Fearing-Ruderman model has not been ap-
plied to heavier nuclei, mainly because one of the
basic ingredients of the model is the dominant pres-
ence of a deuteron cluster in the final nuclear state,
which is improbable for these nuclei. In addition,
this model has not yet been tested in terms of its
predictions for the analyzing power.

In the ONM (also referred to as pionic stripping
model) it is assumed that the pion is emitted by the
incident proton only. The ONM can easily be treat-
ed in a distorted wave Born approximation
(DWBA) framework, in which distortion effects in
both the incident and final channels are accounted
for. Despite the many efforts devoted to these (non-
relativisticc DWBA calculations in recent years, the
results have generally been rather disappointing. In
particular, these calculations appear to suffer from
two major difficulties." One of these is the extreme
sensitivity to the not-so-well known pion-nucleus
optical potential. Another major problem is the
ambiguity concerning the nonrelativistic transition
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operator. In a recent study of the nonrelativistic
ONM, Tsangarides et al. %10 examined, in detail, the
effects of this vertex ambiguity. The most com-
monly used form of the vertex is given by

Howw=f/m )GV 7 ¢,

—Mm g, /M)(T¢,)5 V)] .

(1)
Here A is an arbitrary constant arising from a uni-
tary transformation ambiguity in the Foldy-
Wouthuysen reduction of the pseudoscalar ver-
tex.!12 Tsangarides finds that no value of A can
simultaneously explain the cross section and analyz-
ing power data. Specifically, the “Galilean invari-
ant” form (A=1) gives a reasonable account of the
cross sections but gives analyzing powers of the op-
posite sign to the data, whereas the “static” (A=0)
form gives analyzing powers of the correct sign, but
often fails to reproduce the shape of the differential
cross sections. Various other forms of this vertex
have been given. Friar'? gives a form of the vertex
which does not seem to lead to ambiguities in the
T-matrix elements, although as pointed out by Lee
and Pittel,’* the ambiguity (i.e., sensitivity to A)
remains if the outgoing pion is allowed to rescatter.

Pionic stripping calculations have also been per-
formed using Dirac spinors for the incident proton
and bound neutron.'*!> The advantage of such cal-
culations is that the vertex can be taken directly
from a relativistic theory, without the need for a
nonrelativistic reduction, hence avoiding any possi-
ble ambiguity that might arise in the process. These
calculations neglected distortion effects in the in-
cident and exit channels. Comparisons with the
nonrelativistic PWBA calculations indicated that
the predicted cross sections can differ by more than
an order of magnitude. Miller and Weber'® have
made a preliminary attempt to include distortion ef-
fects in this type of calculation. They found that
pion distortion effects were rather important while
proton distortion effects were not. As we show
below, this latter conclusion is not borne out by our
present study, and appears to have been an artifact
of the manner in which these distortion effects have
been taken into account.

We present here a detailed account of a relativis-
tic DWBA treatment!’ of the reaction in which dis-
tortion effects are handled properly. The stripping
calculations are done in the zero range DWBA
framework. The pion distorted waves are calculat-
ed in a straightforward manner using a standard op-
tical potential.'® The Dirac equation is used to
describe the nucleon motion and hence the lower
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components of the wave function are treated expli-
citly. In the incident channel the proton waves are
distorted by complex vector and scalar potentials
which properly describe the proton elastic scattering
on the target nucleus. To our knowledge, this is the
first time such distorted waves have been used in a
nuclear reaction calculation. The neutron bound
state wave function is generated in a similar fashion
using real potentials.’*~?? In Sec. II we give some
details of the calculations and elaborate on the
methods of generating the wave functions involved.
We also show, in the present context, that the pseu-
doscalar vertex leads to results different from those
with the pseudovector vertex, and discuss the con-
nection to the equivalence theorem.?»?* In Sec. III
we present some detailed results and comparisons
with experimental data, and discuss the prominent
features of our model. We present some concluding
remarks in Sec. IV.

II. FORMALISM AND
CALCULATIONAL DETAILS

We consider the case of a (p,m) reaction on an
even-even target nucleus with equal numbers of pro-
tons and neutrons. The residual nuclear state is a
single particle state built on the target as an inert
core (for simplicity, we assume a spectroscopic fac-
tor of unity). In the zero-range distorted wave Born
approximation, the -matrix elements are given by

T=iv2 [ d*% ¥y, (TP x)5 x), @)

where \I/LT Y(x) is the proton distorted wave with the
subscript u; referring to the initial spin projection,
¢.(x) is the pion distorted wave, and Wy, m, (%) is
the neutron bound state wave function with angular
momentum J;, and projection M. Both ¥, (x) and

W, m,(x) are obtained by solving Dirac equations of
the form

iy, ¥(x)=[M + Uy (r)+y°U,(nN]¥(x), (3

where U(r) and U,(r) are nuclear potentials which
transform as a Lorentz scalar and as the timelike
component of a Lorentz four-vector, respectively.
For the bound neutron these pctentials are real,
while for the incident proton they are complex and
also include the Coulomb potential as part of the
vector interaction. The vertex I'(x) is taken to be of
either pseudoscalar (PS) or pseudovector (PV) type,

87ss PS
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where g is the coupling constant; g2 /41 =14.6.

In order to clarify the relationship between the
above two types of vertex, we proceed as follows.
Consider the case of PV coupling. Starting from
the Dirac Eq. (3) for the proton spinors and the

Hermitian conjugate equation for the neutron spi-
|

nors, we integrate Eq. (2) by parts. This enables us
to get rid of the derivative terms and replace them
by expressions involving the nuclear potentials.
Upon ignoring a small recoil term (which is includ-
ed in the final calculations), the resulting ¢t-matrix
elements can be written as:

T =(ig /V2M) [ d*x;, 5y, (x)ys[2M + UZ(r) + U+ 7 (URr) — UZ W ()65 (x) . (5)

The superscripts p and 7 on the potentials refer to the incident proton and the bound neutron, respectively.
The corresponding result for PS coupling can be obtained from the one above by replacing the square brack-

et by 2M. Thus we may write

TP=T —(ig/V2M) [d*x ¥} p, (x)ys (Ug’(r)+ UMr) +y(UL(r)— UJ(r)))w;j (x)n x) . 6)

From the above expression, we see that the PV-PS
equivalence is broken by virtue of the presence of
the nuclear interactions. Our result is in general
agreement with the conclusions made by Friar,?
who has discussed this equivalence in the presence
of scalar, vector, as well as tensor interactions (the
latter type is not considered in our present treat-
ment). A closer look at Eq. (6) reveals that the PS
and PV couplings give the same result in the limit
of both scalar potentials vanishing and the two vec-
tor potentials being equal. For a real nucleus, how-
ever, the scalar potentials are several hundred MeV
in depth. Furthermore, in the DWBA framework
the continuum state potentials are complex and
hence differ radically from those of the bound state.
As a consequence we do not expect the PV-PS
equivalence to hold in the present model. We note,
however, that Noble** has shown that when PS cou-
pling is treated in the framework of the ¢ + o

model [which complies with partial conservation of
|

|
axial-vector currents (PCAC)] then the equivalence

is largely restored.
The bound state wave function is written in terms
of its upper and lower components as follows!S:

M
Fy(r) @L:l/ZJb @)

W, 0 (F)=
oMo —iGy(r) @7 (@)

Lj1/2d,

where the #’s are generalized spin-—zl- spherical har-
monics, L, is the orbital angular momentum of the
state, and Ly =2J, —L,.

We similarly express the proton distorted waves
in terms of upper and lower components, and fur-
ther make a partial wave expansion of both these as
well as the pion distorted waves. Then after carry-
ing out the angular momentum algebra, the final
expression for the ¢ matrix for PV coupling can be
written as (without the energy conserving § func-
tion)

T =(g/2m/ 2, F1(—) M 3 L=l (27 + 1) /21 + D]2Y, ) YR,

ILIM

X(L53M — i | IM)JpJ ; —MyM | Im)

X (JpJ 35 —5 | I P(Ly,L,L")+I,P(Ly,LL)) , ®)

where L and [/ refer to the proton and pion partial
waves, respectively, and L'=2J —L. The P’s are
parity coefficients

P(Ly, L) =~(14+(—)*" ) ©)

I, and I, are radial integrals given by k
Li=2M)"" [ "Fy(r)(2M + UP+ U+ Uy —UP)
X Gy (r)fy(r)ridr (10)

T
and

L=02M" [ "Gy (n(2M + U2+ Ur— U} + U?)
X FLy(n)fi(r)r¥dr . (11

Here Fy; (Gr;) are the upper (lower) radial com-
ponents of the proton partial waves and f; is the ra-
dial part of the pion partial wave. As before, the
corresponding results for PS coupling are obtained
from the above expressions by dropping the nuclear
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potential terms in Egs. (10) and (11).

One feature of interest in the above equations is
the way in which the lower components of the nu-
clear wave functions enter the expressions for the
radial integrals. In each of these integrands there is
a product of a lower and an upper component; thus
the former participates on equal footing in the
determination of the reaction amplitude. This
makes us a little suspicious of any nonrelativistic
calculation in which the presence of the lower com-
ponents is not properly accounted for.

In what follows we outline how the wave func-
tions appearing in the above expressions are calcu-
lated and discuss some of the relevant aspects of
these calculations.

A. The bound-state wave function

As pointed out above, this wave function is taken
as a Dirac spinor which is a solution to a Dirac
equation with a potential consisting of an attractive
scalar part and a repulsive vector part. Since Dirac
Hartree Fock calculations'®?! have indicated that
these potentials tend to follow the nuclear shape, we
represent them here by Woods-Saxon functions.?
It follows that we have, in principle, six parameters
that may be varied in order to determine the ap-
propriate bound state wave functions. In the
present work we follow an approach in which the
geometry parameters are fixed and only the depth
parameters ¥V and V, are varied. For calcium, the
choice of the geometry parameters is dictated by the
corresponding values obtained from consideration
of elastic scattering in the incident channel (see
below). For simplicity we used an average geometry
for both the vector and scalar potentials since in
practice it made little difference from the case of
two separate geometries. For oxygen and carbon,
since we did not expect these parameters to be very
well determined by the elastic scattering data, we
have adopted a geometry of r =1.0 fm and a =0.4
fm. (r is the radial parameter and a the diffuse-
ness.) The depth parameters V, and V; of the vec-
tor and scalar potentials were further constrained to
have a ratio V,/V;=—0.81 which is suggested by
the work of Walecka® and appears to be supported
by extrapolations from results of proton elastic
scattering.’® The specific magnitudes of ¥V, and V,
are finally determined by requiring that they repro-
duce the correct binding energy of the single parti-
cle state as well as the correct number of nodes of
the radial wave function.

The role of the lower component of the bound
state wave function in (p,7) reactions can be made
clear from an inspection of Fig. 1. The figure shows
the momentum space wave functions for the 1f;,,
neutron in *'Ca. The geometry parameters used in
this calculation are a radius parameter » =1.0 fm
and a diffuseness @ =0.65 fm. The depth parame-
ters determined from the procedure mentioned in
the preceding paragraph are V,=453 MeV and
V,=—560 MeV. The region of momentum
transfer pertinent to pion production on “’Ca with
160 MeV protons is indicated by the horizontal ar-
row. We note that in this region, unlike the situa-
tion at small momentum transfer, the magnitude of
the lower component of the wave function can over-
take that of the upper component. We no longer
can regard the lower component as the “small”
component. This fact delineates the importance of
adopting a relativistic approach to (p,m ") reactions.

B. The proton distorted wave

The proton distorted waves are solutions of the
Dirac Eq. (2). In this instance the proton-nucleus
interactions are described by complex vector and
scalar potentials whose parameters are determined
from a fit to the elastic scattering data. This Dirac
equation based approach has met with reasonable
success in describing proton-nucleus elastic scatter-
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FIG. 1. The momentum-space wave functions for the
17,2 neutron orbit in *'Ca. F(Q) is the upper com-
ponent and G (Q) the lower component of the wave func-
tion. The arrow indicates the region of momentum
transfer pertaining to the *Ca(p,7+)*Ca reaction for
T,=160 MeV.
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ing at intermediate energies.’*~?® A computer

search code RUNT has been developed in the course
of the present work. RUNT calculates the phase
shifts and elastic observables in the usual manner.
The potential parameters are automatically varied
so as to fit the proton elastic scattering data. The
potentials determined by RUNT are used to generate
proton distorted waves for use in the DWBA calcu-
lations. We have used this code to analyze various
data for proton energies in the range 100—500 MeV
on various nuclei. Among them are data for ener-
gies and nuclei for which (p,7+) data exist. The
search program has produced two distinct classes of
potentials that fit the elastic scattering data. These
two classes, which we refer to as classes 4 and B,
have similar real parts; however, their imaginary
parts are very different. Class A type solutions,
with general characteristics similar to those of Ar-
nold, Clark, and co-workers,?~2% have very large
imaginary potential well depths which have oppo-
site signs. In particular, the imaginary well of the
vector potential is very absorptive whereas the ima-
ginary part of the scalar potential is large and
creates flux. Class B solutions, on the other hand,
are characterized by small absorptive imaginary
depths. The differences between these two types of
potentials will be discussed in more detail in a
separate publication.’’ For the moment, it suffices
to say that we have performed (p,7*) reaction cal-
culations using both classes and will present sam-
ples of each of them in Sec. III. Figure 2 shows the
quality of fits obtained for the elastic scattering
data using the class B potentials, in this instance for
the case of 181.3 MeV protons scattered by OCa.
Generally these class B fits are only slightly superi-
or to the corresponding class 4 fits.?’

C. The pion distorted wave

The pion wave function is a solution to a Klein-
Gordon equation which incorporates an appropriate
pion-nucleus optical potential. In the present work
we use the potential of Stricker et al.!® which is
based on analyses of pionic atom data and repro-
duces the pion elastic scattering data up to 50 MeV.
This potential has also been used recently in studies

~of pion inelastic scattering®® and in pion radiative
capture reactions.’! Nonrelativistic DWBA calcula-
tions have shown great sensitivity to the type of
pion distorting potential used. We have not yet ad-
dressed the question of whether this sensitivity per-
sists in the relativistic calculations; however, we
note in this regard that small changes in the param-

40Ca (B, p) 40Ca
102

T, =181 MeV

10+

100

10-1 |

Cross Section (fm2)

0.0

N Qg\,,/}:"
JATAY

Analyzing Power

0 15 30 45 50 75
c.m. Angle

FIG. 2. Cross sections and analyzing powers for the
elastic scattering of 181 MeV protons on “Ca. The data
are from Ref. 27. The solid curves are relativistic optical
model fits using class B type parameters as described in
the text.

eters of the potential used here do not cause any sig-
nificant changes in our (p,7*) calculations.

III. RESULTS AND DISCUSSION

In nonrelativistic DWBA calculations, it has been
found that the calculated (p,m+) observables are
sensitive to distortion effects in both the pion and
proton channels. We begin this section with a dis-
cussion of these effects in the case of the present re-
lativistic treatment. We show in Fig. 3 various
types of calculation, using PV coupling, for the
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FIG. 3. Distortion effects on the calculated cross sec-
tions and analyzing powers for the reaction
“Ca(p,m+)*Cal(g.s.) at T,=185 MeV. The curves are
calculated using PV coupling for the following cases: (i)
no distortion in either pion or proton channels (dotted
curve), (ii) distortion in the proton channel only (dashed
curve), (iii) distortion in the pion channel only (dashed-
dotted curve), and (iv) distortion in both proton and pion
channels (solid curve). The cross section data shown are
taken from Ref. 32.

cross section and analyzing power in the reaction
“ca(p,m+)"Calg.s.) at 185 MeV. For comparison
purposes we also show the cross section data of
Dabhlgren et al.*?

From the upper part of Fig. 3 we note that pion
distortion alone (dashed-dotted curve) increases the
cross section compared to the plane wave result
(dotted curve) by nearly an order of magnitude. On
the other hand, proton distortion (dashed curve)
merely leads to a smearing out of the angular distri-
bution. None of the above calculations shows much
resemblance to the data. The solid curve (labeled
full DWBA) shows the result of including both pion
and proton distortions. It can be seen that this

curve is quite different from the other three. It ap-
pears from this comparison that in the presence of
pion distortion, proton distortion acquires added
importance and can cause significant changes in the
predicted cross sections. Moreover, without the
pion rescattering, the differential cross section loses
all its structure. Finally, we note that when both
distortion effects are included the general charac-
teristics of the observed cross sections are fairly well
reproduced. The process of turning on the poten-
tials one at a time has also been carried out at 160
and 148 MeV. The outcome at these lower energies
is as dramatic as at 185 MeV. In particular, the ab-
sence of pion distortion results in the calculated
curves losing all their structure, and becoming
monotone decreasing as a function of angle.

The lower part of Fig. 3 illustrates the effects of
distortion on the calculated analyzing power. The
plane-wave result is identically zero everywhere and
thus is not shown. When only pion distortion is in-
cluded (dashed-dotted curve), the resulting analyz-
ing power is dominantly positive whereas that with
proton distortion only (dashed curve) is negative
over the entire angular range. When both distortion
effects are included (solid curve) the resulting
analyzing power is still dominantly negative. This
indicates that proton distortion plays a key role in
determining the analyzing power with pion distor-
tion modifying its shape to some extent.

The preceding general remarks concerning distor-
tion effects also hold in much the same fashion for
the case of PS coupling. There is one important
difference, however, between PV and PS results.
We find that, providing one carries out a full
DWBA calculation, the PV coupling results are in
much better accord with the data than those with
PS coupling. This point is illustrated further by the
comparisons of Fig. 4, where we show predictions
for the reaction in question, at three different pro-
ton energies. The experimental data are those of
Dahlgren et al.*? and Pile et al.* In all cases we
find that, even though the angular distributions
with PV and PS coupling have much in common,
the PS curves are generally out of phase with the
observed data. For PV coupling the agreement with
the data is quite good at 160 and 185 MeV; howev-
er, at 148 MeV the minimum is in the wrong place.
This is possibly due to not having the correct pro-
ton distortion; since no proton elastic scattering
data exist at 148 MeV, we have had to use the
parameters obtained from fitting the 160 MeV elas-
tic data.®* It turns out that if we use a class A po-
tential based on a fit to the 160 MeV data for the
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FIG. 4. Cross sections for the reaction
“Ca(p,m+)"Cal(g.s) at T,=185, 160, and 148 MeV.
The solid curves are calculated using PV coupling, the
dashed curves using PS coupling; in both cases class B
proton potentials are used. The dashed-dotted curve for
T,=148 MeV is obtained using PV coupling and class 4
proton potentials. The data points at 185 MeV are open
circles (Ref. 32) and open squares (Ref. 33 at T,=182.5
MeV). The data at 160 and 148 MeV are from Ref. 33.

proton distorted waves at 148 MeV, then the
minimum in the (p,7F) cross section moves towards
the correct position as is shown by the dashed-
dotted curve in Fig. 4. This gives us a measure of
the uncertainties in the (p,7%) calculations which
may arise from ambiguities in the proton distortion
potentials where proton elastic scattering data do
not exist.

We have carried out similar calculations for the
reaction '%O(p,7+)!70O(g.s.). The cross sections for
this reaction have been measured by Dahlgren
et al.’? using 185 MeV protons and by Sjoreen
et al.*® for proton energies in the range 154—183

MeV. The analyzing power has also been measured

at T,=157 MeV.*® Because of a general lack of
proton elastic scattering data on oxygen in this en-
ergy range, the optical potentials used to generate

the proton distorted waves are not as well deter-
mined as for the “*Ca case. Calculations in the en-
ergy range 154—165 MeV were carried out using
potential parameters determined from a fit to the
155 MeV elastic- polarization data of Alphonce
et al.’’ For T,=185 MeV, the parameters were
determined from fits to preliminary data from
TRIUMF for proton scattering on 'O at 200
MeV.® In both cases the potentials are of the class
A variety mentioned above. The geometry parame-
ters for the 1ds,, bound state wave function are
r=1.0 fm and @ =0.4 fm. Other geometry param-
eters were tried but the resulting changes in the an-
gular distributions were either not significant or
lead to inferior results. This geometry also has the
interesting feature that both the radial parameter
and the potential depths are the same as for the
1f;,, orbital in “'Ca. As with all calculations re-
ported here we assume a spectroscopic factor of 1.0.
In Fig. 5 we show the results of our calculations for
four proton energies from 154 to 185 MeV. The
solid curves are calculated using the pseudovector
coupling vertex. It is seen that there is general
agreement with the data at forward angles. The
minimum comes out at the right place for the 185
MeV distribution and the calculation predicts the
correct sense of the shift of the minimum but
overestimates this shift. The calculations do not do
as well at back angles in that they underestimate the
cross section particularly at the lower proton ener-
gies. For comparison we also show the results for
pseudoscalar coupling at the highest and lowest
proton energies. It is evident, as was the case in
#0Ca, that these results are inferior to the PV cou-
pling ones. They overestimate the cross section
magnitudes and at 185 MeV show a minimum that
is shifted by some 40° with respect to the one ob-
served. Even if a realistic spectroscopic factor is
used, which will reduce the calculated cross sections
by approximately 20%, the PV curves will still be
superior.

In Fig. 6 we show the analyzing power for the
same reaction at 157 MeV. The data points are
those of Sjoreen et al.>® The solid curve, depicting
the PV coupling calculation, shows some qualitative
accord with the data; in particular, the calculated
analyzing power is large and negative in the for-
ward hemisphere. This feature is a dominant
characteristic of analyzing power data (see discus-
sion of !C results below) and is generally predicted
by our calculations. The dashed curve in Fig. 6
shows the analyzing power calculated using the PS
coupling. In this case the calculated 4, is much too
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FIG. 5. Cross sections for the reaction
0@, 7+)""0(g.s.) at T,=185, 165, 157, and 154 MeV.
The solid curves are calculated using PV coupling, the
dashed curves using PS coupling. The solid circles are
data taken from Ref. 35 and the open squares are from
Ref. 32.

small at forward angles, but appears to be in better
agreement with the data at large angles.

Whatever success we have in dealing with ground
state transitions for the “°Ca and '%0 targets, unfor-
tunately does not extrapolate to excited states. Cal-
culations for the 0.87 MeV state in 1’0 in the same
proton energy range result in angular distributions

160 (p, 7*) 170 g.s.

T, =157 MeV

!

10 J J ! J I

1 L
0 40 80 120 160

fc.m.

FIG. 6. The analyzing powers for the reaction
O(p,7+)""0(g.s.) at T,=157 MeV. The solid curve is
calculated using PV coupling, the dashed curve using PS
coupling. The data are taken from Ref. 36.

that agree in shape with those observed, but which
are an order of magnitude smaller. We have en-
countered the same feature in dealing with reactions
on 2C. We present here results of calculations car-
ried out for the reaction ?C(p,7+)!*C leading to the
ground and first excited states in '*C for incident
proton energies of 159 and 200 MeV 363940 Iy
these calculations the ground state of '3C is taken to
be a single particle 1p;,, orbital while the first ex-
cited state is described by a 2s,,, orbital. The
bound state wave functions are generated from po-
tentials with the same radial and diffuseness param-
eters as for oxygen, namely 1.0 and 0.4 fm, respec-
tively. The optical model parameters used to gen-
erate the proton distorted wave are taken from a
(class B) fit to the '2C(p,p)'*C data at 150 and 200
MeV.>#*! In all the calculations presented below the
PV form of the vertex has been used.

In Fig. 7 we show the comparison between our
results and the observed cross sections. It is evident
that the level of agreement with the data is not the
same as for the calcium and oxygen cases discussed
above. Specifically, the theoretical curves for the
ground state transition are well below the data in
the forward direction but are a little closer at back-
ward angles. For the first excited state the calcula-
tions reproduce the correct shape of the observed
cross sections but are almost an order of magnitude
below the data, even taking the spectroscopic factor
to be unity as we do. We note that this excited state
has the same quantum numbers (2s;,,) as the 0.87
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FIG. 7. Cross sections for the reaction *C(7,7+)1*C
leading to the ground state in '3C for incident proton en-
ergies of 200 and 159 MeV, and leading to the first excit-
ed (at 3.09 MeV) state in °C at T, =159 MeV. The solid
curves are calculated using the PV coupling. The data
are from Refs. 36, 39, and 40.

MeV state in 'O where, as mentioned above, the
shape of the angular distribution was predicted
correctly but the magnitude was down by a factor
of 10. Attempts to improve these results by varia-
tions in the bound state geometry or through the
use of different proton optical potentials have been
unsuccessful. It seems more likely that these
discrepancies are caused by configuration mixing in
the residual nuclear states which renders our ex-
treme single particle description inadequate. Such a
possibility is suggested by the work of Miller*> who
has shown that configuration mixing effects in the
states of '3C are important in nonrelativistic
DWBA calculations.

+0.8 T T T T T
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+0.4 | i
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FIG. 8. The analyzing powers for the reaction
ZCF,n+)3C at T, =159 MeV (for the ground and first
excited states in '>C) and at T,=200 MeV (ground state
only). The solid curves are the results of the present cal-
culations using PV coupling. The 200 MeV data are
from Ref. 39 and those for 159 MeV are from Ref. 36.

In Fig. 8 we show the analyzing power predic-
tions and data®®3® for the above cases. The data are
generally negative at forward angles, both for the
ground and first excited states. At 159 MeV the
curves reproduce this negative trend rather well. At
200 MeV the calculated analyzing power is in good
agreement with the data at angles forward of 90°.
The curve shows a positive bump at back angles
which is not present in the data and which persists
even if one uses different bound state geometries or
different proton distorting potentials (of course,
within the constraint of fitting the relevant proton
elastic data). It is interesting to note, however, that
a positive bump has been observed in the new TRI-
UMF data taken at 225 MeV.*

Finally, we remark that the analyzing powers for
the ground and excited states show some similari-
ty>® which is indeed borne out by our calculations.
This is encouraging to some extent and in effect
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strengthens our view that configuration mixing may
be responsible for the lack of agreement for the
cross sections.

IV. CONCLUSION

In this paper we have introduced an extension of
the one nucleon model for (p,7+) reactions in
which both relativistic and distortion effects are
taken into account. This has been accomplished,
within the DWBA framework, by using Dirac spi-
nors to describe both continuum and bound nucleon
states. We find that distortion effects are extremely
important. Both proton and pion distortions have
significant effects on the calculated cross sections.
For the analyzing power it appears that proton dis-
tortion plays the more dominant role. Pseudovector
and pseudoscalar forms of the NN coupling vertex
have been used and we find that the former is in-
variably in better accord with the data. This is in-
teresting in view of the fact that the pseudovector
coupling is the one that satisfies the requirements of
PCAC (Miller and Weber!® have already pointed
out that one should adopt the pseudovector cou-
pling). The lack of equivalence between the two
types of vertex is understood in terms of the strong
nuclear interactions,>>?* as is shown in Eq. (6). We
should note here, however, a new and interesting
development by Banerjee and Walker.** These au-
thors suggest that, in a fully microscopic approach
to pion production and absorption reactions, one
should use the pseudoscalar form of the vertex
function.

The degree to which our present calculations,
with pseudovector coupling, succeed in describing
the experimental situation can be summarized as
follows:

(i) For reactions on “*Ca and '°0 leading to the
ground state of the final nucleus, both the shape
and magnitude of the angular distributions in the
forward hemisphere are reproduced fairly well.

(i) Two dominant features of the analyzing
power data for proton energies below 200 MeV,

namely the large negative nature at forward angles
and the near similarity of analyzing powers for dif-
ferent final states in !°C, are both reproduced by
our calculations.

Our model, however, does not succeed in repro-
ducing the magnitude of the cross sections for reac-
tions leading to the first excited state in O and the
ground and first excited states in 3C. Configura-
tion mixing may be responsible for part of this
discrepancy, particularly for the latter case since we
get reasonable results for the analyzing power.

The lack of agreement at large angles, on the oth-
er hand, is more likely an indication that some
mechanism, other than the ONM, is contributing to
the reaction. A likely candidate is the target emis-
sion contribution.®*

We, therefore, conclude that for situations where
the resulting nuclear state is simple, the ONM is ca-
pable of interpreting the data in the forward hemi-.
sphere, provided that relativistic effects are properly
accounted for. We should, however, point out that
more information about relativistic descriptions of
nucleon motion in nuclei is required, particularly
for excited states and for targets that are not good
closed shells. In the course of the present calcula-
tions, we have restricted ourselves to one particular
pion-nucleus optical potential (the Stricker,
McManus, and Carr'® potential). The extent to
which this is justified has not been fully explored.
Investigation of other types of potentials should be.
carried out and we plan to do this in the near fu-
ture.
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