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The cross section for the ''B(p,y)'2C reaction leading to the 19 MeV region of '’C has
been measured at 0,,,=60" for E, of 23 to 60 MeV. Angular distributions of cross sections
and analyzing powers were measured at E,=28.7 MeV. The "'B(p,¥0,1)'?C cross sections
were measured at 6,,=60" for E, of 8 to 60 MeV, with angular distribution measurements
at E, of 14.5, 17.0, and 28.7 MeV. The results are compared to direct capture calculations
which, in the case of transitions to the 19 MeV region, treat the final state as both a bound
and unbound state. The procedures for calculating direct capture to unbound final states
are described. The possible existence of a giant resonance state is discussed.

[ NUCLEAR REACTIONS B(p,7)'*C; measured o(E) for transitions |
to the 19 MeV region of ?C at 6=60" for E, of 23 to 60 MeV, measured
a(6) and 4 (0) at 28.7 MeV for these transitions. 'B(p,y, )?C, mea-
sured o(60°) for E, of 8 to 60 MeV, o(6) at 14.5, 17.0, and 28.7 MeV.
Results are compared to direct capture calculations treating the final
state both as bound and unbound. Procedures for calculating direct cap-
ture to unbound final states are described. The possible existence of gi-
ant resonance states is discussed.
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I. INTRODUCTION

Radiative capture reactions at “low” energies
have been a valuable probe of nuclear structure for
some time. In recent years, much has been learned
about the giant resonances built on the ground
states of nuclei.! The rather large spacing of low-
lying states in most of the light nuclei has made it
possible to observe y transitions to these states in
addition to the ground state. The simple picture of
a giant dipole resonance built upon excited states
seems to be able to qualitatively account for many
of the observed results. For example, in ®Be and
12C the giant resonances built on the first excited
states as observed with the (p,y,) reaction are shift-
ed up in excitation energy with respect to the giant
resonances built on the ground states. The magni-
tude of this shift is more or less equal to the spacing

25

between the ground state and the first excited state
in ®Be and 'C, respectively.?

Little is known about the giant resonances which
could, in principle, be built on more highly excited
states. However, recent experimental results® have
shown that transitions to the final states in the re-
gion of 19 MeV in '2C could be observed with the
B(p,)!2C reaction. This affords us an opportuni-
ty to study the question of the nature of giant reso-
nances built on a rather highly excited state.

What can we expect to observe when looking at
electromagnetic strength built on a highly excited
state? First of all, the total strength should be
governed by the sum rules. The classical dipole
sum rule* should give us the order of magnitude of
E1 transition strength to be expected. However, it
is worth noting that for excited states the energy-
weighted sum rule will be the difference between
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the electric dipole absorption strength going up
from the state and the decay strength coming down
to lower lying levels. This means that a state which
has a large amount of the sum rule exhausted in E 1
transitions to lower lying levels could have as much
as two sum rules in the detailed balanced capture
strength leading to this state. Of course, only a
fraction of this sum rule will normally be found in
any one channel.

As far as how this sum rule strength is distribut-
ed, we again have little to go on. It is thought that
the width of the ground state giant resonances in
light nuclei is due mainly to direct escape, while in
heavy nuclei it is due to spreading as a result of
coupling to higher order particle-hole states.” The
increased penetrabilities should increase the escape
widths as the energy increases. But the escape
width may or may not dominate at high energies in
light nuclei. Since no detailed calculations have
been reported to date, however, we have no quanti-
tative guide as to what width we should expect
these “giant resonances” built on highly excited
states to have, except that their widths should be
significantly greater than the ground state widths.

Previous authors have considered the nature of
the strength seen in the !'B(p,79)!*C reaction. Ar-
nold® was the first to elaborate on the suggestion®
that the observed strength leading to the 19 MeV
region of '2C might be the result of direct capture
leading to particle-hole states in the residual nu-
cleus, especially the (dssppin~!) configuration.
Tsai and Londergan’ later performed a direct-
capture calculation using real potentials, including
the effects of residual two-nucleon interactions.
The unbound nature of the final state was not taken
into account. These authors found a large contribu-
tion from such a mechanism for bombarding ener-
gies above 40 MeV.

Following this, Halderson and Philpott® per-
formed a calculation which treated the final state as
an unbound state. They calculated the bremsstrah-
lung emitted by a proton undergoing a continuum-
to-continuum transition while interacting with the
target nucleus via a phenomenological optical
model potential. They concluded that this single-
particle mechanism could account for the major
features of the 40— 100 MeV data.

It is this latter approach which we shall employ
in the present work. Particular attention will be
given to the effects of treating the final state as un-
bound rather than bound. The experimental situa-
tion has also evolved since the above mentioned cal-
culations were performed. Information regarding

the final states, as well as the energy dependence of
the 'B(p,¥19)1*C cross section below 40 MeV, have
been reported in preliminary form by Blatt et al.’
Details of this work, an Ohio State-Indiana Univer-
sity collaborative effort, along with complementary
measurements obtained at Triangle Universities Nu-
clear Laboratory (TUNL), are given in the present
paper. With this larger data base, a more detailed
comparison can be made with the predictions of
direct capture calculations.

II. EXPERIMENTAL DETAILS

The "'B(p,y)1?C data of the present work were
obtained at the Indiana University Cyclotron Facili-
ty (IUCF) utilizing the Ohio State University (OSU)
large-crystal y-ray detection system (OSU/IUCF)
and at the Triangle Universities Nuclear Laboratory
(TUNL) by the TUNL group. The two experiments
were quite similar in all procedures. However,
those places where the methods differed will be in-
dicated for completeness.

Excitation functions and angular distributions of
cross sections and analyzing powers were deter-
mined from y-ray spectra measured with large
Nal(T1) detectors surrounded by plastic scintillator
anticoincidence shields. While differing in detail,
these systems follow the basic design philosophy
developed at Stanford, Ohio State, and Stony
Brook.”® The TUNL system is based on a
254X%254 cm Nal crystal, and the OSU/IUCF
system uses a 25.4<28.5 cm crystal. These systems
are described in detail elsewhere.!! Electronics for
pileup rejection is provided on each system. Addi-
tional gain stabilization circuitry was provided for
the OSU/IUCF system, but was found to be un-
necessary for the TUNL detector. Time of flight
was utilized to reduce background from non-
target-related events and neutrons interacting in the
detectors. A typical spectrum taken with the
TUNL detector is shown in Fig. 1. The
OSU/IUCF detector produced generally similar
spectra with slightly poorer energy resolution. The
measurements performed at TUNL consisted of a
yield curve at 6y,,=60° for proton energies of 23 to
32 MeV in 0.5 MeV steps, and an unpolarized angu-
lar distribution at E, =28.7 MeV with six angles in
the range 55°< 6y, <155°. The measurements ob-
tained at IUCF consisted of yield curve data at 60°
for E, of 23.7 to 60 MeV and analyzing power mea-
surements at E,=28.7 MeV over an angular range
of 30° to 145°.
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FIG. 1. The !B(p,y)'>C spectrum obtained at

TUNL. The solid curve is the result of a multiple peak
fitting code. The levels in 'C shown are those which
were included in the fit.

The spectra obtained at TUNL were fitted by
means of a multiple peak fitting computer code.
The standard line shape had been previously ob-
tained by using the 3H(p,7)*He reaction at E,=17
MeV with the detector setup under identical operat-
ing conditions.!> The OSU/IUCF detector response
was determined from spectra taken with the
3H(p,7)*He reaction along with spectra obtained us-
ing monoenergetic y-ray beams for similar crystals
at other laboratories.!* In addition to the peak cor-
responding to ground state transitions, peaks having
centroids corresponding to transitions to states at
4.43, 9.64, 13.35, 15.11, 16.58, 18.43, 19.65, and
20.68 MeV were included in the fits to the 'B(p,y)
spectra.!* The three peaks corresponding to states
at 18.43, 19.65, and 20.68 MeV were used to obtain
the strength hereafter referred to as the y,9 strength.
These three peak energies were chosen empirically
to best represent the strength seen in this region of
the spectra. The solid curve of Fig. 1 shows the re-
sult of a typical best fit to one of our spectra.

The absolute cross sections of this work were ob-
tained following the method developed at TUNL.!?
Our efficiency for 15 MeV gamma rays is obtained
by normalizing to the 2C(p,¥,)!*N reaction at the
15.07 MeV (Ref. 15) resonance in >N. Measure-
ments of the energy dependence of the fraction of
the pulses which are rejected by the anticoincidence
shield and of the attenuation of the shielding in
front of the Nal detector allow us to extrapolate
this efficiency to other energies.”> We estimate an
uncertainty of about +10% in the detector efficien-

cies determined in this manner. The thick !'B tar-
gets used in the TUNL work were prepared by
pressing 99% enriched !'B powder into the form of
a thin disc. These targets were measured to be 11.9
mg/cm2 thick with an uncertainty of +10%. This
number is based on a comparison to a thin !'B foil
target whose thickness was determined [via a-
particle (**'Am) energy loss, Rutherford scattering,
and normalization to previous !'B(p,p) data'®] to be
480+40 pg/cm® The normalization between the
thick and the thin target was based both on the y-
ray yields using the two targets and the elastic pro-
ton yields obtained with a solid-state detector
mounted in the scattering chamber. This same
solid state detector was used as a monitor for the
angular distribution measurements. The targets at
IUCF were prepared in a similar manner, and
ranged from 20 to 30 mg/cm? Since the TUNL
data were directly comparable with previously es-
tablished absolute measurements using the identical
experimental setup, the previously reported
OSU/IUCEF values were normalized by a factor of
0.87 for best overall agreement. (This factor is
within the uncertainty of the assumed line shape.)
The overall uncertainty in the absolute cross sec-
tions reported here is, as a result of efficiency, tar-
get thickness, and spectrum stripping uncertainties,
as well as the difference in the results of the two ex-
periments, estimated to be +20%.

The angular distribution measurement at TUNL
was performed with the Nal detector system posi-
tioned so that the back face of the crystal was 106
cm from the target. The Pb collimator was
designed so as to fully illuminate the back face of
the detector. Spectra were obtained at six angles be-
tween 55° and 155°. The unpolarized data obtained
at TUNL were combined with the IUCF analyzing
power measurements to produce the product
A(0)o(0). In this case the analyzing power is de-
fined as

A@="A""=x1
O=N N X

where N, and N_ are the yields obtained for a
spin up and a spin down incident proton beam,
respectively. P is the beam polarization which, in
the present case, was measured using the quench ra-
tio method.!” The center-of-mass corrected data
were fitted in terms of Legendre and associated
Legendre polynomials. These expansions were writ-
ten as:

0(0)=A, |1+ > a; Oy Pr(cosh) | ,
k=1



2924 H.R. WELLER et al. 25

and

A(0)o(0)=A4, | 3, kakPkl(B)] ,

k=1

where the Q) factors correct for finite geometry ef-
fects.!

III. CALCULATIONS

In order to provide a basis for examining these
data for the presence of collective strength (i.e., gi-
ant resonances), we shall compare the data to the
predictions of the direct capture model.'®! In this
model the reaction is viewed as proceeding by a
mechanism in which the incoming nucleon under-
goes a radiative transition from its scattering state

After reviewing the theory for a bound final state,
we give particular attention to the effect of realisti-
cally treating the final state as unbound.

The direct-capture cross section for nucleons on
spin-zero targets going to a final state of definite /,j
is, in the case of electric transitions of multipolarity
L, given by

ok = 27e; Mic N Ek (2j +1)B.?
X 3 [T, 1% (1)
Iﬂjd
where
k 2L
B =Ll d @)

(2L +1L [(2L —1M]? °

into a single-particle state of the residual nucleus. and
J
A o = 2L +1) .
T, =17 "CULjs 307V CSy <u,j(r) ﬁ[@ + Dji Ueyr) =kt 11y P] f,aja(r)> NE)
T

In this expression k,, k, are the wave numbers of 4 I, o
the incident particle and the outgoing gamma ray, Xu,,u;= k,r IE i°fy At )YI a)
respectively. The orbital and total angular momen- N A{ )

ta of the incoming nucleon are labeled [, and j,,
while E, is the center of mass energy in the en-
trance channel. The quantity j; (k,7) is the spheri-
cal Bessel function, and ¢; is the effective charge
given by"°

ALz, +(—)}z
(14+4)F

with 4,Z being the mass and charge numbers of the
target and Z, the charge of the incident nucleon.
The radial part of the bound state wave function
which appears in Eq. (3) [#;;(r)] was normalized ac-
cording to

f | u(r) | 2dr=1. (5)

€= ’ (4)

(o ZSU is the spectroscopic factor associated with the
final state. The function f; 1,5,(r) in Eq. (3) is the ra-

dial part of the proton partial wave in the incident
state | @, ):

| $ad =2 X, . |5atta) » (6)

a

with

X ClzSgjashattammsg)

A,'
CllaSgjarhattama) Y " (F) .
(7)

These continuum wave functions have “plane wave”
normalization. This means that for » greater than
the range of the nuclear potential, the function
f1,;,(r) is given by Eq. (2) of the Appendix.

The form of the electromagnetic operator used in
Eq. (3) is not the long-wavelength limit (%), but
does assume Siegert’s theorem® since the nuclear
current operator has been replaced by the charge
density operator in obtaining this result. The impli-
cations of this choice for the form of the operator
have not been fully investigated in the present work.
However, this question has been explored in some
detail in a recent publication.?! In the notation of
Ref. 21, our choice of operator corresponds to the
first term in their so-called density form of the elec-
tric operator. The additional terms in this density
form are scaled down by a factor of
E,,/mc2 (~0.03 here) relative to the first term.
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These additional terms have been ignored in the
present work.

If we assume that the direct-capture process de-
pends only on the final state parentage to the target
J

W, +1

L .
t. t )=
or(target spin Jo) = 0 T D)

where Jy is the total angular momentum of the final
state and j is the total angular momentum of the
single particle in the final state.!

In the case of M1 transitions we can perform a
similar direct capture calculation. In this case we
must evaluate matrix elements of the form

(uyi(r) | Op1 | f1, (1) 9)
where
Op1=tholga T o +15 +al], ' (10)
with
efi
Fo=2me

m being the nucleon mass, u the magnetic moment
of the nucleon, & the Pauli spin matrix, g, the
gyromagnetic ratio for the target of spin J,, and

Z+AZ,
T A(144)
where Z, Z, are the charge numbers of the target
and projectile, respectively. L is the operator for
the relative orbital angular momentum of the pro-

jectile and target. The cross section in this case is
evaluated to be

(11

Wi+l or k) e (#ic)?
(I, +1D(2j+1) 3 E,k, #ic (mc?)?
I AURSY)

2, +1

UT(MI)-:

X(2u—a) | 1(M1) | %8y, ,
(12)
where the radial integral 1 (M 1) is given by
1M D)= [uy(nfy; (rdr . (13)

The matrix element of gaif,, vanishes in this direct
capture model since the operator contains only the

internal coordinates of the core.”? If different po-
|

2L 41

ground state plus a single nucleon so that the ma-
trix elements do not depend on the spin of the tar-
get nucleus, then we can write the cross section for
the case of a target with spin J, as

o%(target spin 0, residual spin j) , (8)

tentials are used to generate the wave functions for
the initial and final states, terms which should
properly vanish owing to orthogonality may not.
We have arbitrarily set such terms (/j=I,j,) equal
to zero in our calculations.

In the preceding discussion we have considered
the incident nucleon to be captured into a final state
which is bound. We would now like to consider the
case in which the nucleon is captured into a final
state which is a continuum (resonance) state having
an energy E; and a width I'. In the direct capture
model, the captured nucleon is emitted when this
continuum state decays. In this situation the dif-
ferential cross section for the capture process de-
pends on the energy of the final state. The total
cross section for capture to a specific continuum fi-
nal state is obtained by integrating over the energy
of the final (resonance) state. We have

ff%;;f dEdQ (14)

where Ey is the energy of the final state and
do(Es)/dEy is the differential cross section with
respect to Ey. The quantity do(Ey)/dEy is, for an
electric transition of multipolarity L, a target of
spin J,, and a final state of spin J;, given by:

do(Ey)  4mc® ky e’e® 2 +1
dE;  E, kek, (#ic)? 2,+1

ey - 1 1
X 3 BL*CHjLjs,707) | Iin;, |
p-

a-’a

(15)

where we capture to a state having a single particle
with a specific /;. In this expression ks is the con-
tinuum final state wave number of the captured
particle of reduced mass m.

The integral I,,'f’ 1,j, 18

1]: lda — f fl] —l)kgl(L + I)jL(kyr)*'kyer +1(k7r)] f,aja(r) dr , (16)
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where the continuum radial wave functions are de-
fined from Eq. (7). The form of the operator used
here is identical to that of Eq. (3). The integrals
I,JIT, 1,j, must be evaluated numerically. However,

since the integrand oscillates out to infinity it is im-
practical (in most cases) to integrate directly. In or-
der to avoid this problem we have utilized the
method developed by Vincent and Fortune?® for
evaluating similar integrals which appear in strip-
ping reactions when the final state is unbound. In
this technique rapid convergence of the integral is
obtained by integrating along the imaginary axis. A
full discussion of this procedure is given in the Ap-
pendix.

After evaluating these integrals for various final
proton energies Ey, we must integrate over the final
proton energy. If we assume a Breit-Wigner shape
for the cross section as a function of Ej, this
amounts to multiplying the cross section at the res-
onance energy by the factor #T"/2, where T is the
full-width-at-half-maximum for the resonance in
the (p,y) cross section as a function of E;. A com-
parison of this result with exact numerical integra-
tions indicated that this procedure is accurate to
better than 95% in the present case.

Angular distribution coefficients were calculated
from the relative transition matrix elements of Eq.
(3). In the case of the continuum calculations the
matrix element in Eq. (3) is replaced by that of Eq.
(16). In both cases the normalization condition

S e.’B.?| lel':Iaja |*=1,
Ij,

H.R. WELLER et al. 25

was used to evaluate €; By T,];, Iy’ the relative transi-

tion amplitude for the incident channel /,j, going
to a specific final state having Ij. The relative
phases are just those of the T,f-, 1,5, of Eq. (3).

These were used in the standard expression for the
angular distribution expansion coefficients (see Ref.
1) to obtain the a; and b; coefficients.

IV. RESULTS AND DISCUSSION

In order to discuss the present data for the
UB(p,y19)'*C reaction, especially with regard to the
presence or lack of a giant resonance feature, we
will first review the cases of 'B(p,7,) and 'B(p,y,)
experimentally and compare them to the results of
direct capture calculations. In these two cases the
existence of a giant resonance state is well establish-
ed. Therefore, this should provide a reference for a
similar comparison in the 'B(p,y;4)'?C case and
hopefully allow us to make a critical evaluation re-
garding the possible presence of a giant dipole reso-
nance (GDR) in the (p,y;o) case.

The results of the present measurements of the
1B(p,y,) and "'B(p,y;,) cross sections at 6,,,=60°
are shown in Fig. 2. The lower energy data were
obtained with the TUNL FN tandem, while the 23
to 32 MeV data were obtained with the TUNL cy-
clograaff. The OSU/IUCF data extend these re-
sults to E,=60 MeV. These reactions have been
previously measured for proton energies of 4 to 29
MeV (Refs. 2 and 24—28). However, there have
been some discrepancies in the values of the abso-
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FIG. 2. The TUNL and OSU/IUCF data for the 'B(p,7,)'*C and !'B(p,y;)2C cross sections at 6,,=60". The
dotted-dashed line extrapolates the (p,7,) data down to E,=5 MeV using the data of Ref. 24. The solid and dashed
curves are the results of direct capture calculations for the (p,yo) and (p,¥;) reactions, respectively. The error bars

shown represent only the statistical uncertainties.
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lute cross sections and in the shape of the yield
curve, especially for the !'B(p,y,)!?C case. These
discrepancies have recently been resolved in a joint
TUNL-BNL effort,?® which showed that a correc-
tion factor which varies almost linearly from a
value of 0.8 at E,=6 MeV to a value of 0.6 at
E, =14 MeV should be applied to the UB(p,y0)12C
cross section data of Ref. 24. The point of Fig. 2,
however, is to compare the cross sections for transi-
tions to the ground and first excited states to the
predictions of a direct-capture calculation. The
solid and dashed curves represent the results of a
pure direct E 1+ E?2 calculation. The final (bound)
states were represented by single particle wave func-
tions obtained by adjusting a Wood-Saxon potential
to produce the correct binding energies for the p;/,
and p,,, single-particle states. The spectroscopic
factors were obtained from the calculations of
Cohen and Kurath.*® The optical model potentials
used to produce the incoming distorted waves were
those of Watson’! et al. What we observe here is
that in the region of the giant dipole resonances for
the ground and first excited states of 12C (E, ~7.25
and ~11.0 MeV, respectively), the direct capture
cross section has the wrong energy dependence, and
underestimates the experimental cross sections by a
factor of about 5. However, as we go to higher en-
ergies, this discrepancy disappears. By the time we
get to E, =30 MeV we find that the (p,y,) cross sec-
tion is in excellent agreement with the direct-
capture prediction while the (p,y;) cross section is
about 20% higher than the calculation, with the
two appearing to converge. At still higher energies,
the direct capture calculations continue to give a
satisfactory description of the measured cross sec-
tions.

The predictions of the direct calculations can also
be compared to the measured angular distributions.
The experimental angular distributions were ex-
panded in terms of Legendre polynomials as previ-
ously discussed. In the present work angular distri-
butions for (p,y0) and (p,y;) were obtained at
E,=14.5, 17.0, and 28.7 MeV. These data allow us
to compare the present experiment to previous
works. The a; coefficients of the present work are
shown in Fig. 3(a) for the (p,7,) case and in Fig. 3(b)
for the (p,y;) case. The results of previous measure-
ments are also shown here. Note that the data of
Allas et al.?* are represented by a dashed line which
was drawn through the numerous data points of
that experiment. Table I lists the present résults.

The solid curves in Figs. 3(a) and 3(b) are the re-
sults of the direct E1+E2 calculation. The re-
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markable qualitative agreement with the data is
somewhat surprising. It has been previously shown
that the GDR does not have a large effect on the a,
coefficient, the dominant coefficient in determining
the shape of the angular distributions at the energies
of the GDR. Polarized capture experiments have
been important in developing our understanding of
this point.! The average potential well seems to
determine the angular distribution, at least to first
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TABLE 1. Angular distribution coefficients.

“B(p,‘yo)”C
E, a; a, as a,
14.5 0.345+0.012 —0.7024+0.018 —0.25140.028 0.028+0.031
17.0 © 0.436+0.014 —0.657+0.022 —0.285+0.030 0.005+0.037
28.7 0.881+0.016 —0.408+0.028 —0.37640.039 0.044+0.039
11B(p’7/1)12c
Ep a; a, as as
14.5 0.291+0.009 —0.256+0.014 —0.1414+0.019 —0.022+0.023
17.0 0.331+0.011 —0.259+0.017 —0.192+0.022 0.122+0.029
28.7 0.656+0.013 —0.236+0.022 —0.333+0.029 —0.039+0.033

order, and this is relatively stable independent of
whether one is on or off of the GDR.!

The results for a, and a; are, however, unexpect-
ed, at least at first glance. These coefficients are
determined by E 1 —E?2 interference terms. Both a;
and a3 should be proportional to the square root of
the ratio of the E2 cross section divided by the E 1
cross section. The direct capture model makes a de-
finite prediction for this ratio. If the E 1 strength is
enhanced by virtue of a GDR by, say, a factor of 5,
with the E2 strength following the direct capture
value, the effect could be expected to show up in a;
and a; as a factor of ~2 departure from the direct
model prediction. Thus we see that these coeffi-
cients could provide a valuable diagnostic tool in
the search for giant resonances since they depend on
relative rather than absolute cross sections.

In the case of (p,y,) the GDR occurs in the re-
gion of E,=7 to 10 MeV. Unfortunately, a; and
aj are so small here that it is almost impossible to
claim that an effect is present. The overall level of
agreement between theory and experiment is just
not good enough to distinguish, say, between an a;
of 0.05 and 0.10.

In the case of (p,y;) the GDR is at a slightly
higher energy. Here one might expect to see a devi-
ation from the direct behavior in a; and a; at and
below E,=14 MeV. Again there is no observable
effect, i.e., the quality of the agreement between the
direct model prediction and the data does not
change significantly as we move into the region of
the GDR. The accuracy of the model is apparently
not sufficient to be able to use it to observe non-
direct behavior in the a; coefficients. Of course the
oscillations observed in the (p,y;) data, especially in
a, below 12 MeV, indicate nondirect behavior. But
this is more suggestive of intermediate structure or

secondary doorways®? than it is of the existence of
the GDR itself. And again, even these effects are
not very noticeable in a@; and a3. These observa-
tions lead us to the following conclusions:

(1) The typical giant resonance (built on the
ground state or some other “low lying” state) ob-
served in a proton capture channel gives rise to an
enhancement in the absolute cross section of the or-
der of a factor of 5 above the direct capture model
prediction. We should expect this factor to decrease
as we go to giant resonances built on more highly
excited states for two (not independent) reasons: the
opening of more channels and the spreading out of
the GDR. Of course, detailed nuclear structure ef-
fects could also influence this result significantly.

(2) In the case of ""B(p,y) and ''B(p,y;) the
GDR is well established and clearly observed in the
proton capture reaction. However, it is difficult to
observe its presence in the angular distribution coef-
ficients, for two reasons: First, the low proton ener-
gies involved lead to small a; and a; coefficients,
presumably as a result of the small direct E2
strengths present at these energies. Therefore,
changes in these coefficients are difficult to observe.
Second, the overall quality of the agreement be-
tween the direct calculation and the a; coefficients
is reasonably good, but not good enough to see the
effects expected from the presence of the GDR. In
the case of ;9 we might, however, expect to be in a
more favorable situation regarding the sensitivity of
the a; and a3 coefficients, since the background
values (i.e., the pure direct capture predictions) will
be considerably larger. But we must be careful in
drawing conclusions since there are some obvious
complicating factors. First, the E2 strength could
deviate (in all cases being described) from the direct
prediction and reduce the effect of any enhance-
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ment of the E 1 term. Furthermore, a; and a; are
actually sums of many interference terms which
contain differences between the phases of the
relevant transition amplitudes. Although polarized
capture data have indicated that these phases vary
slowly and smoothly across the giant resonances
and are not very sensitive to the presence of the res-
onances,! it is possible for small phase changes to
produce large effects in the observed a;, coefficients.

Based on the above considerations we can see that
our strongest tool for establishing the existence of a
giant resonance is the behavior of the cross section
as a function of energy. If this is not a convincing
test due, for example, to a broadened GDR as well
as competition with an energy dependent direct cap-
ture strength, we can investigate the absolute cross
section. However, since this is the most trouble-
some aspect of most experiments and theories, we
can expect difficulty here. Our second set of ob-
servables is the angular distribution coefficients (the
a;) which are independent of the absolute cross sec-
tions. Unfortunately, as just discussed, there is ap-
parently no unambiguous way to interpret these
vis a vis the presence of a giant resonance.

The results of the measurements of the 60° yield
curve for the !'B(p,719)!2C reaction are shown in
Fig. 4. Both the TUNL and the OSU/IUCF data
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FIG. 4. The ""B(p,y19)'>)C* center-of-mass cross sec-
tion as a function of incident proton energy at 6,,,=60".
Both TUNL and OSU/IUCF data are shown. The er-
ror bars on the TUNL data are statistical only. Those
on the OSU/IUCF data include the estimated error due
to target thickness and stripping uncertainties. The
overall error on the absolute cross section shown here is
estimated as +20%. The solid curves represent the
three direct capture calculations [bound final state, con-
tinuum final state (W =0.0), continuum final state
(W =0.5 MeV)]. As discussed in the text, the continu-
um final state (W =0.5 MeV) calculation should be the
most realistic.

are shown here. Although a few of the data points
in the 23—32 MeV region deviate from a smooth
behavior, these fluctuations are relatively minor and
can be attributed to spectrum stripping and back-
ground problems. Hence we conclude that there is
no convincing evidence in these data for any signifi-
cant fine or intermediate structure at these excita-
tion energies. As previously discussed, an overall
uncertainty of +20% should be associated with the
absolute cross sections shown here.

Since the present Nal detectors cannot resolve the
individual final states in the 19 MeV region, we
cannot specify exactly which levels are being popu-
lated here. The three lines needed to fit the spectra
suggest that we are seeing strength to the 3~ and
4~ levels in this region,14 but the presence of addi-
tional strength cannot be ruled out. It is interesting
to note here that the spins and parities of the low
lying levels of '2C indicate that if the 4~ states
dominate the 19 MeV region, there should be little
downward E 1 strength, and therefore no more than
one E1 sum above the 19 MeV states. Investiga-
tions of possible background contaminations were
undertaken in our spectrum fitting procedures. We
could not generate any fits nearly as consistent (i.e.,
having good X?) if a background as large as 10% of
the peak sum was included. We therefore conclude
that the strength which we have extracted corre-
sponds to capture strength to the levels in 2C be-
tween 18 and 21 MeV. If there is any background
(owing to pileup, contaminants, other reactions,
etc.) present in our spectra, it appears to be less than
a 10% effect.

The first calculation which we attempted was a
direct E 1+ E2 capture calculation in which the fi-
nal state(s) at 19 MeV was treated as a bound ds,,
single particle state. Previous particle-hole calcula-
tions”33 and shell model calculations® have indicat-
ed that one should expect the (ds/,,p3,, ") strength
to be concentrated near 19 MeV in '2C. Both the
2s,,, and 1d;/, single particle strength would be ex-
pected to be located 3—5 MeV from the ds,,
strength.® We therefore assume that the ds , single
particle strength is the dominant single particle
strength in the (p,y,¢) reaction. A Woods-Saxon po-
tential was found which placed the ds,, single-
particle state just below the proton threshold. In
fact, the calculation was found to be rather insensi-
tive to the binding energy used; it was varied from
—0.1 to —5.0 MeV. The calculation shown in Fig.
3 placed the ds,, single particle state at 15 MeV (a
binding energy of —1.0 MeV). Although the ener-
gy of the state used to generate the single particle
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wave function in the radial matrix element was not
the physical energy, the energy in the kinematic fac-
tors which appear in the cross section expression
[see Egs. (1)—(3)] was taken to be 19.2 MeV. The
parameters of the Woods-Saxon potential which
generated this ds,, state were V' =63.3 MeV,
ro=1.25 fm, @ =0.65 fm, and ¥V,,=8.75 MeV.

The continuum wave function was generated by
using the optical model potential found by fitting
30 MeV proton elastic scattering data.** In order to
keep the calculation as transparent as possible, no
energy dependence was given to these potential
parameters. The spectroscopic factor (C2S) was set
equal to 1.0. The results of this “bound state” cal-
culation for E 1+ E 2 radiation are shown in Fig. 4.

The above calculation indicates that the cross sec-
tion is dominated by E1 capture from the f;,,
channel. At 25 MeV, for example, this term ac-
counts for 81% of the cross section. Furthermore,
the E2 cross section is relatively unimportant, ac-
counting for about 6% of the total cross section at
29 MeV. If the M1 cross section is computed ac-
cording to Eq. (12), with the ds/,,—ds/, strength
set equal to zero, it accounts for ~3% of the cross
section at 29 MeV. As discussed in Sec. III, this
calculation is not very reliable owing to orthogonal-
ity problems. Because of this, plus the fact that it
has a negligible effect on the cross section and a re-
latively small effect on the angular distribution
coefficients (see below), it is not included in the cal-
culation presented in Fig. 4.

The results of the polarized and unpolarized mea-
surements of the !'B(p,7;9)'?C angular distribution
at 28.7 MeV are shown in Fig. 5. The solid curves
are the results of Legendre and associated Legendre
polynomial fits to the data. It was found that satis-
factory fits were obtained when fitting through
third order polynomials in both cases. The result-
ing a; and by coefficients, which have been correct-
ed for (minor) finite geometry effects, are presented
in Table II. Angular distribution coefficients were
calculated with the bound state direct capture
model discussed above. The results are presented in
Table II along with the experimental values. It can
be seen here that this rather simple model of direct
E 1+ E?2 capture gives a good description of the an-
gular distribution data, the exception being the b,
coefficient.

On the basis of this result it appears as though
the direct capture model can account for the main
features of the (p,y,9) reaction. Both the peaking
near 30 MeV and the angular distribution results
can be obtained from this model. However, the en-
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FIG. 5. The angular distribution of the cross section
and of the product of the cross section times the analyz-
ing power for the ''B(p,y15)?C reaction at E,=28.7
MeV. The error bars represent the statistical uncertain-
ties associated with the data points. The solid curves
are the result of Legendre and associated Legendre poly-
nomial fits to the data. The dashed curves are the re-
sults of the direct capture calculation (continuum final
state, W =0.5 MeV) as described in the text. The cross
section calculation was normalized by a factor of 2.5 for
the purpose of comparing to the data.
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TABLE I1. Angular distribution coefficients.

”B(p,ylg)nC
E,=28.7 MeV

Bound Continuum  Continuum

Experiment calc calc W=0 calc W=0.5
a;= 0.37+0.05 0.44 0.56 0.55
a,=-—0.50+0.09 —0.57 —0.52 —0.52
a;=-—0.27+0.07 -0.16 —0.22 —0.20
b= 0.02+.016 0.084 0.092 0.096
b,=—0.0274+.008 —0.044 —0.041 —0.040
b;=—0.016+.006 —0.022 —0.026 —0.027

ergy dependence of the data above 30 MeV is not
reproduced by the calculation. Furthermore, the as-
sumption of a pure ds, single particle state
(C28'=1) at 19 MeV is most certainly unrealistic.
In addition, no attempt was made to take account
of the energy dependence of the optical model
parameters in this result. And finally, the treat-
ment of the final state as a bound state is certainly
wrong.

An investigation of the optical model potential
used to generate the incident wave functions was
performed in order to understand the peaking ob-
served in the (p,y;o) calculation. It was found that
this peak position could be moved significantly by
altering the incident potential. For example, the
peak occurs at around E, =18 MeV if the potential
used to generate the final ds5/, single particle state is
also used for the incident protons. An examination
of the complex phase shift associated with the f;,,
partial wave for the potential of Ref. 34 indicates,
as shown in Fig. 6, that this peaking is associated
with a minimum in the inelastic parameter 7, where
n=e "% and y is the imaginary part of the phase
shift associated with the f;,, partial wave. The real
part of the phase shift & is also shown here. These
results imply a maximum in the reaction cross sec-
tion near 27 MeV, and a resonancelike behavior in
the f,, elastic channel, albeit with a real potential
not strong enough to produce a 90° resonance phase
shift. We also investigated the effects of energy
dependence of the optical model potential used to
generate the incident wave function by using poten-
tials found for 1>2C+p at 30.4, 40, 61, and 100 MeV.
These calculations indicated that no reasonable en-
ergy dependence would give an effect which would
bring the results of the present calculation signifi-
cantly closer to the data.
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FIG. 6. The real part of the phase shift and the in-
elastic parameter (p=e~?") associated with the f;,
partial wave for the potential (Ref. 34) used to describe
the incident channel in the direct capture calculations.

In order to pursue the direct capture model fur-
ther we performed a calculation in which the final
state was treated as a continuum state. The expres-
sions and integration techniques used were given in
Sec. III. The final state was described by an optical
potential which initially had the imaginary part set
equal to zero. The potential parameters of Table 111
placed a ds;, resonance at E,=3.5 MeV
(E,=19.17 MeV). The potential of Ref. 34 was
again used to generate the incident wave function.
After performing the necessary integrals, including
an integration over the final state energies, this
direct E1+E2 capture model gave the 60° yield
curve shown in Fig. 4 and the angular distribution

TABLE III. Optical model parameters (energies are
in MeV, geometrical parameters in fm).

Incident potential Final state potential

V=452 V =55.0
W= 3.38 W= 0.0, 0.5
V=779 Vo =6.64
ro= 1.09 ro= 123
re= 13 re= 116
rso=0.98 reo=1.03
ay= 0.59 ap= 0.66
a;= 1.01 a,= 0.83
a,,=0.57 a,,=0.66
re= 1.29 r.= 1.10
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coefficients of Table II. The results of a second
continuum calculation, which added an imaginary
potential of 0.5 MeV to the final state potential, are
also shown in Figs. 4 and 5 and Table II. Although
this value of W was chosen somewhat arbitrarily,’!
an effort was made to keep the width of the reso-
nance in the vicinity of 0.5 MeV. The addition of
this term should give a more realistic representation
of the final state. A detailed comparison with the
available elastic proton scattering data in the ener-
gy region of E, from 3 to 4 MeV indicates that the
real situation is considerably more complicated than
this model since fragmentation of this state as well
as other states are almost certainly present in these
data.

Of the three curves shown in Fig. 4, the continu-
um calculation with W =0.5 MeV should be the
most realistic. This calculation peaks 3 to 4 MeV
below the apparent peak in the data. It also fails to
have the correct energy dependence, falling off
much too slowly as the energy increases. Further-
more, since the full ds,, spectroscopic strength is
included in these calculations, all of these calcula-
tions must be regarded as upper limits for the pre-
dictions of the model. As seen in Table II, the
model of E 1-plus-E2 direct capture gives good
agreement with the angular distribution data, espe-
cially for a, and a3, b, and b3. Although the addi-
tion of direct M 1 can lower a; by 0.05 and b, by
0.025, these small M1 effects in a; and b, are not
significant enough to be useful.

The present direct calculations seem unable to ac-
count for all of the cross section observed as a func-
tion of energy in the 'B(p,y,9)!?C reaction when
realistic potentials and spectroscopic factors are as-
sumed. As shown in Fig. 5 and Table II, the E 1-
plus-E 2 direct capture model does a reasonable job
of predicting most of the angular distribution re-
sults, although the predicted analyzing powers are
about a factor of 2 larger than the measured values
at back angles. We therefore conclude that it is
likely that there is additional strength present in the
data, but at present we are unable to specify its na-
ture; a giant resonance kind of effect, in this case
enhanced above the direct capture by a factor of
about 3, is one possibility.

Londergan and Ludeking®® have shown that the
addition of a resonance at E,=42 MeV with a
width of ~12 MeV can greatly improve the agree-
ment between their direct capture calculation and
the data of the present experiment. However, since
our direct capture calculation peaks so much closer
to the peak in the data (theirs peaks near 21 MeV),

and since the expected width of this resonance is
rather uncertain, such an addition was not per-
formed here. It is unfortunate that in this reaction
the peak in the direct capture cross section lies so
close to where one might expect a peak due to a gi-
ant resonance built on the 19 MeV state(s). Perhaps
further studies in which this is not the case®” will
help us to determine whether or not giant reso-
nances built on such highly excited states are unam-
biguously perceptible in proton capture reactions.

We are grateful to J. M. Lafferty, Jr. and S. R.
Cotanch for their help in performing these calcula-
tions.

APPENDIX

The integrals IIJIT, Lja of Eq. (16) were evaluated

numerically. Since the integrand oscillates out to
infinity, it is impractical to integrate directly. The
integration can, however, be performed economical-
ly by employing the method developed by Vincent
and Fortune®® for evaluating similar integrals which
appear in calculations involving stripping reactions
leading to unbound final states. In their procedure,
rapid convergence of the integral is achieved by ex-
ploiting the fact that the Coulomb wave functions
decay rapidly along the imaginary axis in the com-
plex r plane.

In this method the integral I} 1,4, is first broken

up into two parts:
Rmax
Iljlilaja= f() f,j(r)OEL(r)fzaja(r)dr

+ [0 f5N0g(NfE,, (P dr

(A1)
where the functions f(r) and the electric multiple
operator are as defined in Sec. III. The wave func-
tions for f7; Lj,) for r > R, are purely Coulombic.
The distance R, is chosen along the real axis such
that the effect of the nuclear potential is zero for
7 >R« The wave functions fi;(r) can be written
as

FEr)~ %[H,‘(kr) _mH (k)] (A2)

where
H{=G,;+iF;, and F, and G,

are the regular and irregular Coulomb functions, o,
is the Coulomb phase shift, and 7; is the nuclear
scattering amplitude (note: the unnecessary sub-
scripts on f have been dropped for simplicity).
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The first integral in Eq. (A1) was evaluated by
direct numerical integration, with R, taken to be
30 fm. The second integral was evaluated by first
noting that the asymptotic form of the Coulomb
functions Hf* is given by

The functions f and g are rapidly converging series
which are readily calculated. If we now go to the
complex 7 plane, we find that H;* decays exponen-
tially in the upper half-plane, and H;™ has a similar
behavior in the lower half-plane. This property of
the Coulomb functions makes the evaluation of the

.\ *i6,
Hf o (frigle™ ", (A3) integral straightforward. Substituting Eq. (A2) into
the second integral of Eq. (A1) gives:
where ® e
2 fR fU(r)OEL(r)ff] (r)dr=11+12 s (AS)
6, =k Zl—Zze_.l (2k ) l_ﬂ- (A4) e o .
y=hr——p 2k =0y where
i
(o] 40;) A
Li=ime °  [o H (kar)Ogy (N[H[ (kr)—mHi (k)]dr (A6a)
al’ld 1 i(UI +(7’) o©
L=—ve ° [, H ()0 (N[ H (kr)—nHi (kr)ldr . (A6b)

The integral I, was evaluated by going into the upper half of the complex r plane and integrating along the

contour as shown in Fig. 7. So

) (o] +0)) WV=Yp.y
I,= lim " f

—>

Inlae y=0

ymax

where r_ is equal to R, +iy. Since the integrand

vanishes at infinity on the arc of the circle, the last

term, the integral along C*, vanishes. The remain-

ing integral along y in Eq. (A7) can be evaluated nu-
merically. We found that convergence was obtained

with p_..=50 fm. The integral I, was evaluated

by a similar procedure applied to the lower half of

the complex 7 plane.

The Coulomb functions Hif(kr) were obtained in
the complex r plane by solving the Coulomb equa-
tion with r complex using the Fox-Goodwin
method*** modified for a complex integration
variable. If H,(r,), H;(r;) are values of H; at two

r,= RMAX % iy
Imr

YMAX

A
C+

RMAX*
Re r

C_

\ 4

FIG. 7. The integration path shown in the complex
plane used to evaluate the integrals I (upper half of the
plane) and I, (lower half of the plane).

Hlj(kar+ )OEL(r+ )[HI_(kr+) _771HI+(kr+ )]d.)’+ fC"’{ } » (A7)

points 7o and 7y =rg+ A, then the value of H,(r,) at
ry=r;+h is given by

2
1A, Hy(ry)= (24 3h%)H(r))

12

—(1—5h%)H|(ry),  (A8)

where, with p,, =kr,,,

I B ((E3TR

tm
Pm Pm
In the case of r being complex, % is also complex.
Since we integrate only along the y axis, we have
h=i|h |, where |h | is the step size along the y
axis. Taking ro=R ax+iVmax such that the H*
have their asymptotic forms [Eqs. (A3) and (A4)]
allows us to use Eq. (A8) to compute H;* elsewhere.
The value of y.,, was taken such that ky,, ~ 10.
Once the values of H,i were found, the integration
of Eq. (A7) was performed using Simpson’s rule.
One means of verifying the validity of this calcu-
lation is to investigate the behavior as the continu-
um state was lowered in energy and to compare the
results to the bound final state treatment as the en-
ergy of the bound state was raised. It was found
that excellent agreement between the two calcula-
tions could be obtained as the energies approached
each other.
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