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Optimized polynomial expansions: Potentials and pp phase shift analyses
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We have examined the Cutkosky-Deo-Ciulli-Chao optimized polynomial expansion as
applied to the proton-proton scattering amplitudes. We found that we could not reproduce
Chao’s positive numerical results for intermediate energy scattering data. Instead, we
reached a negative conclusion as to the method’s usefulness for that application. We also
examined the method’s ability to predict the higher angular momentum parts of the ampli-
tudes for three different potentials having realistic parts. Again we found the method to

have very meager successes.
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I. INTRODUCTION

We have applied the optimized polynomial ex-
pansion (hereafter OPT) of the invariant scattering
amplitudes proposed by Cutkosky and Deo,! Ciulli,?
and Chao,® to the description of medium energy
proton-proton scattering. We have attempted
therein to gain some insight into the power and lim-
itations of the method; specifically, into its claimed
ability® to predict high frequency components
(states of high angular momentum) from knowledge
of the low frequency ones (states of low angular
momentum). This program was carried out by exa-
mining OPT’s predictive capabilities for potential
models and for phase shift analyses of data. Our
conclusion is that there is little predictive power for
Chao’s form of the method. This is a disappointing
development for intermediate energy nucleon-
nucleon physics. We had hoped to use the method
to help meet the increase in non-1m-exchange
phases as energy increases, phases which presently
must be fixed by data.

In this paper we first review the formalism as set
up by Chao.®> We then report our investigation of
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OPT’s predictive ability for: (i) the lm-exchange
potential; (ii) a superposition of Yukawa potentials
with a smooth behavior at the 27 threshold and
having central and tensor components; and (iii) a
one boson exchange potential due to Bryan and
Scott* (hereafter BS-III). Next we turn our atten-
tion to the possibility of using OPT to improve the
nucleon-nucleon phase shift analyses of MacGregor
et al. ( MAW-X) (Ref. 5) and of Signell et al.® and
we compare our results with those of Chao.* Final-
ly, we summarize our main (negative) conclusions.

II. OPT FORMALISM
IN pp SCATTERING

Throughout this paper we follow the phase con-
ventions of Stapp, Ypsilantis, and Metropolis’
(hereafter referred to as SYM). The partial waves
with total spin S, orbital angular momentum L, and
total angular momentum J are parametrized in
terms of nuclear bar phase shifts.” The connection
of the SYM a’s and the parity conserving ampli-
tudes f3, f1, fii, f1» and f3, of Goldberger,
Grisaru, MacDowell, and Wong?® (hereafter referred
to as GGMW) is’
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Elastic pp amplitudes which have no kinematical
singularities in x =cos6f, where 6 denotes the center
of mass scattering angle, are, according to
Mandelstam’s conjecture,’® analytic in the whole
cut x plane. Branch points are 27 exchange at
X =+x,, where x, =1+42m_?/p?, and 17 exchange
at x = +xp where xg=1+m_2/2p>. Here p is the
center-of-mass momentum of either particle.

Using the invariant amplitudes (Fy, ..., Fs) of
GGMW, Chao® introduced new amplitudes
(4, ..., E) which are free of kinematic singularities
in x =cosf. Mapping the cut x plane onto an el-
lipse in a complex z plane by means of the optimal
conformal mapping of Cutkosky, Deo,! and Ciulli

F(sin~'x,1/x,)
z(x)=sin EM , 2)

m
F ?,l/xc

where F(v,k) is the incomplete elliptic integral of
the first kind,!! Chao expanded his amplitudes in
polynomials of z(x) convergent in the ellipse.
These amplitudes and their expansions, called op-
timized polynomial expansions (OPT), can be writ-
ten
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where B=(p/M)?, M= proton mass, and F;=F;
—F;(17) with F;(17) being the contribution of the
one pion pole. The relation between the helicity
amplitudes (¢, . .., ds) of GGMW and the Chao
amplitudes (4, B, C, D, E) is*
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where E =(p?>+M?*)2. The spin singlet is con-
tained in (¢;—¢,) and the triplets are contained in
the other helicity amplitudes. Because
z(—x)=—2z(x), the restrictions to even or odd
terms in the summations of Eq. (3) follow from (4).
The partial wave expansions of the helicity ampli-
tudes on the left hand side of (4) are given in terms
of d functions by GGMW.? Introducing Chao’s
coefficients’

+1
Win=[_, d(x)z"(x)dx
1
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1
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+1
Zp=[_ (14x)di(x)2"(x)dx

one can project the partial waves on both sides of
(4) via the GGMW partial wave expansions. One
finds®
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Again, in (5), we have subtracted the l7-exchange pole as indicated by the notation f. Subtracting this pole
from the SYM amplitudes a as well, one can compute f o » etc., by inverting (1).

The point of these maneuvers was the hope that one could terminate the expansions in (3) after a few terms.
Then the nonvanishing coefficients could be found from a few “unknown” low partial wave a’s. These would
be “input” to the calculation of the f*’s, and hence to the coefficients (a,, b,, ¢, d,, €,) through (5). The &8s
for the higher partial waves could then be predicted by utilizing some unitarization scheme. In applying this
procedure to pp scattering, we used the unitarization scheme and the ordering of amplitudes and coefficients

proposed by Chao’
singlets: (ag, ay, a4, ...), singlet coefficients: (a, a3,a4,...),

triplets: (ayo, @11, Q2 @2, A3y, Q33, Azsy @, sy, . . .), triplet coefficients: (bg, co, dy, €1, by, ¢y, d3, €3,...).

The leftmost members were input; those to the where
right, “output.” —mr
(=41
III. POTENTIAL MODELS $(r)= r

In this section we report our tests of the power of
OPT to predict the high L phases of several poten-
tial models with realistic features: (i) the Ilm-
exchange potential; (ii) a superposition of Yukawa
potentials; and (iii) a Bryan-Scott one boson ex-
change potential.* Table I shows the exact low an-
gular momentum phase values 5=8—=8(17) used to

mg,r mgpr

SlZ =30’]’;‘\0'2'7/’\—0'1'0'2 .

In Table II, we show the phases 5=58—8(17) with

calculate the OPT coefficients for each of the po-
tentials.

A. The lm-exchange potential

This potential’s form is

m,=135 MeV, M =938.256 MeV, g?/4r=14.4 ,
and T}, =210 MeV. The first column shows the
potential model values and the next columns vari-
ous OPT predictions. In the first OPT column the
exact values of all phases with J <3, and the °F 5’s,

were used as input to calculate the OPT coeffi-
cients. These in turn, were used to predict the
(6) higher L &s shown in the same column. Seeing

g2m 2

V,,,(r):;‘W%(é(a,-az)¢(r)+suxu)) ,

TABLE I. Exact non-17-pole nuclear bar values 8, in degrees, at 210 MeV used to compute
OPT coefficients which appear in Tables II, III, and IV. The potentials used for columns
(i)—(iii) are described in the text. The last column shows the MAW “experimental” values
(Ref. 5) of § to which Chao compared his predictions.

(i) (ii) (iii) MAW-X
17 Y BS-III Phase shift
State potential potential potential analysis
zPo —37.30 —24.52 —47.61 —56.97+0.56
3P1 +9.92 +0.03 + 5.01 + 7.97+40.32
P, —4.35 + 33.18 + 10.87 + 11.34+0.23
€ + 0.85 +5.22 + 1.54 +2.57+0.16
3F, —0.51 —0.74 —0.55 —0.97+0.33
3F, —0.04 +2.29 +0.43 + 1.04+0.20
’F, + 0.023 + 0.295 + 0.582 + 1.38+0.19
€ —0.057 + 0.386 —0.066 + 0.25+0.09
’H, —0.002 —0.015 + 0.031 —0.12+0.21
*Hs —0.037 + 0.150 —0.008 —0.16+0.18
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TABLE II. Nuclear bar OPT values of § at 210 MeV for the 17-exchange potential (6).
Values enclosed in brackets are calculated exactly via the Schrodinger equation.

OPT predictions

2917

State (17 potential) L <3 input J <4 input J <5 input

€4 [—0.057] + 0.006 [—0.057] [—0.057]

H, [—0.002] —0.027 [—0.002] [—0.002]

Hs [—0.037] +0.004 +0.010 [—0.037]

Hy [ +0.014] + 0.007 + 0.008 + 0.007

€ [—0.020] —0.0005 —0.007 —0.003

3Ke [ + 0.003] —0.002 + 0.002 + 0.001

Kk, [—0.013] + 0.0007 + 0.002 —0.005

1G4 [+ 0.064] +0.144 [+ 0.064]

T [+ 0.014] +0.0135 + 0.002
that the OPT predictions did not seem to approach © e P
the exact values as L increased, we tried using more v(r)= f 2m PH) . dup ,
and more terms in the expansion with results shown "
in the last two columns. When we reached the J <5 and
expansion, we finally found correct signs for the m, P2 —4m )12
higher J predictions but the magnitudes were disap- plu)=—"— 73 3 N
pointingly poor. The singlet results, not shown, T (W e+ —4m )
were also poor. Here

B. Superposition of Yukawas

Our second potential, a superposition of Yukawa
potentials (hereafter 2Y), had central and tensor
components and amplitudes with a cut at x =x_

Vsr(r)=g 1+S,v(r), (7
with

TABLE III. Nuclear bar values of 5 at 210 MeV for
the potentials Vsy, Eq. (7). Values enclosed in brackets
were calculated exactly via the Schrédinger equation.

State Exact OPT predictions

2Y) L <3 input J <4 input
€ [ + 0.386] —0.008 [ + 0.386]
’H, [—0.015] —0.048 [—0.015]
3H [ 4+ 0.150] +0.136 +0.104
3H [+ 0.012] + 0.001 + 0.005
€ [ +0.033] —0.007 + 0.040
3K [ + 0.012] —0.005 —0.000
G, [+ 0.183] +0.229 [ +0.183]
T6 [—0.014] +0.022 + 0.015

,},=uara/(ua2_4mﬂ2)1/2

and we have chosen yu, =3.5m, and I’y =m . The
results are shown in Table III for g=4 and
T4, =210 MeV. Notice that there is no 17 pole, so
6=34.

As Tables I and III show, the superposition of
Yukawa potentials produces phase shifts having a
definite trend from low L to high L for each fixed
L —J relationship. Nevertheless, we need up to and
including the *H, § as input in order to obtain
reasonable predictions for higher L’s. For this po-
tential, 2, the singlet results are good.

C. One boson exchange

As a last model we examined a Bryan-Scott one
boson exchange potential.* In Table IV we show
the OPT predictions for this potential’s &’s, and
again for Ty,,=210 MeV. The Coulomb interac-
tion is included. Tables I and IV reveal that this
potential is very irregular, in the sense that there is
no trend visible when going from low L to high L
for a fixed L —J relationship. Nevertheless, the
predictions of the triplet coupled phases are similar
to those of the other two potentials. That the
8 (*Hs) comes out with the wrong (positive) sign is
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TABLE IV. Values of § at 210 MeV for the BS-III potential. Values enclosed in brackets
were calculated exactly via the Schrodinger equation.

State Exact OPT predictions

(BS-III) L <3 input J <4 input J <5 input
€ [—0.066] +0.011 [—0.066] [—0.066]
*H, [+ 0.031] —0.020 [ + 0.031] [ + 0.031]
3H s [—0.008] + 0.043 + 0.051 [—0.008]
3H [ + 0.046] + 0.052 + 0.053 + 0.052
€ [—0.020] —0.009 —0.007 —0.003
3Ke [ + 0.004] —0.001 + 0.007 + 0.006
G, [+0.216] +0.215 [+ 0.216]
T [+ 0.021] + 0.020 + 0.020

not surprising in view of the fact that both § (P,)
and & (°F;) are positive.

One sees from Tables I—IV that the predictive
power of the OPT method is rather weak for the
potentials examined. At 210 MeV one needs to
know nearly all the partial waves which are treated
as unknown in the usual phase shift analysis in or-
der to make reasonable predictions for higher par-
tial waves. This is not what had been expected for
OPT.

IV. APPLICATION TO pp
PHASE SHIFT ANALYSES

In this section we turn our attention to phase
shift analyses and in particular to those of MAW-X
(Ref. 5) in order to compare our results with
Chao’s.®> Our own results (hereafter referred to as
MSU) and those of Chao are displayed in Tables V
and VI. Here the input was this set of nine phases:
1S0, 'D3, 3Py, *Py, 3P, €, °F,, *F;, and °F,. In ob-
taining the results shown in the tables, we have used
Chao’s form factor® and unitarization® for the 1r-
exchange contribution. In direct contrast to Chao’s
report, we found little effect from these latter two
refinements, especially for the triplet waves.

It is clear from the tables that our results for the
triplet phases are in disagreement with Chao’s. The
disparity in 8(e,) is particularly obvious. Just as for
the potentials examined earlier, we were not able to
generate satisfactory higher L &'s from lower L
ones.

It is possible that much of the difference between
our results and Chao’s may originate in a subtle
phase convention difference between SYM and
GGMW. When we tried (improperly) ignoring that
difference, as perhaps Chao might have done, our
&s moved substantially toward his. This was espe-

TR

cially true for 8(e,). Unfortunately, Chao’s work-
ing computer program containing the phase defini-
tion did not seem to be available to us. Each of the

TABLE V. Comparison of the values of 8 predicted
by Chao and MSU with the results of the energy depen-
dent (ED) phase shift analyses of MAW-VII (Ref. 5).
g*/4r=15.

140 MeV
State MAW-VII Chao MSU 1o
G, 0.71+0.02 0.72 0.72 0.57
€ —0.77+0.03 —0.76 —0.88 —0.88
*H, 0.20+0.02 0.21 0.18 0.21
H, —0.57+0.04 —0.62 —0.54 —0.57
3He 0.11+0.01 0.12 0.11 0.08
220 MeV
G, 1.15+0.05 1.18 1.18 0.80
€ —1.06+0.06 —1.05 —1.38 —1.34
*H, 0.38+0.07 0.36 0.32 0.40
H, —0.98+0.11 —0.99 —0.88 —1.00
3He 0.27+0.03 0.27 0.25 0.16
320 MeV
1G, —1.65+0.10 1.70 1.70 0.96
€ —1.24+0.11 —1.22 —1.80 —1.77
’H, 0.58+0.16 0.51 0.45 0.62
*Hs —1.43+0.25 —1.33 —-1.19 —1.46
‘He 0.51+0.07 0.49 0.47 0.27
400 MeV
G, 2.01+0.14 2.09 2.09 1.03
& —1.30+0.16 —1.27 —2.24 —2.04
’H, 0.72+0.16 0.61 0.54 0.79
3H —1.73+0.38 —1.52 —1.32 —1.78
3He 0.72+0.11 0.69 0.66 0.36
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TABLE VI. Comparison of the values of 8 predicted
by Chao and MSU with the results of the single energy
(SE) phase shift analyses of MAW-X (Ref. 5).
gl /4r=14.43.

210 MeV
State MAW-X Chao MSU 17
G, 1.00+0.10 1.11 1.11 0.75
€ —0.99+0.09 —1.02 —1.25 —1.24
3H, 0.24+0.21 0.39 0.35 0.36
3H —1.07+0.18 —0.90 —0.79 —0.91
3H, 0.15+0.13 0.31 0.29 0.15
330 MeV
'G, 1.2240.28 1.68 1.68 0.95
€ —1.11+0.28 —1.30 —1.83 —1.76
3H s —1.80+0.46 —1.34 —1.21 —1.45
3He 0.77+0.15 0.54 0.52 0.27

present authors checked our calculation indepen-
dently and also checked those parts of Chao’s calcu-
lation which were given explicitly in his thesis.> We
were unable to find any change in our calculation
that would cause it to reproduce Chao’s result ex-
actly.

In Table VII we compared values of X? resulting
from a conventional phase shift analysis® at 210
MeV to those resulting from OPT-modified ana-
lyses. In the conventional analysis the high L
phases are set equal to the lm-exchange values,
whereas in the OPT-modified analysis they are
predicted from the lower L phases. An examination
of Table VII shows that no reduction in the number
of free parameters can be achieved through utiliza-
tion of OPT. We infer from results reported by
Chao that this conclusion would be unaltered if the
contribution from Cutkosky’s ¢* function® was in-
cluded.

V. SUMMARY

Whereas the predictions of the high frequency
components from the lower ones using Chao’s op-
timized polynomial expansions are satisfactory for
the singlet states, they are not so for the triplet
states, either with the potential models we tested or
with Chao’s data selection. This is in contrast to
Chao’s results, but there are indications that Chao’s

TABLE VII. Values of X* from conventional phase
shift analyses compared to those from OPT modified
analyses at 210 MeV. In the 8-parameter search 'S,
3Py, 3Py, *P,, €, *F,, and *F; were allowed to be free.
Phases successively added as free parameters are listed
in the first column.

Additional phase Number
parameters (3) of
set free in searched
the search parameters Y2 X? (OPT)
(base: see caption) 8 969 82.0
’F, 9 76.1  62.1
3Fs, 1G4 10 65.7 61.6
3F4, 1G4, €4y 3H4 12 46.7 50.8

3F., 'Gs, €, *Hy, *Hs, *Hg 14 450 445

calculation may have included an inconsistent phase
definition. We conclude that there is not sufficient
physical information contained in the analytic prop-
erties of the amplitudes to significantly reduce the
number of free parameters in pp phase shift anal-
yses at moderate energies. Thus the only advantage
of using the OPT expansion at moderate energies
would seem to lie in its provision of a smooth tran-
sition between low L “searched” and high L “non-
searched” phases.

Note added. This manuscript was sent to Prof. R.
E. Cutkosky for comment, who with Chao recon-
structed Chao’s calculation and concluded (private
communication from R. E. Cutkosky): (i) Chao did
err in the aforementioned sign convention® and also
at another point in the calculation; and (ii) the num-
bers in the present paper are the correct ones.

ACKNOWLEDGMENTS

This work was supported in part by a Cottrell
College Science Grant to one of us (D.M.) by the
Research Corporation. It was also supported in
separate phases by the National Science Foundation
and by the U. S. Department of Energy through
Contract DE-AC02-790ER010516 with Michigan
State University. We wish to thank Tom Burt for
his expert assistance in many of the numerical cal-
culations.

*Present address: Instituut voor Theoretishe Fysika,
University of Nijmegen, Toernooiveld, Nijmegen, The
Netherlands.

Present address: The Aerospace Corporation, Box

92957, Los Angeles, California 90009.

IR. E. Cutkosky and B. B. Deo, Phys. Rev. 174, 1859
(1968).

28, Ciulli, Nuovo Cimento 61A, 787 (1969).




2920 MARKER, RJKEN, BOHANNON, AND SIGNELL 25

3Y. A. Chao, Phys. Rev. Lett. 25, 309 (1970); thesis,
Carnegie-Mellon University, 1970 (unpublished).

4R. A. Bryan and B. Scott, Phys. Rev. 177, 1435 (1969).

M. M. Macgregor, R. A. Arndt, and R. M. Wright,
Phys. Rev. 182, 1714 (1969); 169, 1128 (1968).

6M. D. Miller, P. S. Signell, and N. R. Yoder, Phys. Rev.
176, 1724 (1968).

TH. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys.
Rev. 105, 302 (1957).

8M. L. Goldberger, M. T. Grisaru, S. W. MacDowell,

and D. Y. Wong, Phys. Rev. 120, 2250 (1960).
9The SYM states with definite J, M, L, and S are related
to those of GGMW by

iLgi(L,S)sym=1(L,S)comw »

which means that the two conventions differ by a
minus sign in the off-diagonal elements a’.

10§, Mandelstam, Phys. Rev. 112, 1344 (1958).

M. Abramowitz and 1. A. Stegun, Handbook of
Mathematical Functions (Dover, New York, 1972).



