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Activation reaction '2C(7 ,p)'?B as a spin analyzer for fast neutrons
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It is shown that 2B nuclei produced in the '*C(#,p)’B reaction are polarized. The po-
larization of '’B is measured through its beta-decay asymmetry. The analyzing “efficien-
cy” €=Py/P, ("B polarization versus that of the incident neutron) for longitudinally po-
larized neutrons of average energy E, =18 MeV is: | €| =0.11+0.02.

NUCLEAR REACTIONS '2C(#,p)*B(B) 12C; E, =18 MeV; measured
B-decay asymmetry; deduced '*B polarization and analyzing efficiency.

INTRODUCTION

This paper is a report on the use of the activation
reaction 2C(7,p)!?B as an “analyzer” for the polar-
ization of fast incident neutrons. The signal, i.e.,
the resulting beta-decay asymmetry in 2B(8~)'*C,
is determined after the activation period. A
description of this kind of neutron polarimeter is
given and its “efficiency” e=Py /P, (*B vs n po-
larization) for longitudinally polarized neutrons of
average energy E, =18 MeV is determined by using
for calibration the reaction ?H(a, 7 )ap.

The use of an activation reaction as an analyzer
for the neutron polarization has already been sug-
gested, at least implicitly, by Burgy et al.! These
authors observed that 3Li produced in the capture
of polarized thermal neutrons by unpolarized "Li
are quite highly polarized. The polarization of ®Li,
which is a “short” lived beta emitter (r=1.2 s), was
measured through its decay asymmetry.

The choice of the '?C(7,p)'?B reaction and that
of the carbon target are explained in Sec. I. The po-
larized neutron beam and the polarimeter are
described in Secs. II and III, respectively, and the
result obtained for € is given in Sec. IV.

I. THE 2C(7,p)"?B REACTION
AND THE CARBON TARGET

The choice of the C(7,p)'’B reaction is
motivated by two properties: (i) the lifetime of ’B
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is short (30 ms) and (ii) the [B-ray energy in
12B(3~)'2C is large [Eg(max)=13.4 MeV]. The
former facilitates the preservation of the 2B polari-
zation, the latter allows the discrimination of the
ambient (“beam off”) background. It is worthwhile
to mention that the threshold of '2C(n,p)'?B is at
E,=14.5 MeV (see Fig. 1, taken from Ref. 2). This
is an advantage in the sense that slow background
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FIG. 1. Cross section of the '>)C(n,p)!?B activation

reaction versus the neutron energy E, (taken from Ref.
2).
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neutrons do not activate the carbon target.

The main experimental problem is the preserva-
tion of the polarization of B “implanted” into a
carbon target. Fortunately, there already exists a
large amount of data®~® on this point. Figure 2
summarizes the relevant information, obtained with
polarized recoils produced in the reaction
1B(d,p)!?B. One observes that:

(1) The polarization of '”B implanted is partially
preserved provided the target is placed in a “large”
(>1 kG) longitudinal magnetic “holding” field (B,)
during the implantation and B decay. Thus, gra-
phite is a suitable target for our purpose. Polariza-
tion measured with it in a given field By can be
corrected for the incomplete retention using the
data in Fig. 2. The retention at By=2 kG is about
70%; this was established by comparison with fcc
metals (for more details see Ref. 5).

(2) B nuclei lose their polarization in certain
materials (e.g., teflon, CH,) completely. A CH, tar-
get is used to detect possible instrumental asym-
metries.
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FIG. 2. Polarization of !B produced in 'B(d,p)"’B
after implantation in various materials versus the longi-
tudinal decoupling field B, (from Refs. 5 and 6). For
fcc metals the individual data points are not shown (see
Ref. 5).

II. THE POLARIZED NEUTRON BEAM

Figure 3 is a scheme of the setup used in the pro-
duction of polarized neutrons by the *H(a, 7 )ap re-
action. A deuterium gas target (5 atm pressure) is
bombarded with a 40 MeV chopped (30 ms “on”
and 60 ms “off”’) a@ beam from the cyclotron of the
University of Louvain. Neutrons produced at 20°
(in the laboratory) traverse a magnetic spin rotator
(transverse field B, ) before hitting the carbon target
(10X 10 cm?). The differential cross section of the
’H(a, 7 )ap reaction and the polarization of the neu-
trons, taken from Ref. 7, are shown in Fig. 4. Com-
bining the data of Figs. 1 and 4, one sees that B is
produced with an average cross section of 5 mb at
an average energy E,=18 MeV. The neutron po-
larization is roughly constant, P, = —0.45 (the neg-
ative sign means, following the Basel convention,?
that the neutron spin is “up” in the laboratory) in
the energy interval of interest.
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FIG. 3. A scheme of the setup for the production of
polarized neutrons using the *H(a, # )ap reaction.
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FIG. 4. Cross section of 2H(a, 7 )ap (at 40 MeV al-
pha particle energy and at neutron angle 20°) and polari-
zation of neutrons versus E, (results taken from Ref. 7).

III. THE POLARIMETER

Figure 5 shows the apparatus for longitudinally
polarized neutrons (moving along the z axis). It
consists of"

—Helmbholtz coils producing the decoupling field
B, (2.0kG).

—A target (graphite or CH,) in which B is pro-
duced and recoil implanted. Its thickness, 1.7
g/cm?, is a compromise between the production rate
of 2B and the B-ray absorption.

—Two p-ray counter telescopes composed of
plastic scintillators (100X 100X 1 mm?®). Quadruple
coincidences, i.e., 1234 and 4561, count Ny and Ny
(B rays emitted backward and forward). The coin-
cidences are counted during the 60 ms neutron-
beam off period following the 30 ms activation
period.

The time distribution of Ny + Ny was measured
with and without the graphite target. The differ-
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FIG. 5. Polarimeter for longitudinally polarized neu-
trons. Note that a Cu absorber of 1 g/cm? (not shown)
was placed between counters 2 and 3 and also between 5
and 6 in order to attenuate the soft laboratory back-
ground.

ence (target in —target out) was found compatible
with a decay curve of 7=(30+3) ms, i.e., the life-
time of ’B.

The electron angular distribution in the ?B—s12C
B decay is given as’

W(6)~(1—Pycos0) , (1)

where Py is the projection of the '>B polarization
along By and 0 is the angle between the latter and
the § momentum. The beta-decay asymmetry 4 is
determined from the ratio of counting rates
Np/Np.

IV. DETERMINATION OF THE POLARIZATION
TRANSFER EFFICIENCY e=Py /P,

Any desired longitudinal neutron polarization P,
could be obtained with the spin rotator; a rotation
by +(—)90°, i.e., into the forward (backward)
direction, required B,=+(—)9.0 kG. The corre-
sponding counting ratios (Np /Ng) . (_) yield the de-
cay asymmetry A, as defined

A=[(Np/Ng),/(Ng/Np)_]—1=4Py , (2)

where Py is the raw polarization (yet to be correct-
ed for attenuations). Figure 6 shows 4 vs | B, |.
The fitted sine curve, proportional to P, (calculated
for monoenergetic neutrons of 18 MeV) reproduces
the data well. The CH, point indicates that the in-
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FIG. 6. Forward/backward beta-decay asymmetry
[Eq. (2)] versus the neutron spin precessing field |B |.
The sine curve fitted to the graphite points is propor-
tional to the longitudinal component of the neutron po-
larization.

strumental asymmetry was compatible with zero.
From the fit one obtains:

Py =0.0150+0.0015 . A3)

This result has to be corrected for the attenuation
() which is a product of four factors:

—f4, owing to the background, determined by
comparing the counting rates without and with the
graphite target.

—f», owing to geometrical effects (finite solid
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TABLE 1. Attenuations f; affecting the beta-decay
asymmetry.

fi Origin Value

fa Background 0.70+0.03

fb Finite size effects 0.68+0.03
(target, counters)

fe Spread of the Larmor angle 0.95+0.02

fa Relaxation, parital 0.68+0.02

decoupling

angles, finite target dimensions), known from an
earlier experiment performed under very similar
conditions.*~®

—f., owing to the spread in the spin rotation an-
gle induced by the spread in E, (14.5—25 MeV).

—f4, owing to the partial decoupling of the ’B
polarization (0.72, see Fig. 2), and to relaxation
(0.95) (Ref. 6).

Table I summarizes these attenuation factors.
The overall attenuation (equal for both telescopes) if

f=0.3140.02, yielding the corrected result
Py =0.048+0.006 . (4)

Comparing this with the initial neutron polariza-
tion,” one obtains the efficiency €; for the transfer
of longitudinal neutron polarization to B nuclei as

|e| =0.11+0.02 . (5)

CONCLUSION

The longitudinal polarization of fast neutrons is
transferred to the product nucleus in 2C(#,p)?B.
This observation might be exploited in two ways.

TABLE II. Merits of the “classical” n polarimeter and those of the polarimeter based on

the 2C(#,p)"?B activation reaction.

Parameters Classical polarimeter (Ref. 10) Activation reaction
Counting rate Equivalent

Measured polarization 0.9 0.1

signal (100% n polar-

ization)

Neutron energy Differential Integral
Beam intensity Limited Unlimited
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On one hand, one can measure € [in this or in other
(r,p) reactions] in order to test nuclear structure.
On the other hand, one can exploit this observation
to construct polarimeters. The advantage of a po-
larimeter based on an activation reaction is obvious;
problems with the “in-beam” counting and the
beam related background are avoided.

Table II compares the merits of the “classical”
neutron polarimeter based on the left/right asym-

metry in nucleon-nucleus scattering!® with those of
the polarimeter discussed here. The use of the
latter, which is a very simple device, can be recom-
mended when one deals with “very intense” pulsed
beams.
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