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We propose a general theory for deriving the nucleon-nucleon (NN) potential ¥ from
meson exchanges. Our potential preserves the half-on-shell NN T matrix, contains mesonic
folded diagrams, and is energy independent. Mesonic folded diagrams are estimated to be
of negligible effect for the long-range part of ¥ but may be important for its medium- and

short-range parts.

NUCLEAR REACTIONS Nucleon-nucleon potential, meson ex-
changes, folded diagram, T matrix.

A fundamental subject in nuclear physics is the
nucleon-nucleon (NN) interaction. As is well
known, nucleons interact with each other by ex-
changing elementary particles such as mesons. But
in low-energy nuclear physics, it has been a long
and rather successful tradition that nuclei are treat-
ed as a collection of nucleons (neutrons and protons)
only, interacting with each other via a NN potential
V. How do we reconcile these two apparently very
different approaches? For many years, the deter-
mination or derivation of this ¥ has been a central
and active problem in theoretical nuclear physics
(see, for example, Refs. 1—9). In this paper, we
would like to propose a new theory for deriving the
above NN potential ¥ from meson exchanges. Our
motivations are described below.

There are two rather interesting questions about
the NN potential V. First, is ¥V unique? As is well
known, there exist many theories and models for ¥,
such as the sequence of the phase-shift equivalent
potentials. That there are many V’s gives rise to a
rather difficult situation, namely one is often not
sure about which of these ¥'’s should be used in nu-
clear many-body calculations. Thus, it would be
desirable if one could formulate a theory which
leads to a unique V. The second question is about
the so-called energy dependence of V. Early
phenomenological models of V are of the energy in-
dependent (E-indep) type, such as the well-known
Reid potential.’> Several recent NN potentials®~®
are, however, of the energy dependent (E-dep) type.
As we will further discuss later, it is more con-
venient in several aspects to have an E-indep V, be-
cause, if V is E-dep, we need to use different V’s
for nuclear states of different energies and this
causes difficulties in nuclear many-body calcula-
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tions. Thus it will be very interesting as well as use-
ful to formulate a theory where one can derive an
E-indep V from meson exchanges. Johnson®’ has
proposed such a theory. An essential question here
is how to define an E-indep NN potential.
Johnson’s starting point is that such potentials
should be “instantaneous.” In this way, there is,
however, a fundamental ambiguity’ and, conse-
quently, the resulting potentials are generally not in-
tended to be unique. This we will discuss in more
detail later on.

In this paper, we would like to propose a new
theory for deriving, from meson exchanges, an
essentially unique NN potential ¥ which is E-indep
and suitable for use in nuclear many-body calcula-
tions. We will show that such a theory can be
readily obtained exactly, by using a physical T-
matrix definition, which is basically different from
that of Johnson, and by using the folded-diagram
method of Kuo, Lee, and Ratcliff.’® We will also
show that the calculation of the long- and medium-
range parts of our ¥ appears to be particularly sim-
ple.

We start with the NN transition matrix
(f|T|i) where f and i are each a two-nucleon
state. T is the physical NN transition matrix where
nucleons interact with each other by exchanging
mesons and other elementary particles. Let us de-
fine an effective NN transition matrix (f |T|i)
where nucleons interact with each other only via an
effective NN potential V. The physics given by T
must agree with that given by 7. This is an essen-
tial point, and leads to the basic equation

(FITE)|i)=(f|TE)|i), (1)
which defines our potential ¥. Note that we require
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the half-on-shell equivalence, within the NN sub-
space, of T and 7. Thus we preserve not only the
phase shifts, but also the wave functions and other
associated physical quantities.

To derive ¥V from Eq. (1), it is convenient and
probably essential to use the time-ordered perturba-
tion theory (time-ordered Feynman diagrams)."®°
The reason is that V is designed to act within the
model space composed of nucleons only, excluding
antinucleons. Nucleons and antinucleons are easily
separated in the time-ordered formulation, where
nucleons are denoted by upward-going lines and an-
tinucleons by downward-going lines (see Fig. 1). In
this formulation, the integral equations for 7 and T
are, respectively,

(FITE)|iY=C(f | SEid+{f| SED|)
X{j | GolE;)T(E;) | i) )
and
(fITE)DY=Af|VIDY+{FIVI])
X{j | Go(E)T(E) i), (3)

where f, j, and i are each a two-nucleon state with j
summed over all such states. Note that E; is the
two-nucleon energy associated with the state |i),
and Gy(E;) represents the free two-nucleon propa-
gator. Note also that {f |V |j) is independent of
E;. The diagrammatic structures of these equations
are shown in Fig. 1, where the vertex function ), is
composed of irreducible diagrams such as diagrams
(i)—(iv).  Our purpose is then to derive V, the NN
potential, which satisfies Egs. (1)—(3).

|
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(i) (ii) (iii) (iv)
FIG. 1. Diagrammatic representations of T and T.
The V vertex is denoted by a wavy line and mesons by
dashed lines. Down-going lines are antinucleons.

In the time-ordered formulation, we expand the T
matrix in terms of the time-ordered Feynman dia-
grams. The rules for evaluating these diagrams are
readily obtained.>"® To illustrate, let us consider
the calculation of diagram (a) of Fig. 2. This dia-
gram is a reducible T-matrix diagram having four
7NN vertices, each of the form

Hi(t= [ d* #,(x)
with
Hi(x)=iVangN (PysT-¢y) ,
located at times O, ¢4, ¢, and #; with the ordering
0>t >t>t3>— o .
This diagram is given by
@=" [, f:‘w dt, f_': dt;I, @

with the integrand I, given by

(p2 | H; | psk Y{pik | H; | p3){ps | H; | psk’'}{p3k’ | H; | ps)(4oep) ™"

Xexpli(E)+oy —E3)t) +i(Ey—wp—Eg)ty +i(Es+op—Es)ts (5)

where Ej=\/pj2+m2 and o =V'k?>+u®. m and
u are, respectively, the nucleon and meson rest
mass. The vertex matrix elements are given simply.
For example, we have

(p’ | H; | pk ) =iVang 2m)*8(B "'~ P — k)

X i35 Ystg,(m/Ep)/m /E)' 2,
for the case of nucleon 7%meson coupling. Note
that at each vertex only the three momentum is

conserved, but not the energy. This is a special
feature of the time ordered diagrams, due to

f d*x %;(x). Therefore, in general, we can have
E;=£E; for (f |T |i).

Having expressed the T matrix in terms of the
time-ordered diagrams, the folded diagram method
of Kuo, Lee, and Ratcliff,'®!! can now be con-
veniently applied to derive the NN potential V. The
integrands for diagrams (a), (b), and (c) of Fig. 2 are
all the same, i.e, I, of Eq. (5). But they have dif-
ferent time integration limits. They are

fjwdtl fjwdtz f:zw dts

and
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FIG. 2. Folded diagram factorization of the time-
ordered T-matrix diagrams.

S [l 7

for (b) and (c), respectively. Note that for (b), the
upper integration limit for ¢, is 0. In this sense, di-
agram (b) is factorized into two parts, denoted as
(b1) X (b2). Clearly (a)(b). But (a)=(b)—(c), with
(c) defined as the mesonic folded diagram. The
symbol f is to denote a generalized folding. Thus
(c) is in fact a generalized folded diagram, meaning
that it is the sum of several time-ordered folded dia-
grams. For example, we have (c)=(cl) + (c2) where
(c1) has the time ordering

0>t,>t1>t3> — ,

which is in fact just the nonfolded diagram (iii) of
Fig. 1, while (c2) has

0>t >t3>t>—c0 .

Note that the propagator from ¢; to ¢; of diagram
(c2) is not an antinucleon line, although it has a
downward arrow. Instead, it is a folded nucleon
line, and we have labeled it by a circle to emphasize
this point.

The above procedure can be readily general-
ized'®!! to factorize the general T-matrix expansion
of Fig. 1, expressed in terms of the ¥, boxes. This
is shown in Fig. 3. Clearly, the entire T matrix is
given by diagrams (1) + (2) + (3) + - -+ . Diagram
(2) is factorized into @ X4 — B where B is a general-
ized once-folded diagram. Diagram (3) can be fac-
torized into a X B —fBXA +y, where 7 is a general-
ized twice-folded diagram. Continuing this process,
we see clearly

T=(a—B+y— " )+l@—B+y—"--)

X(A+B+---).
This leads to the central result that the 7 matrix of

0 ®
. Q=0xd - 0y

. g a A B

g ) ?xg-(ﬂfﬁ)xﬂjﬁf&fﬁ

V= []-mfﬁ*'mf&f&-“'
FIG. 3. Derivation of the NN potential V.

Eq. (2) is transformed into
(FITE)D)=(F|V]i)
+ 21V
j

X {j | Go(E))T(E;)|i) (6)
with
FIVIN=C1ZE)-3 [ SE
+3 [ [ E)—-- 1))

D

as indicated by the diagrammatic equation in the
third line of Fig. 3. Comparing Egs. (1)—(3) with
Egs. (6) and (7), we see that ¥V of Eq. (7) is exactly
the V we needed for Eqgs. (1)—(3). Thus we have
completed the derivation of the NN potential V.
We now discuss some special features of our theory.

1. Energy dependence. For the T matrix of Eq.
(2), knowing the indices f and j alone is not suffi-
cient in determining the value of (f | 3 (E;)|j).
In addition, we need to know the energy variable E;
which is independent of f and j. Hence we cannot
define a potential ¥ by equating (f | 3, (E;)|j) to
(f|V]j),if Vis E-indep. But an E-dep potential
Vi (Refs. 4—8) may, however, be defined by requir-
ing

f| SENNH={f|VEE)|]),

where E; is independent of f and j.

The NN potential V of the present work is, how-
ever, E-indep, as it is easily seen from Eq. (7) that
(f|V|j) is only dependent on the indices f and j,
but not E;. This is convenient for many-body cal-
culations. Note well that the folded diagrams con-
tained in our V can also be derived from familiar
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perturbation  theories, where one expands
T=3,T™ and V=13, V"™, (n) denoting the
number of vertices contained in T and V.
Then from Egs. (1)—(3), we readily have

(fIVPND=(f | TPED i),
and
(FIVOiy=(f|T®E) | i)
—(f | T2E)|j)
X{j | Go(E)T'P(E;)|i) . (8)

Similarly we can expand the energy dependent po-
tential Vz as 3, V. A delicate point should be
pointed out. We have Vi@’=V?. But Vi'-£y™.
(f Vi) is given by Eq. (8) with T(E;) re-
placed by T'2(E;). This is a subtle yet crucial
point. Diagram (a) of Fig. 2 is of the form

(f | T(E)G(E)TPE;) | i) .

But the factorized diagram (b) of Fig. 2 is of the
form

(fITP(E) |7 | Go(ENTPNE;) | i) .
Their difference is just the folded diagrams. It may
be mentioned that ¥ can be shown to be an energy
average!! of V.

2. Uniqueness. As mentioned earlier, it would be
desirable and of interest to have a unique E-indep
NN potential V. We have not succeeded in this re-
gard, although we have made some progress toward
this goal. Let us first examine the definition of V,
which is of basic importance in discussing the
uniqueness question. We have defined our V by the
T-matrix conditions of Egs. (1)—(3). Suppose that
Eq. (1) is replaced by the on-shell condition

(i |T(E)|iy=(i|T(E)|i), 9)
and we denote the potential defined by Egs. (9), (2),
and (3) as V'. Clearly one will have many more
solutions for ¥’ than for V, as the latter conditions
provide a much weaker set of constraints on the NN
potential than that provided by the former. In fact,
the many solutions of V' are just the familiar
phase-shift equivalent potential, as is obvious from
Eq. (9). Another possible way to define the NN po-
tential is to replace Eq. (1) by the left-on-shell con-
dition

(fIT(Ep)|iY=(f|T(Es)|i) .

This and Egs. (2) and (3) can lead to NN potentials
which are, in general, different from ¥ and V".

So, it is clear that the question of uniqueness
about V is intrinsically related to how we define the
NN potential. In other words, it is related to what
physical information one would like the potential to

reproduce. In the present work, we have chosen V'
to reproduce not only the phase shifts (i.e., the total-
ly on-shell T matrix) but also the projection of the
physical eigenket vectors onto the nucleonic model
space. Within the framework of this definition, we
have obtained a unique perturbation expansion for
V as indicated by Egs. (8) and (7). If this expansion
is convergent, then it would lead to a unique
nucleon-nucleon potential. As will be discussed in
Part 3, higher order terms of this perturbation ex-
pansion appear to correspond to shorter ranges of
the NN potential. Thus it is likely that our expan-
sion is convergent for the long- and medium-range
parts of the NN potential and therefore provides an
essentially unique determination for these parts of
the NN potential.

It has been a long tradition that one uses micro-
scopic nuclear structure calculations, such as the
calculation of the nuclear matter binding energy, to
test which of the many phase-shift equivalent NN
potentials is “best” for nuclear many-body calcula-
tions. We feel that it may be necessary for the NN
potential ¥ to satisfy the half-on-shell condition of
Eq. (1), if it is to be used in nuclear many-body nu-
clear structure calculations. [For a general nuclear
system with 4 nucleons, we still define ¥V by Egs.
(1)—(3), except replacing the states f, j, and i by the
corresponding 4-nucleon states A¢, 4;, and 4;. V
now has many-body components, but its general
structure is still the same as that of Eq. (7). It can
be shown that the two-body part of this ¥ is the
same as that for the 4 =2 system. Note that our V
is generally non-Hermitian as shown by Eq. (7), but
by Eq. (1) the energy eigenvalues given by it are still
the same as given by the original mesonic Hamil-
tonian.] For example, the ground-state energy shift
of nuclear matter can be written as

AE,=(®|T|®)/(®|(1+G,T)| D),

where ® is the unperturbed ground state wave func-
tion in the nucleonic model space and G the un-
perturbed Green’s function. Thus to preserve AE,
we need V to satisfy the condition specified by Eq.
(1). It follows that among the many phase-shift
equivalent potentials, only those who can satisfy
Eq. (1) are suitable for use in the AE, many-body
calculation mentioned above. It will be very useful
as well as of much interest to further investigate the
consistency between the definition and derivation of
the NN potential and its subsequent use in nuclear
many-body calculations.

It may be of interest to compare the present
theory for the NN potential V with that of
Johnson,’ especially in the context of its degree of
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uniqueness. There are mainly two areas of differ-
ence. First, in Johnson’s work the potential is de-
fined to preserve the two-nucleon phase shifts, cor-
responding to the definition of Eq. (9). Thus
Johnson’s theory explicitly leads to many phase-
shift equivalent potentials. Clearly, we have em-
ployed a different and much more restricted defini-
tion as discussed earlier. The second area of differ-
ence is the derivation of V. A basic requirement in
Johnson’s theory is that the NN potentials must be
instantaneous, and this requires the shrinking of the
finite-time irreducible 2 boxes (see, for example,
Fig. 1) to those of zero time duration.!? There are
many ways to perform this shrinking, thus leading
to the introduction of free parameters for time
averaging and consequently giving rise to a multi-
plicity of NN potentials.® Clearly, our procedure of
deriving ¥ has not employed such shrinking pro-
cedures. Instead, our procedures may be considered
as elongating each > box to that of infinite time
duration. We have demonstrated that there is only
one way to perform this elongation and thus we
have obtained a unique expansion for V, as given by
Eq. (7). In short, the constraint imposed on V by
the present theory is considerably stronger than that
by Johnson’s theory, and this strongly limits the
number of solutions for the NN potentials. In fact,
Johnson’s potentials, especially those obtained by
the time averaging procedures advocated by him, do
not in general—and are not intended—to satisfy Eq.
(1), the constraint employed in the present theory.
The diagrammatic and algebraic structure of
Johnson’s potentials are both quite different and
somewhat more complicated than those of cur V.
For example, his potential contains one-meson fold-
ed diagrams while in our theory the lowest-order
folded diagram has at least the exchange of two
mesons. It will be of interest to further study the
connection of these two theories.

3. Effect of mesonic folded diagrams. To esti-
mate the effect of the mesonic folded diagrams, we
have calculated the pion-fold-pion (7 f ) dia-
grams (cl) and (c2) of Fig. 2, for the case of neutral
scalar nucleons and mesons. Using the same nonre-
lativistic approximation which leads to the one-
pion-exchange potential e “#’/r, we have found that
these folded diagrams contribute a potential

(cl4+c2)=%

R pw cosqr
, fo dq(#2+qz)1/2
—2ur a a
~% dgt—+—2 ] (10)

pr o (ur)?

where p is the pion rest mass, ag~0.32, a;~1.21,
and a,~—0.36. It is interesting to note that the
range of the 7 f m diagram is ~%,u, i.e., half the
one-pion-exchange range. Based on the uncertainty
principle (AEAt ~#), we expect the above to be a
general result and consequently diagrams of more
folds will be of even shorter ranges. For example,
we expect the range of the = f T f m diagram to
have a range of % . Comparing with the E-dep
NN potentials,*~® our potential has a new type of
diagram—the mesonic folded diagram. The above
observations indicate that the calculation of the E-
indep potential, especially its long- and medium-
range parts, is not more complicated than that of
the E-dep potential. Folded diagrams will have
only a negligible effect on the long range part of V.
For its medium-range part, we probably only need
to calculate the lowest order folded diagram = | ,
in addition to the usual nonfolded diagrams. Dia-
grams with more folds will influence the short-
range parts of ¥V, but we should probably not calcu-
late them because the short range parts of ¥ are not
yet all well understood and had better be treated
phenomenologically.® For the case of neutral scalar
nucleons and mesons, we have found a strong can-
cellation between the folded diagrams (c1) and (c2)
and the nonfolded two-pion diagrams (ii) and (iii) of
Fig. 1. Note that diagram (iii) is canceled by dia-
gram (cl) exactly.

In conclusion, we have proposed a new and exact
theory for deriving the E-indep NN potential V.
Because it is E-indep [or half-on-shell, as indicated
by Eq. (7)], this ¥ may be more convenient, in some
important aspects, for use in nuclear many-body
calculations than the E-dep potentials. For exam-
ple, if V is E-dep, there are the well known off-shell
difficulties in defining an average nuclear field for
nucleons in a nucleus. But for the E-indep ¥, these
difficulties are simply removed. It will be very in-
teresting to further investigate the f 7 diagram,
as it may have a significant effect on the medium
range part of V. Investigations along this line are in
progress.
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