
PHYSICAL REVIEW C VOLUME 25, NUMBER 5 MAY 1982

Intermediate structure of ' C+ ' C system
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We show that the ' C+ ' C elastic angular distribution can be described very well with
an S matrix obtained from a deep optical potential to which resonance is added. We inter-
pret these resonances as bound states embedded in a continuum. Their effect on the total
reaction cross section is also discussed.

NUCLEAR REACTIONS Resonances in heavy ion scattering.
Isa

Intermediate structure (I =400 keV) in the exci-
tation function of systems like ' C + ' C,
' C + ' 0, and ' 0 + ' 0 has been known for many
years. ' It is most prominently present in the
' C+ ' C system and therefore most experimental
and theoretical studies concerning this phenomenon
have been focused on this reaction. Explanations
range from statistical fluctuation to existence of
rotational bands in the Mg nucleus [e.g., the band
crossing model (BCM) (Ref. 3)]. Shapiro et al. 2

have shown that the single angle excitation func-
tions are indeed consistent with the statistical
theory, which implies that the S matrix fluctuates
statistically around the optical model value. In the
BCM, one argues that the shape resonances of the
entrance and exit channels form crossing rotational
bands which give rise to the intermediate structure
observed in the experimental data. (Note that the
recent effort in BCM is to understand the gross
structure. ) This mechanism requires an I- or J-
dependent absorptive potential to simulate a sharp
resonance in the heavy ion system. As of now there
is no clear evidence for the necessity of the I- or J-
dependent absorption. In addition, the origin of
these rotational bands is not clearly understood. All
these models arc able to fit to some degree the ex-
perimental excitation functions. However, the
energy dependence of the S matrix differs in all
models. Thus a phase shift analysis is therefore a
sensitive tool to distinguish various models (see also
Ref. 8).

Recently, Ledoux et a/. measured many more
sets of elastic angular distributions for the
' C+ ' C system. Their phase shift analysis shows
strong evidence for the resonant character of the in-
termediate structure with J,~ lg '

g The large
number of free parameters, however, leads to possi-
ble ambiguities in the background phase shifts, 'o

which, obtained in Ref. 9, do not agree with any
realistic optical potential.

We believe that a mean field or optical potential
exists for the heavy ion system. Phenomenological
studies over the past few years indicate that a deep
optical potential is preferred. " Because of the large
Coulomb interaction one does not need to know the
exact shape of the potential. ' One can use, for ex-

ample, the double folding G-matrix interaction for
which a detailed prescription has been given by
Satchler et al. ' Such a mean field will produce
molecular resonances that are very broad and, there-
fore, give rise to gross structure only (I's, ,&3
Mey) 14, i5

In this report, a partial phase-shift analysis is
performed to fit the ' C + ' C elastic angular distri-
butions. We shall present evidence that the origin
of the intermediate structure in the excitation func-
tion is a result of the existence of bound states em-
bedded in the continuum (BSEC), where the contin-
uum is composed of either underlying states in the
compound nucleus or of direct channels. For exam-
ple, it is known that (sd ) shell nuclei exhibit a con-
siderable amount of cluster structure. ' Since clus-
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ter states couple only weakly to the direct reaction
channels (including the elastic channel) and the
complicated states in the compound nucleus, they
may be considered as BSEC states.

The elastic S m.atrix in the presence of sharp res-
onances (e.g., BSEC}is given by'

S„=(S„) 1—ig
E—E~+i —,I ~

=(S„)[1+u(E)+ib(E)],
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where (S~ ) is the Smatrix of the optical potential.
The depths of the optical potential are rather im-
portant to describe the refractive scattering. ' We
use the double folding optical potential' with the
M3F force. 's The density of the ' C nucleus is tak-
en from electron scattering analysis. '9 The ima-
ginary part is chosen to have the same form factor
as that of the real part. The strength of the ima-
ginary potential is Wo(E}=5.0+0.5E, , which
fits the magnitude of the cross section at 90' reason-
ably well.

Equation (1) manifests itself in that the effect of
the resonance on the scattering is most important

near the grazing angular momentum L~,. The
reason is simple: For angular momentum with

I»Ls„ the partial width I'&,
&

is small owing to
small penetrability, while for l «Ls„(S„)is itself
small. Therefore, the scattering process is affected
mainly by resonances near the grazing wave. Thus,
the term a(E}+ib(E) was added to the elastic S
matrix of the optical potential for the grazing par-
tial wave. Note that a(E) and b(E) are free param-
eters at each energy without an a priori assumption
for the energy dependence. At the transition region,
where the grazing angular momentum lies in be-
tween two even integer values, we used two such
terms, i.e., four parameters. This happens at
E, 15 and 19.5 MeV, where we have used
parameters for partial waves 10, 12 and 12, 14,
respectively. Figure 1 is a sample of the results of
our analysis from E, m =14.6 MeV to E, m =23
MeV. We choose to work in this energy range be-

cause the data there are obtained in smaller energy
steps. The Xi/N was about 20—50 in the two-
(sometimes four)-parameter fit. The data can be fit-
ted almost perfectly at every point with six parame-
ters (three partial waves). We feel, however, that
the accuracy of the data is not able to support this
degree of freedom as is evident from the rapid in-
crease of the error in the fitted parameters.

From Eq. (1), the real and imaginary parts of the
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FIG. 1. Sample of fitted angular distributions. The
data is taken from Ref. 9. Yale data in Fig. 1 is taken
from Wieland in Ref. 1..
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FIG. 2. The lower part of the figure shows the total
angle integrated 2+ and natural (2+,2+) inelastic cross
sections (Ref. 5). In the middle of the figure, we show

the parameters a(E) and b(E) from the g~ fit. The solid
curve drawn through a(E) is only to guide the eye. Note
that there is a difference between the fitted parameters
a(E) and b(E) for Yale and NIT data. On the upper
part, we compare the calculated total reaction cross sec-
tion with that of Ref. 4 and the sum of total fusion cross
section, single and mutual 2+ inelastic cross sections.

l7

added term in S matrix should have the form
Figure 2 shows a(E) and b(E) for l =12 and 14 ob-
tained in fitting these angular distributions. a(E)
shows clearly a Lorentzian shape around resonance
energies and b(E) also shows the dispersive feature.
Note, however, that b(E) is much more sensitive to
the interference of resonances than a(E). One can
obtain resonance parameters, E&, I'&, and 1&,i,
from g fit with Eqs. (2) and (3) to the fitted param-
eteis a(E) and b(E). To this end, one needs more
angular distribution data from E, =15 MeV to
E, =1S MeV. Figure 2 shows, however, that
these resonances are not overlapping. In this limit,
E„and I'„can be obtained from the peak position
and width of the I.orentzian shape of a(E) and the
partial width can be estimated by
I'&,i/I &—-—,a(E&). Note that (I"&(i=12))-=450
keV is almost independent of the excitation energy
and I „,i ——2.P(l)y„,i will increase with the pene-
trability P(1). For 1=12, I &i,i/I'&=0. 1-0.3 (Fig.
2).

The average spacing D between BSEC states is
about 750 keV. Thus we have I /D =0.6, which in-

dicates that the statistical explanation of these in-
termediate structures is unlikely and at best margin-

al. On the other hand, there will be great difficulty
in trying to reproduce the sparing of these reso-
nances by the band crossing models. (The spacing
of the molecular resonance of the C + C system is
of the order of 3 MeV. ) Note also that the angular
momentum of E, =19.3, 19.8, and 20.4 MeV
states is 14', which was previously determined to
be 12%.

Since a(E) in Fig. 2 has a very nice Lorentzian
shape, the mixing phase between the resonance term
and the background S matrix is small. Equations
(2) and (3) assume specifically zero mixing phase.
The fact that the mixing phase is small supports the
BSEC interpretation. Presumably there are two
possible interpretations for these BSEC states: (1)
They may be states near the yrast line of the com-
posite system. The width and level density of such
states are expected to follow the level density for-
mula. Our analysis indicates that the width and
level density of BSEC states are essentially constant
15 MeV&E, &20 MeV for i=12. (2) They
could be the cluster states. Spacing of these states
depends on the cluster configuration. The width of
these states is I =I'+ I,~+I;„,i +I . I' is
the partial width of coupling to the compound nu-

clear states, which could lead to one-nucleon emis-
sion. The escape width I p

——rp, .1+Ip„..l +I p
will depend on the reduced width and penetrability
of each channel, which depend on energy. Since the
observed I

& (see Fig. 2) is rather energy indepen-
dent, it will be interesting to investigate the energy
dependence of the partial widths of various chan-
nels. Investigation of neutron and proton emission
is also interesting to obtain information about the
partial width I

&
of BSEC states.

Before closing this section, it is worth pointing
out that the angular distribution cannot be fitted
well with a "normal" shallow optical potential (e.g.,
Vo ——20 MeV), where normal means no surface
transparency, and no l dependent absorption is ad-
ded to the optical potential. We emphasize in our
analysis the importance of the refractive effect in
the mean field (or the background S matrix), which
has been thoroughly discussed in Ref. 14.

To study the effect of the BSEC on the total re-
actions, we show the calculated total reaction cross
section from the fitted elastic S matrix on the upper
part of Fig. 2. The experimental reaction cross sec-
tion of Kolata et al. and the cross section of
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gF+o ++0 + + (Ref. 5) are also shown for com-
7

parison. If these oscillatory structures in the total
cross section come from the resonances in Eq. (l),
their contribution to the total reaction cross section
is given by a sum of Lorentzian forms added to the
reaction cross section of the mean field

og = (Oii }+(2J+I)

(I'„—I „,.i)I'„,.i
(E E„)'—+( , I'„)'—

where we have made an approximation that these
resonances do not overlap with each other. (crii ) is
the total reaction cross section calculated from the
optical model potential. If these resonances overlap
with each other, one should also consider the in-

terference contribution to Eq. (4). Note that our
calculated result is systematically larger than the
measured cross section, which is consistent with our

spin assignment being two units higher than in pre-
vious studies. For example, we found the 20.4 reso-
nance to be 14+ instead of 12+. The oscillatory
structure in our calculated total reaction cross sec-
tion does, however, agree reasonably well with that
of the measured reaction cross sections.

In conclusion, we have found that the angular

distribution can be satisfactorily fitted by adding
resonance terms (BSEC) to the S matrix calculated
from the folding potential with the two nucleon G-

matrix interaction (M3Y). Owing to the weak cou-

pling and small mixing phase, these states give rise
to sharp structure on top of the cross section calcu-
lated from the mean field. In our analysis, we
found that a(E) and b(E) do not possess the prop-
erty that the statistical theory predicts. Therefore,
the statistical explanation of the intermediate struc-
ture seems unlikely. Interpretation of the nature of
these BSEC states is, however, remaining open.
We, however, argued in favor of the cluster ex-
planation. To investigate this important question,
one should analyze elastic and inelastic channels
simultaneously in detail and obtain a set of con-
sistent resonance parameters. Theoretical study
(based on some models) of the structure of these
BSEC states can then be compared with the partial
widths deduced from the experimental data.
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