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Some properties of projected three-body theories of deuteron-nucleus collisions
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Three-body theories of deuteron-nucleus collisions, based on limited sets of relative angu-

lar momenta, are discussed as projected components within a more complete theory. It is

argued that the extension to the more complete theory is well behaved and that the previous
truncations are reasonable. Possible tests are considered.

NUCLEAR REACTIONS Scattering theory, deuteron-nucleus,

angular-momentum projected three-body theory.

Several alternative decompositions of the quan-
tum-mechanical three-body problem are known, '

which preserve the mathematical reliability of the
Faddeev theory, but which put different aspects of
the dynamics into their definitions of component
wave functions. The present report reviews another
formal decomposition into coupled component
wave functions, which embeds and extends certain
heuristic truncated three-body theories of deuteron-
nucleus scattering. This extension of the heuris-
tic theories to a complete coupled formalism is seen
to be appropriate, a result that enhances the interest
of these theories and provides encouragement for
their further development.

The target "nucleus" is assumed to be structure-
less and at rest, so that the system is described by a
Hamiltonian

with

%t =Ptt%', qt2=(1 Ptt )4 . —

Applications treated thus far have emphasized
projection operators for s waves, or for s and d
waves. However, the essential structure of the pro-
jected theory does not depend on the number of par-
tial waves selected by PN.

It is characteristic ' of the projected theory that
distinct asymptotic arrangements of the particles
into two-body channels are separated uniquely be-

tween 4& and 4'2. To see this, we recognize first
that the deuteron channel has a definite relative an-

gular momentum 1=0 and therefore it must be in

4'~ and not in %2. On the other hand, a stripping
rearrangement channel has an asymptotic form
such as

H =K+ U„(r„)+U~(rp )+ V(r), p(r„)e e Iry, (4)

where E is the kinetic energy operator for the neu-

tron and proton and V is the neutron-proton in-

teraction. The single-particle potentials U„and Uz

may be real or complex, as required for particular
applications. (Complex single-particle potentials
are known to complicate the description of rear-
rangement channels. ) Relative and center of mass
coordinates are r = r~ —r „and R= —,( ry + r„).

The truncated three-body theories are constructed
in terms of a projection operator Pz that selects the
lowest N partial waves of angular momentum in the
relative coordinate r. Thus we define

[where for simplicity the bound wave function P(r„)
has been chosen to have angular momentum zero].
The application of PN to obtain the %t component
of Eq. (4) then leads to integrals with the structure

I dr Yt (r)P(r„)(e ~/re) .

Such integrals decrease asymptotically as (rR )

essentially because as r,R increase the finite-range
function P(

~

R——,r
~

) subtends a decreasing part
of the angular range of r. This analysis holds for
any finite number of partial waves that may be
selected by Pz, and it allows the conclusion that Eq.
(4) makes a vanishing asymptotic contribution to
4&. Thus all channels that have one nucleon bound
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=Piv( U„+ Uq)%2,

[E K, U—(E—„+—V)]P2

=(1 P~)(U„—+ Ui )+i,
where

(8)

(9)

U=P~(U„+ Up)Pv, (10)

U=(1 Piv )(U„+—U~)(1 P~) . —

The diagonal potentials U, U have a weak long
range tail, as in Eq. (5), which decreases asymptoti-
cally as (rR ) '. This long range tail is only
relevant to the open three-body parts of %~ and %2,
and in this application its effects in matrix elements
are reduced further" by averaging over the variety
of energy sharing between the r, R degrees of free-
dom in the three-body channels. The net effect is
that the necessary matrix elements of U, U decrease
asymptotically as R

Equations (8) and (9) are solvable in principle if
the coupling terms on their right hand sides are suf-
ficiently short ranged. There are three sets of terms
to consider: (1) Contributions to the coupling terms
from open three-body channels have ranges con-
trolled by the A' decrease of those parts of 4&
and 'P2. This behavior is typical of the configura-
tion space Faddeev theory, ' where it is considered
acceptable. (2) The two-body channel in 4'& in Eq.
(9) contains a bound function of r and it is multi-
plied by short-ranged functions of r„and rz, there-
fore these contributions to the coupling term in Eq.
(9) are reliably short ranged, again as in the Faddeev
theory. (3) Only the two-body channels in the cou-
pling term in Eq. (8) require more care, because in
this case wave functions such as Eq. (4) are multi-
plied by potentials that contain the same variables.
Fortunately, the P& projection operator introduces
an additional (rR) ' decrease of the coupling term,
as in Eq. (5). We conclude that the coupling terms

to the target nucleus appear in 4'2.
Of course, the component wave functions can

also contain three-body breakup channels, in which
three free particles appear asymptotically. We re-

call that the wave functions in three-body chan-
nels' decrease asymptotically as 4', where

(r 2+r 2)1/2

Suitable coupled equations for 4& and %2 are

PivH(+(+%2) =0,
(1—Piv)H(+(+%2) =0,

which become

[E K„——U —(K„+V)]q,

are sufficiently short ranged for usual solution pro-
cedures.

Thus, in principle Eqs. (8) and (9) can be solved
for %~ and +2, perhaps by suitable iterative or vari-
ational methods. In general r, R coordinates should
be used in 4& and r„, rz coordinates in (II2, to corre-
spond with the asymptotic structure of the two-
body channels in the respective component wave
functions.

Most truncated versions of the projected formal-
ism ' carry only the left hand side of Eq. (8), and
entirely omit %2. It is known that under such angu-
lar momentum truncation the kernel of the three-
body Lippmann-Sch winger equation has well-

behaved, Hilbert-Schmidt properties. ' The present
formalism suggests systematic study of the errors of
the truncated theories, by means of more complete
calculations that include 4'2.

On the other hand, the present formalism also
provides a setting that allows the truncations to
seem more reasonable in themselves. Thus, even the
simplest version of %~ incorporates several principal
physical features of the complete solution. Addi-
tional physics can be transferred from %'z into %~ by
adjusting the definition of the projector I'z to in-

clude more partial waves. This flexibility of defini-
tion of PN suggests that it may be sufficient to con-
tinue to ignore qi2 and to seek improvements of %i
by including more partial waves. We would only
need to be concerned whether there may be some
characteristic errors of +~ that cannot be corrected
in finite terms without explicit use of 'P2.

One characteristic error is that the omission of
%2 gives zero asymptotic flux in stripping rearrang-
ment channels, no matter how large the (finite)
number of partial waves chosen in P~, for this
reason the asymptotic parts of rearrangement chan-
nels cannot be represented in %' without explicit use
of %'2. On the other hand, qi& has significant over-

lap at finite rz with rearrangement wave functions
like Eq. (4). Therefore, the outgoing flux in qi&

tends to contribute outgoing flux in the rearrange-
ment channels at finite r& or r„, even though the ex-

plicit asymptotic rearrangement boundary condi-
tions of %2 are not in the truncated theory. This
may partially compensate for the absence of %'2.

(It is also interesting that the outgoing boundary
condition for the continuum part of %'~ is normally
only imposed explicitly on the R coordinate, in the
context of an expansion in standing wave eigenfunc-
tions of r. Integration over the continuum of
breakup energies leads to a stationary phase condi-
tion that selects outgoing waves in both coordi-
nates. ' Of course some terms in the expansion of
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%~ associate negative energy with the R coordinate;
by stationary phase, these terms give no asymptotic
flux in any coordinate. )

The omission of %q not only suggests questions
about boundary conditions, it also leads to possible
concern that important influences on 4& at small
radii may be lost. But we see in Eq. (8) that the
high order angular momenta in %2 are coupled
directly to 4& only through high order multipoles of
Up + Up At small radii these multipoles vanish
and they do not affect 4&.

In conclusion, the complete angular momentum
decomposition of Eq. (2) provides an orderly three-

body theory. Provided we avoid excessive emphasis
on the asymptotic regions in rearrangement chan-
nels, truncation on the relative angular momentum

leads to a heuristically-reasonable approximate
theory that is subject to systematic improvement.
Practical experience regarding the relations between
the 4& and 42 components of the truncated theory
is limited. Kawai et al. did find that stripping
terms of type %2 sensitively affect the results of a
variational calculation in which 4& is truncated to
I =O. However, they did not check whether this
sensitivity to %'z could be reduced by extending the
angular momentum content of 4&.

I am grateful for-occasional discussions of these
ideas with H. Amakawa, M. Kawai, E. F. Redish,
and C. M. Vincent. Professor Redish kindly called
Ref. 13 to my attention. Research support was pro-
vided by the National Science Foundation.
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