Shape coexistence and shape transitions in the even-A Ge nuclei

R. Lecomte,* G. Kajrys, S. Landsberger,[†] P. Paradis, and S. Monaro Laboratoire de Physique Nucléaire, Université de Montréal, Montréal, Québec, Canada H3C 3J7 (Received 25 January 1982)

A comparison of experimental data obtained in Coulomb excitation and two neutron transfer reaction measurements definitely assesses the existence of shape transitions and shape coexistence in the even-A germanium nuclei.

NUCLEAR REACTIONS Comparison of two neutron transfer reactions and Coulomb excitation measurements. Shape coexistence and shape transitions in the Ge nuclei.

The intriguing properties of nuclei around the N=40 region and more particularly of the even-A Ge nuclei have been made apparent by a number of experimental and theoretical investigations. The Ge nuclei are characterized by a complex nuclear system subjected to a variety of nuclear interactions which make these nuclei very shape unstable. Indeed, anomalies in transfer reactions strongly suggest both the existence of a shape transition (from spherical to weakly deformed) between N=40 (⁷²Ge) and N=42 (⁷⁴Ge) and a coexistence of different types of deformation.¹⁻⁵ However, recent Coulomb excitation measurements have also shown the presence of a structural change between ⁷⁰Ge (N=38) and ⁷²Ge (N=40).

We wish to report here on a comparison between the behavior of the neutron transfer reactions [(p,t);(t,p)] (Refs. 2-5) and the results deduced from Coulomb excitation experiments.⁶ It will be shown that all these data definitely support the existence in the Ge nuclei, both of a gentle shape transition from oblate to spherical to prolate, and of a coexistence of different types of deformations. To have a better understanding of the problems to be

From the assumption that the neutron transfer reactions within similar (different) nuclear struc-

FIG. 1. Interpretation of the behavior of the (p,t) and (t,p) reaction versus Q_{2^+} measurements in the A-even Ge isotopes (see text).

tures are strongly favored (unfavored), the solid lines represent the "normal" L=0 transfer reactions within 0⁺ states with similar shapes; the dotted lines represent L=0 transfer reactions with "anomalous" shapes.³ The numbers on the lines give the relative intensity of population of the levels expressed in the percentage of the total cross section. From our Q_{2+} and B(E2) values⁶ one could assign an almost spherical nature to the ground and low-energy excited states of ⁷⁰Ge and ⁷²Ge with the exception of the $0^{+'}$ and $0^{+''}$ levels. On the other hand, the same states in ⁷⁴Ge and ⁷⁶Ge could be considered as having a moderately deformed nature. These properties are supported by the behavior of the ${}^{72}Ge(0^+) \leftrightarrow {}^{74}Ge(0^+)$ and ${}^{74}Ge(0^+) \leftrightarrow {}^{76}Ge(0^+)$ L=0 transfer reactions. In fact, the transition strength between the ground state of ⁷⁴Ge and ⁷⁶Ge (which have similar natures) is larger than that between the ground states of ⁷²Ge and ⁷⁴Ge which show the alleged shape change. Then the letters S(spherical) and D (deformed) shown in Fig. 1 indicate the shape characterizing each of the 0^+ levels and deduced from the intensity of the normal or anomalous L=0 transfer reactions. From an inspection of Fig. 1, it is evident that 0⁺ states of different nature (or deformation) coexist in the same nucleus. For instance, the shape of the $0^{+\prime}$ levels of ⁷²Ge and ⁷⁴Ge must be identified to the shape of the ground state of ⁷⁴Ge and ⁷²Ge, respectively. Thus D and S characteristics are assigned to the 0⁺' states of ⁷²Ge and ⁷⁴Ge, respectively. The above considerations are supported by the fact that a weak transition takes place between the deformed ground state of ⁷⁶Ge and the assumed spherical $0^{+\prime}$ excited state of ⁷⁴Ge. These results clearly show that a spherical to deformed shape transition takes place between the ⁷²Ge and ⁷⁴Ge nuclei and that these nuclei exhibit coexistent states of different nature (or deformation). The latter feature is also displayed in ⁶⁸Ge and to a lesser extent in ⁷⁶Ge and ⁷⁸Ge. The ⁷⁰Ge nucleus is somewhat anomalous within this framework. In fact, its ground state is relatively spherical, thus its first 0^+ excited level should be deformed. However, the observed behavior of the L = 0 transfer reaction between the

ground and the excited 0^+ states of ${}^{72}\text{Ge}(0^+)$ and 70 Ge(0⁺'), respectively, would agree more to a similar nature of these two states (i.e., to a spherical shape of the $0^{+\prime}$ level in ⁷⁰Ge). This feature is also supported by the much weaker L=0 transition from ${}^{72}\text{Ge}(0^+)$ to ${}^{70}\text{Ge}(0^+")$ which would indicate that the 0^+ " state in ⁷⁰Ge is deformed. This apparently anomalous characteristic can be tentatively explained by considering the type of deformation [oblate (ob) or prolate (pr)] which takes place in the Ge nuclei and which can be obtained from our Q_{2+} measurements.⁶ Then, following the same trend of reasoning as above, oblate or prolate characteristics are attached to 0^+ ground and excited states in the Ge nuclei as shown in Fig. 1. This would remove the apparent anomaly in ⁷⁰Ge since oblate and prolate shapes may coexist in this nucleus, in agreement with several theoretical predictions. $^{1,7-10}$ With this in mind, the very weak transition between the 0^+ ground and $0^{+\prime}$ first excited states of 70 Ge and ⁷²Ge, respectively, may also be explained. In fact, in this case the L = 0 transfer takes place not only between a spherical to a deformed state, but also between an oblate spheroid to a prolate deformed state. Obviously the same considerations should be valid for the $0^{+"}$ levels in ⁷⁰Ge and ⁷²Ge (see Fig. 1).

The above interpretation seems particularly enticing because it would integrate harmoniously in a universal picture three hypotheses on the structure of the even-A Ge nuclei, that is: (1) the existence of a shape coexistence which has been suggested more or less explicitly by a plethora of theoretical investigations^{1,4,5,7,10-13} and is supported by some experimental works⁴⁻⁶; (2) the presence of a spherical to deformed shape transition between N = 40 and N = 42. This feature has been predicted theoretically^{1,3,5,8-10,14} and inferred experimentally^{1,4,6}; (3) the existence of a gentle oblate to prolate shape transition between N = 38 and N = 40 which has been assessed both experimentally and theoretically.^{1,6,10,15}

The authors wish to acknowledge the financial aid of the Natural Science and Engineering Research Council of Canada.

to, Ontario, Canada M5S 1A4.

^{*}Present address: Département de Médecine Nucléaire et Radiobiologie, Centre Hospitalier Universitaire, Sher-, brooke, Québec, Canada J1H 5N4.

[†]Present address: Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toron-

¹D. Ardouin, R. Tamisier, M. Vergnes, G. Rotbard, J. Kalifa, G. Berrier, and B. Grammaticos, Phys. Rev. C <u>12</u>, 1745 (1975).

²G. Rotbard, M. Vergnes, G. La Rana, J. Vernotte, J.

Kalifa, G. Berrier, F. Guilbault, R. Tamisier, and J. F. A. Van Hienen, Phys. Rev. C <u>16</u>, 1825 (1977); F. Guilbault, D. Ardouin, J. Uzerau, P. Avignon, R. Tamisier, G. Rotbard, M. Vergnes, Y. Deschamps, G. Berrier, and R. Seltz, *ibid.* <u>16</u>, 1840 (1977).

- ³D. Ardouin, B. Renaud, K. Kumar, F. Guilbault, P. Avignon, R. Seltz, M. Vergnes, and G. Rotbard, Phys. Rev. C <u>18</u>, 2739 (1978).
- ⁴C. Lebrun, F. Guilbault, D. Ardouin, E. R. Flynn, D. L. Hanson, S. D. Orbesen, R. Rotbard, and M. Vergnes, Phys. Rev. C <u>19</u>, 1224 (1979).
- ⁵M. Vergnes, in Proceedings of the International Conference on the Structure of Medium-Heavy Nuclei, Rhodes, 1979, edited by the "Demokritos" Tandem Accelerator Group, Athens (The Institute of Physics, Bristol, 1980), p. 25.
- ⁶R. Lecomte, M. Irshad, S. Landsberger, P. Paradis, and S. Monaro, Phys. Rev. C <u>22</u>, 1530 (1980); R. Lecomte, M. Irshad, S. Landsberger, G. Kajrys, P. Paradis, and S. Monaro, *ibid.* <u>22</u>, 2420 (1980).

- ⁷M. Kregar and M. V. Mihailovic, Nucl. Phys. <u>A93</u>, 402 (1967).
- ⁸H. Chandra and M. L. Rustgi, Phys. Rev. C <u>4</u>, 874 (1971).
- ⁹J. K. Parikh, Phys. Rev. C <u>5</u>, 153 (1972); Phys. Lett. <u>41B</u>, 271 (1972).
- ¹⁰M. Girod and B. Grammaticos, in *Proceedings of the International Conference on the Structure of Medium*-*Heavy Nuclei, Rhodes, 1979*, edited by the "Demokritos" Tandem Accelerator Group, Athens (The Institute of Physics, Bristol, 1980), p. 225.
- ¹¹K. W. C. Stewart and B. Castel, Lett. Nuovo Cimento <u>4</u>, 589 (1970).
- ¹²G. Gneuss and W. Greiner, Nucl. Phys. <u>A171</u>, 449 (1971).
- ¹³Y. Tanaka and T. Tomoda, Prog. Theor. Phys. <u>50</u>, 121 (1973).
- ¹⁴K. Kumar, J. Phys. G <u>4</u>, 849 (1978).
- ¹⁵K. J. Weeks, T. Tamura, T. Udagawa, and F. J. W. Hahue, Phys. Rev. C <u>24</u>, 703 (1981).