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Collective Hamiltonians in the generator coordinate method: A numerical procedure
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A numerical procedure is introduced which allows us to extract a collective Hamiltonian,

expressed in terms of a collective canonical pair p and q. The starting point is a microscop-

ic many-body approach, namely the generator coordinate method, and the Weyl formalism

permits the description of the collective dynamics in the p-q space. As an illustration we

compare numerical calculations with exact results, obtained analytically, for the quadratic

energy kernel with the Gaussian overlap approximation case and the Goldhaber-Teller di-

pole model applied to the He nucleus.

NUCLEAR STRUCTURE Numerical derivation of collective Hamil-

tonians. Generator coordinate method, Weyl procedure. Comparison

with analytical results.

I. INTRODUCTION

The generator coordinate method (GCM), intro-
duced by Hill and Wheeler, ' and later improved by
Griffin and Wheeler, has proved to be a powerful
tool to treat collective motion in a variety of prob-
lems in nuclear physics, although it can be used in
a wider realm. Apart from the numerous papers
devoted to the study of the properties of the basic
GCM equation (Griffin-Wheeler equation), the nu-

merical solution of that equation, in specific prob-
lems of nuclear structure, has received special atten-

tion, mainly since the work by Flocard and Vauthe-
rin. In their work, the collective energy spectra
and the associated wave functions are the only col-
lective aspects of the many-body problem that are
directly accessible. A new approach to the GCM
has been developed through a series of papers,
the aim of which is to implement a full quantum
mechanical treatment to the collective motion. In
this method a collective subspace of the many-body
Hilbert space is constructed by the diagonalization
of the GCM overlap kernel, while the collective
dynamics is obtained by the projection of the mi-

croscopic many-body Hamiltonian onto this collec-
tive subspace. With this new construction one is led
to a time-independent Schrodinger-type equation
with a nonlocal energy kernel, instead of the
Griffin-Wheeler equation. Clearly, in a first stage,
this equation governing the collective motion per-

mits the determination of the collective energy spec-
tra and the wave functions which correspond to the
results obtained by Flocard and Vautherin. Howev-

er, this formalism still permits one to identify expli-

citly an essential dynamical ingredient of the mo-

tion, namely, the collective Hamiltonian. This can

be achieved by the use of the Weyl transformation,

exploring the nonlocal character of the energy ker-

nel. The procedure which allows the construction
of a quantum collective Hamiltonian, written in

terms of a canonical pair p-q, has been developed

and some ana1ytical applications were presented in

Ref. 9.
In order to treat problems which cannot be solved

analytically, a numerical calculational scheme must

be worked out. It is the aim of this paper to present

such a numerical procedure as an alternative ap-

proach to obtain the desired quantities related to' the
collective motion. Since this procedure is useful in

problems that cannot be solved analytically, it is

important to establish reliability criteria and limits

of applicability of the method and these are i11us-

trated by comparing the results thus obtained with

the exact solution in two simple cases, the Gaussian

overlap approximation with quadratic energy kernel

(GOA), and the dipole giant resonance in the
Goldhaber-Teller model for the He nucleus.

In Sec. II we briefly discuss and derive the main

equations for the numerical treatment of the GCM;
the Weyl formalism through which the collective
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Hamiltonian can be constructed is presented in Sec.
III in its analytical and approximated numerical
form. Section IV is devoted to the calculations and
comparison with analytical results for the two cases
cited. Finally, the conclusions are presented in Sec.
V.

(A, ' 2HZ, ' —E)g=0,
where

H = U~HU,

(7)

can be interpreted in terms of a collective subspace
as

II. DISCRETE GENERATOR &COORDINATE
METHOD VERSION

and

g = Ut(Ni l~f )

As in any numerical calculation, in the GCM we
must use a discrete expression for the one real
parameter continuous Griffin-Wheeler (GW) ansatz

~+)= Jda~a)f(a),
where a is the generator coordinate (GC), i.e.,

Equation (7) is an eigenvalue problem whose diago-
nalization gives the collective energy spectrum

I E; ] and eigenfunctions g's.
Until now the scheme presented is the standard

one, and does not allow us to extract any informa-
tion about a collective potential and inertia func-
tion. This, however, can be achieved through the
Weyl formalism. s

so that the GW equation

I l {a
I
H

I

a'& —E{a
I

a'& 1f(a')da'=0

in the discretized version becomes

N

g (H(J EN;1 )fj =0—, i = 1,2, N,
i=~

where H;i and N;J are elements of the matrices de-

fining the energy and overlap kernels, respectively.
We must emphasize that in Eq. (4) the GC does not
appear explicitly anymore, but it occurs as a multi-

ple of a previously defined constant through the
indexes i and j. Hereafter we will refer to this con-
stant as the step. Now, through proper transforma-
tions we project the discrete GW equation in the
collective subspace following the steps below.

III. WEYL FORMALISM

In a previous paper it was shown that a collec-
tive Hamiltonian can be extracted from the continu-
ous version of the nonlocal energy kernel in the col-
lective subspace,

{k~H
~

k')~A, —'~ HA,
—'~z

by the use of Weyl's transformation. However, it
will be more convenient to work here in a represen-
tation labeled by the GC itself. This can be done, in

the continuous version, by a double Fourier
transformation, whereas in the discrete case we per-
form the U transformation

(i) Diagonalization of the overlap kernel matrix N

U~XU= A, ,

where A,; are the corresponding eigenvalues. As an
inherent feature of the method proposed here, the
choices of the step and the interval of variation of
the GC are intimately related to the spectrum of the
resulting eigenvalues I )(,; I, i.e., given a small num-

ber E we must get @&min I A,; I by a convenient
choice of the above numerical parameters. It is
important to stress that as the I, s are the norm of
the collective states, e is chosen in order to avoid a
true null space besides numerical errors.

(ii) The formal expression

(N ' HN '~2 E)(N'~ f)=0—

X Ã X
K4 Ki5

K,

0

c

FIG. 1. The relationship between the matrix elements

E;J and the entities A"kI.
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The usual label transformation

i+j=k, i —j=l; (12)

thus we can rewrite the continuous and discrete ker-
nels (10}into the new form

X+X
2

=q, x —x'=g,

has a correspondent in the discrete case through the
following redefinition of indexes,

tegrated over in the Weyl scheme. In turn, the ele-
ments A kl do not form a matrix in the usual sense
if the matrix (10) is of finite dimension; they only
constitute an array of numbers that will be handled
according to the procedure to be presented.

Now, the Weyl transformation of the collective
Hamiltonian we are looking for is associated with
the continuous energy kernel (13) through

q.~qq~= I «q«""'(q+t H q —&)ql
2 2

q+ Hq— (13)

The relationship between the matrix elements E,J-

and the entities Mki can be seen in pictorial form in

Fig. 1, where the following correspondence holds

+1,1
—~2,O

E1 2
——M3

+1,N —~N+1, 1

21 ~31 ' +N1 ~N+1N —1

+2,2 ~4,0

+N, N ~2N, O

In the above continuous kernel, q is identified as
the dynamical variable associated with the collec-
tive coordinate q of the collective Hamiltonian,
while g is a nonlocal parameter which will be in-

The right hand side of this expression can be
written in the more convenient form

n

h«e(q, p) = g ——p "H'"'(q),N

where we have expanded the exponential in a
power series of p, and

Iq'"'~q~=, I ql p(q+t H q —&)
(16)

are the moments of the expansion, in terms of
which the collective Hamiltonian wi11 be written:

oo -n
H, (q,p)=H"'(q)+ g „' ', . . . , H'"'(q),p;. . . ,p (n anticommutators) .

i (2iri)"

(17)

The H' '(q) term corresponds to the velocity-independent collective potential and H' '(q) is identified as a
collective inertia function. Although the collective Hamiltonian is described by the full series (17), in certain
cases the first two moments are sufficient to give a good description of the collective dynamics, and even a
natural truncation may occur.

Guided by analogy, the corresponding moments in the discrete case are given by the ansatz

(n) (Ib )" k
Hk/2 g [~klsleven+Ikl(, ~k —i, l «~k+1,1)5l,odd]

E

for even A:, where 6 is the step, N is the order of
the matrix Iq: and the Ikl(/i"k, l., Pi"k+ i l)'s
correspond to numbers calculated by interpolation
(quadratic in our choice} along the lines of fixed
values of odd 1, and for odd indexes k —1 and
I(, +1. This particular choice for the interpolation
along a line of fixed odd 1 is convenient since the
sequence of points along this same line describes a
smooth curve. The location of these new values in
Fig. 1 correspond to the crossings of the lines
marked by circles, i.e., each IE,E is symmetrically lo-
cated between A E, i, E and MI, +& E. The numbers

I

IE,E do not appear naturally in the array for odd
values of l, so they must be introduced in the sum
(18); otherwise the moments would miss informa-
tion if only even I's were considered. Therefore the
numerical values of HE', &z are expected to be in
close agreement with the values of the exact
H"(q) (calculated at the same point, q=kb, /2)
when precise numerical calculations are performed.

The discrete procedure clearly constitutes a prac-
tical approach to the Weyl scheme; in fact, the ap-
pearance of discrepancies between the analytically
calculated moments (16}and the numerically calcu-
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lated ones (18) are due to two independent motives:

(a) numerical errors, present in any numerical
calculation, '

(b) the finiteness and discretization of the select-
ed interval of variation of the GC, inherent to the
numerical procedure.

An analysis of the performance of the numerical
procedure can be accomplished through a corn-
parison of the numerical moments with the exact
ones in cases when the latter are available. This
analysis has been done with the aid of two exam-

ples to be described in the next section. The main
feature drawn from this analysis is that the scheme
for the numerical calculations must contain three
general requirements to be satisfied if we want to
obtain a good agreement with an exact solution,
namely.

(i) @&min I A,; I, e being a number of the order
of the precision required (limited by the computer
precision), as already mentioned;

(ii) the highest density of points allowed by the
width of the GCM overlap kernel ' " must be
reached;

(iii) the sum (18) has to present convergence.

We have chosen the simplest analytical example,
the harmonic oscillator, in order to test the numer-
ical procedure and to compare the results with the
exact ones. The adopted overlap and energy ker-
.nels are

and

(a —a')
N(a, a') =exp

b2
(19)

H(a, a') =N(a, a') Eo+ (a—a')

a+a'+ 2c2
2

—'Vo

(20)
respectively. In the Weyl formalism presented in
Ref. 9, these expressions give rise to the collective
Hamiltonian

These three requirements will constitute a guide at
our disposal to attain reliable numerical results
even for problems where an exact treatment is not
possible.

IV. APPLICATI(ONS
A. The harmonic oscillator (HO)

C2 CIf..s(e,p) = Eo+ — b
16

where

+ — (q —yo)'+
coll

(21)

4A
~cou =—

c,b4
(22)

is the q-independent collective mass.
In this particular case, only the zeroth and

second moments are present in the collective Ham-
iltonian; the remaining moments vanish identically.
The comparison between the numerical results and
the exact ones is presented in Figs. 2 and 3. The
points depicted correspond to the relative deviation
yk"', defined as

kA
(n)

Xk —1 (~ ~ (23)
+k/2, numerical

The curves exhibited in Fig. 2, corresponding to
the collective potential, were obtained with the fol-
lowing values of the parameters appearing in ex-
pressions (21) and (22): b =0.0759 fm, Eo= —25
MeV, ci ———1250 MeV fm, c2 ——500 MeV fm
and yo

——1.0 fm; the value for e was taken as
1)&10 . The three curves were constructed with a
fixed range of variation of the Gc (4 fm), while, for
the step, three different values were assigned, lead-

ing to matrices the order of which are N =20, 25,
and 35 for curves (a), (b), and (c), respectively.

Although the relative deviations are rather small
in the three curves (less than 1% in the central
part of the collective potential), it is important to
note that the greater the order of the matrices in-

volved in each case, the smaller will be the devia-
tions from the exact curves; this is due to a greater
numbers of terms in the sum (18). In every curve
more pronounced deviations occur at the border
points of the interval, due to the reduced number
of terms available for the sum (18); this is a natur-
al consequence of the finite dimension of the ma-
trices involved, thus leading to a poor convergence.
With this observation we are able to establish a
guiding rule, namely, the border points must be
dropped out in this kind of numerical calculations
since, surely, the errors contained in them will be
greater than those errors of the central points. The
departure of smoothness in the central part of the
curves (a) and (b) is due to the near zero values of
the numerically calculated points, thus enhancing
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FIG. 2. The curves a, b, and c correspond to the re-
lative deviations of the zeroth moment y'k' for the HO,
culated numerically at the points indicated, for N=20,
25, and 35, respectively.

FIG. 4. The dashed curve represents the collective
potential for the dipole giant resonance of the He nu-

cleus as analytically calculated in Ref. 10; the dots
correspond to the numerical calculations.

the relative deviation yk"'.

In Fig. 3 the relative deviations for the second
moment for the cases %=20 and %=35 points are
exhibited. It can be seen that, for given N, the re-
lative deviation is much more pronounced than
that calculated for the corresponding zeroth mo-

ment for the same number of terms of the sum
(18). This is due to the weight factor (lb, ) /2
which tends to enhance the importance of the
terms with ~1

~

near or equal to max ~1
~

(for a
given k), thus leading to a slower convergence of
(18). Furthermore, greater errors will be carried
into Hk&z, since these terms are of the order of
magnitude of the errors involved.

B. Dipole giant resonance
(Goldhaber- Teller model) 4He

This problem has been treated analytically in
Ref. 10. The GCM overlap and energy kernels are
those calculated by Flocard and Vautherin, where
the Skyrme interaction SIII was used. The GC
adopted here is the separation between the centers
of mass of the proton and the neutron densities.
The zeroth moment corresponding to the collective
potential has the explicit form

1.5- 0

y (2)

1.0-
O~

/
/~AMO
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FIG. 3. The curves corresponding to the sequences of
triangles and dots correspond to the relative deviations

of the second moment yk' for the HO, for %=20 and

35, respectively.

FIG. 5. The dashed curve represents the inertia func-
tion, in units of the nucleon mass, for the dipole giant
resonance of the He nucleus as analytically calculated
in Ref. 10. The triangles and the dots correspond to the
numerical calculations performed in simple and double
precision, respectively.
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~'"~0' 2K Qo

2/g 2/0
3~ 2

—3/2
2

Qo

2 311 2 z/ z 4t3 &/ &

+ e I ,-q / 0 +3X2
—5/2 + (

2q / 0 3
—1/2)

3/2g 5 g 2 3m'a 'ao ao

fP iiin(~i +t2) q'/a, '—
4 2+ 3/2g 31+ e (24)

The expression for the second moment, which is
related to the collective mass, is

1 mini( ri +~ 2) —q2/a02

In the above expressions (24) and (25), ao is the
HO constant, m„ is the nucleon mass, and p is the
reduced mass of the systein composed of a cluster
of protons and a cluster of neutrons. The remain-

ing parameters are those of the Skyrme force.
The comparison between the exact analytical ex-

pression and the numerical results is shown in
Figs. 4 and 5 for the zeroth and second moments,
respectively. The numerical work was carried out
with the following set of parameters:

(i) N=20;
(ii) interval of variation of the GC, from —6.2

to 9.0 fm;
(iii) step=0. 8 fm.

In this realistic case we have done the numerical
calculations in simple and also in double precision,
in order to compare the results when numerical er-
rors are diminished. In simple precision we ob-
tained nine and three points, presenting conver-
gence, for the zeroth and second moments, respec-
tively. The double precision calculations do not
modify significatively the values of the zeroth mo-
ment points (obtained in simple precision), giving
exactly the same nine points; however, it improves
the results for the second moment leading now to
five points presenting convergence and also getting
closer to the analytical curve. '

V. CONCLUSIONS

We have presented a numerical procedure the
aim of which is to calculate the coefficients associ-
ated to a collective Hamiltonian expansion. This
Hamiltonian is obtained via the GCM and the
Weyl formalism and is written in terms of a
canonical pair p-q for a single real GC o;.

In practical problems, when an analytical solu-

tion cannot be obtained, this procedure constitutes
a valuable alternative approach. Because of the
necessity of a numerical calculation, Weyl's actual
scheme of quantization is substituted by an ap-
proximation due to the introduction of the discreti-
zation scheme.

An analysis of the performance of the procedure
was done in the GOA with the quadratic energy
kernel, whose analytical solution is the well known

HO. We showed in this practical example how to
attain least deviations between the exact and nu-

merical calculated zeroth and second moments, for
different step values and a fixed interval of varia-

tion of the GC, and we have depicted the relative
deviations. Diminishing the step further, or
equivalently increasing the order of the matrices, in

the same range of 4 fm, numerical errors will be
introduced, since, at least, min I A,; J becomes very

small (of the order of the numerical precision
adopted) and will contain important sources of er-

ror. For the higher moments, the relative devia-

tions are more pronounced since they contain
greater errors due to the term (lb, )"/n! present in

(18); this effect can be seen in Fig. 3. This trend
can be diminished by increasing the computational
precision, thus decreasing the errors contained in
the elements MkI.

As a general feature of the numerical procedure,
the step turns out to be of the order of the overlap
kernel width" when a best agreement between nu-

merical and exact curves is achieved. This fact is
reflected in actual problems when the overlap ker-
nel width happens to be large, then a natural limi-
tation for the step emerges, leading to a low densi-

ty of points in the interval. However, in particular
cases of translationally invariant overlap kernels,
intermediate points can be generated by convenient
shifts of the interval of variation of the GC.

The He dipole giant resonance case constitutes a
less trivial application, although it possesses an
analytical solution. Here also the numerical calcu-
lations presented satisfactory agreement with the
analytical results, and particularly it was verified
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that a double precision calculation improves the
second moment agreement.

We want to emphasize that our primordial ob-
jective was not the search for higher precision nu-
merical values in the two illustrative examples, but
was rather to present a numerical procedure to ob-
tain collective Hamiltonians and discuss its advan-

tages and limitations in order to warrant reliance
in problems for which analytical solutions are not
available for comparison.

In a forthcoming publication we will present the

results, using this numerical procedure, in a prob-
lem whose exact solution we could not reach,
namely, the collective potential and inertia function
for the two alpha decay of the Be nucleus.
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