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One criticism of the thermodynamic model for deuteron production has been that it
may not be possible for deuterons to exist inside the fireball. We give arguments why
deuterons can exist inside the fireball, although they cannot exist in cold nuclear matter
at normal density. We redefine the Berkeley coalescence model and show that with this
redefinition, the coalescence model is rather close to the thermodynamic prescription. We
show that this redefined coalescence model is equivalent to the quantum mechanical sud-
den approximation model considered by Kapusta. We construct the grand canonical par-
tition function for interacting fermions up to the second virial coefficient and show that
the redefined coalescence model and the simple thermodynamic model are two limits of a

more complete theory.
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I. INTRODUCTION

Thermodynamic models'? have enjoyed some
success™* and popularity in the description of rela-
tivistic heavy ion collisions. In these models it is
necessary to calculate the many body partition
function or equivalently the available phase space.
Since we are dealing with an interacting system
this is a nontrivial problem. In most calculations
it is assumed the interactions play two roles; first,
they cause the system to thermalize, and second,
they cause the appearance of bound states such as
the deuteron and alpha as well as resonances such
as the delta and excited states of the alpha. These
bound states and resonances are then treated as
separate species of particles in a noninteracting gas
model. This procedure can be questioned on
several grounds. First of all, does it make sense to
consider a deuteron as existing inside a fireball
since it is very weakly bound? For example, in
zero temperature nuclear matter the deuteron be-
comes unbound at less than 10% of the saturation
density. This problem is less severe for more
strongly bound states such as the a particle. There
is also an overcounting problem since, due to
Levinson’s theorem, we know that a potential can-
not change the total number of states. This is an
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acute problem if we include all the scattering reso-
nances in the various nucleon-nucleon and
nucleon-nucleus channels as has been suggested.’

An alternate approach is possible. One can as-
sume that inside the fireball no bound states exist
and we have a purely free gas. The bound states
then form at some breakup density. This leads to
the coalescence model.>*

In this paper we study the problem of how to
calculate the partition function in the interacting
system concentrating primarily on the role of the
deuteron. In most of the discussion we ignore the
higher-4 bound states for simplicity. (The num-
bers of *He, 3H, etc., are small.)

In the next section we briefly present the simple
thermodynamic prescription of Ref. 4, where the
deuteron is treated as a separate noninteracting
particle. In Sec. III we argue that because of the
low phase space density this is reasonable. In Sec.
IV we present a redefined coalescence model which
is shown in Sec. V to be equivalent to the quantum
mechanical sudden approximation discussed by
Kapusta.’

In Sec. VII we show that the partition function
for the interacting system can be more properly ob-
tained through the virial expansion. Our purpose
here is not to do new calculations to compare with
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experiments but rather to discuss the validity of
some widely used models. We do not know of any
practical example where the second virial coeffi-
cient has been obtained for a relativistic quantum
system, although the formalism for such calcula-
tions has been set up.® The nonrelativistic treat-
ment done here, apart from clearly demonstrating
the links between different prescriptions, will also
show which simple prescription is more accurate.
The prescription can then be made relativistic. We
do not consider in this paper the question of
whether the system can actually thermalize but
consider only what happens if it thermalizes.

II. A SIMPLE THERMODYNAMIC PRESCRIPTION

Consider a fireball which contains nucleons. Be-
cause of interactions, a deuteron can form and we
assume that the only role of the forces is to allow
the deuterons to form and dissociate. Otherwise,
the nucleons and deuterons are treated as free par-
ticles inside a box of volume V. The simple ther-
modynamic prescription is then
3/2
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Here, Hps Hus and n, are the numbers of protons,
neutrons, and deuterons, respectively; f3 is the in-
verse of the temperature 7; and Ep is the binding
energy of the deuteron. The quantity e is called
the fugacity’; A=/pu, where u is the chemical po-
tential. The three constants A,, A,, and B can be
eliminated using the following three equations:

n, +ng =number of primordial protons ,

4)
n, +ng =number of primordial neutrons ,

(5)

3
2B

(n,+n,+ng) =energy determined

from kinematics . (6)

One can also derive the following equation:

dng . 3 pd3din, _ dn,

L (Ba=2 "2 (F)
d3pd Pa) 4 vV d3p P d3p

(D) exp(BEg) ,

(7

where B, =2F; we note that (d>n/d>p)(P) here
refers to the measured protons, not to the primor-
dial protons.

Other composites can be included if needed.
Resonances have sometimes been included in the
calculation® and sometimes left out*. For example,
in some calculations the T=1, s =0, /=0 unbound
state of the deuteron (this state is, of course, also
present in the n-n and p-p channels) is included
when calculating the temperature. Later, the state
decays into a neutron and a proton. We will show
that it is better not to include the T=1, s =0 state
in the simple thermodynamic prescription.

III. CAN DEUTERONS EXIST IN THE FIREBALL?

One often quoted criticism of the thermodynam-
ic model for deuteron production is that it may not
be possible for deuterons to exist inside the fireball.
We will now argue that because of high tempera-
ture in the fireball, it makes sense to talk of a deu-
teron in the fireball. Consider a deuteron and
another nucleon. If the third nucleon is outside
the “volume” of the deuteron then clearly it is
reasonable to talk of a deuteron and a nucleon.

Now switch from configuration space to
momentum space. If in momentum space the
third nucleon is outside the volume of the deu-
teron, then it is just as good to talk of a deuteron.
At zero temperature and normal nuclear density,
the probability of finding a third nucleon inside
the momentum space volume occupied by a deu-
teron is large; but at high temperature and some-
what reduced density the occupation is uncrowded
and the probability of finding a third nucleon in
the momentum space volume is small. In such a
case we still have a deuteron and third nucleon.

One might argue that in configuration space the
nucleon-nucleon force is short range, whereas in
momentum space it is not. But that only means
that because of the third particle the deuteron can
break up. But if it breaks up, it can recombine as
well. According to two previous calculations®’
there is enough time for equilibration.

Although the above arguments should suffice,
we will set up a small model calculation reinforc-
ing what we have just said. The example is well
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known in the cluster model of nuclei.'”

Consider a cluster enclosed in a box in which
there are also free nucleons. We impose periodic
boundary conditions. At zero temperature, the free
nucleons will fill up to the Fermi level. For sim-
plicity consider a zero net momentum cluster wave
function in the box represented by X( | x; —x; | ).
Since the cluster is in a box which also has other
nucleons, we need to antisymmetrize between the
cluster particles and the particles inside the Fermi
sea. The process of antisymmetrization will drasti-
cally alter the nature of X(|x;—x,|). The
Fourier components that are already contained in
the wave functions of the free uncorrelated nu-
cleons will be removed from X( |x;—x; |). The
new normalized X( | x; —x, |) will no longer look
like the free X(|x;—x; | ).

To be concrete, let the cluster size be / and the
cluster wave function be
ig(xy—x,)

X(|xy— +e

—X; | )=—= ‘/— [e
The free nucleons inside the box are represented by
(1/V'L )e™*. The square of the overlap of the
wave function of particle 1 in the cluster with a
wave function in the box is
gy 2= L | sinllk—q)1/2]
KUTaL | [k—qli2

sin[(k +¢)1/2] |
[k +q]l/2

If the occupation in the box is such that all orbi-
tals for which |a; | ? is significant are occupied,
then the intrinsic nature of the cluster is lost.

The situation is altered in the high temperature
case. The occupation probability in any given
momentum state is small; thus, the presence of
other nucleons does not significantly alter the state
of the cluster. We will now establish what is pre-
cisely the parameter that has to be small for the
deuteron to exist in the fireball.

Let ¥ be the volume of the fireball, 7 the tem-
perature, and n the number of nucleons. For sim-
plicity, n, =n, =n /2. Consider a deuteron in the
s=1, M=1 state. Let A’p be the characteristic
volume of a deuteron in momentum space; ¥ is the
characteristic volume in the configuration space.
Then the probability that a given proton (or a neu-
tron) with spin up appears in a certain configura-
tion space 0 and within a momentum volume A’p
around p is

—ig(x; —xz)]

~ / 1 d3n
P(P)=—2 2(B).
=y 287, P ®

The factor n /2 is the number of protons; % is in-
serted because of spin up. Since the phase space
for one quantum state is k3 we put A’pi=h>.
Now,

d3n
d3p ( )_27:%ele—p2/(2m'r) (9)

d*n
%—f "dp 2{3—8}‘(27rm7)3/2 (10

Thus, Eq. (8) reduces to
h’ 1

_n 1 L —p¥omn
POI= o0 Gamm® o
At the most probable velocity,
1 Al
p=th __ 1 (12)

e 2V 2rmr)*?
The probability that a neutron and proton appear
in this phase space and no other nucleons appear is

%P(I_P)n/Z—l_g_P(I_P)n/Z—lz PZ(I_P)n— .

n?
4
(13)

For the deuteron to exist we need (1—P)" ~2 to be
close to unity. This is guaranteed if

(n —2)P=~np << 1. From previous calculations,*
this number is about 0.1 in fireballs. Let us now
consider the case for zero temperature. Once again

[Eq. (8)],

3
_ h_3 d’n,
nV d3p
In the present case of zero temperature,
d*n 14
P
=2—, for
d3p h 3 P <pr
p=2.
]

Thus, nP =2 and the cluster picture is invalid.

Returning to the case of the fireball we see that
the worst case of interference from antisymmetry
will occur when the deuteron is emitted with zero
velocity in the fireball. The quantity P(P) of Eq.
(11) is now P=(h3/2V) [1/(2am7)*/?]; the quan-
tity (n /2)P is simply e* [see Eq. (10)], the fugacity
of the protons. The smallness of this quantity
determines how well the Fermi-Dirac or Bose-
Einstein distribution degenerates into the
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Maxwell-Boltzmann distribution. Indeed, it was
pointed out!! that unless the Maxwell-Boltzmann
limit is achieved, the idea of composite formation
in the fireball does not have much meaning. In a
typical fireball the fugacity is about 0.1. In a clas-
sical gas, the fugacity at room temperature and at-
mospheric pressure is much closer to zero. Thus,
of course, we do not expect a simple thermo-
dynamic prescription to be as valid for the fireball
as for the classical gas. Nonetheless, an expansion
in powers of fugacity appears meaningful. Experi-
mentally, one sees more protons (goes similar to
%) than deuterons (goes similar to e?*) and more
deuterons than tritons (goes similar to e3}). A
cluster expansion seems useful and we will do such
an expansion later.

IV. A REDEFINED COALESCENCE MODEL

The assumption of the coalescence model is that
a neutron and a proton leaving the fireball with
about the same momentum will coalesce into a
deuteron. Following the arguments of Kapusta we
formalize this statement and show that with a
slight change in the formulation the coalescence
model becomes much closer to the thermodynamic
model. Consider again n,=n,=n/2 and the for-
mation of a deuteron in the s =1, M =1 state.
Consider a volume element A’p centered at §. The
probability of finding a given proton with spin up
in this sphere is

N U e d>n,
PO=0 25775,

(P). (14)

However, in order to form a deuteron the nucleons
have to be correlated not only in momentum space
but in configuration space as well. Thus, we con-
sider the probability that the proton is not only in
the given momentum space volume but also in a
given configuration space volume ¥ in the fireball.
This volume 7 'is the characteristic volume of the
deuteron. We are thus led to consider

5 1 1,.,dn
= —A3 2(B). 15
Vi 22 P P 4

P(p)=

We have assumed that the characteristic volume of
the deuteron is smaller than the volume of the fire-
ball. Unless this is true there is no hope of finding
a correspondence with statistical mechanics which
is based on the premise that the container is larger
than the objects contained. The measured root
mean square radius of the deuteron is 2.1 fm; typi-

281

cal radii of fireballs are 3—5 fm. The probability
that both a neutron and a proton with spin up ap-
pear in the same part of the phase space with no
other spin up nucleons in the same phase space is
once again

2
n n n
ZP(1—pP2-1=p(1—pP)"?- 1o =P (16
> ( ) 2 ( ) 4 (16)

We are, however, not interested in knowing in
which of the volumes 7 in the fireball the two nu-
cleons appeared. The number of such elements is
(V/0). We thus obtain

3 2

np -
e (p)

To obtain d>ny/d>py note that d>p; d°p,=d’p,
d*p,, where B, and P, are center of mass and rela-
tive momenta. We now equate d°p,i=h>, the
phase space volume of one quantum state. We
only considered the s =1, M =1 state. Including
other M states, we obtain

J 2,2 4 v 1 3 3
P n = A A
5 / V 4 P1AD2

3
d'n,
d3p

d*ng . 3 h3

dspd (pd)=_4—-7

(P) (17)

The above equation is now quite close to Eq. (7);
the difference is the factor exp(B8Ey) and also that
d 3np /d’p in Eq. (17) refers to the primordial pro-
tons, not to the measured protons. Note that in
contrast to the usual coalescence model we have a
factor 1/V.

V. THE SUDDEN APPROXIMATION MODEL

We now show that the redefined coalescence
model is equivalent to the quantum mechanical
sudden approximation model considered by Kapus-
ta. In this model, deuterons arise because proton
and neutron wave functions in the fireball have an
overlap with a deuteron wave function; the abso-
lute square of this overlap gives the number of
deuterons. Let us denote the nucleon wave func-
tions in the fireball by (1/L3/2) " “/AF°T; here, L is
a physical parameter and L*® is the volume of the
fireball. We ignore the spin factors for the mo-
ment and put them in later. The number of pro-
tons in a momentum interval is (d>n, /d’p) (B,)
d>p, and the number of neutrons is (d>n, /d’p)
(P2)d>p,. Let the deuteron internal wave function
be X(r). The overlap of a two particle wave func-
tion with the deuteron wave function can be calcu-
lated from
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fX*(r)—%e‘im?"?‘e“/ﬁ)ﬁz'?zdi‘r=—1? f X*(r)e(i/ﬁ>(3l+3’2)-i’e<i/ﬁ)[(3l—32)-?]/zd3r
L
1 (i/AF 4K R
:Ff PP Ry k(1) AT T3,

3/2
2h

L

Li/zewﬁ)pd‘nw(p). (18)

In the last step we have assumed that the fireball is bigger than the characteristic volume of the deuteron,

since we have equated

fﬁrebaux*(r)e“’“’ﬁ'?d% =Q2mh)Y*(p) ,

where ¥(p) is the Fourier transform of the deuteron internal wave function. The number of deuterons is

3 3
d'n, d°n,

- N h3
d’ng= [ 2 B0, B S )

h? d3"p - d’n, =43 3
=13 f ﬁrpd/ﬂp);sp—(pd/z—p)d Pad pY*(P)Y(p) .
1 2

Assuming that the neutron or ptoton distributions
do not change significantly within the range of p
for which ¥(p) is significant and putting in the
spin factor, we have

a2 L 5,00
- 4 vV d3p P4 d3p P4 .

d’n 3 d3n
3 d(ﬁd)—iﬂ‘ 2
d’pa

(19)
This is identical to Eq. (17).

V1. THE UPPER BOUND FOR FUGACITY
IN THE COALESCENCE MODEL

The approximation of Eq. (16) has to be reason-
ably good for either the thermodynamic prescrip-
tion or the coalescence model. In the thermo-
dynamic model, it is needed so that the effects of
antisymmetry be small. In the coalescence model
it is needed both for antisymmetry and for obtain-
ing a simple final answer. The thermodynamic
prescription does not demand that d>n, is propor-
tional to (n2/4)PZ%; the coalescence model does. It
is not difficult to see that there will be a severe
overcounting problem in the coalescence model un-
less nP is quite small. The limit can be easily ob-
tained.

We consider again n, =n,=n/2. We remind
the reader that in Eq. (17), d*n, /d’p refers to pri-
mordial protons. Now

[

d’n 174
P A, —p2/(2
— 2 9 eep/(m-r),

d3p S

n, :Zh—l/;el(Zﬂ'mT)y2 .

Equation (17) now gives

3
dna _ Vo, —pd/tém)
dspd K3 ’

so that

/1,,:3—}:/—3e2;‘(477'm7')3/2 .

Since the number of deuterons cannot be greater
than the number of primordial protons we obtain
an upper limit for fugacity by setting ng=n,.
This gives the limit at which the approximation of
neglecting higher-A clusters completely break
down:

1

At 0236 (20)

e =

w [N
o

VII. STATISTICAL MECHANICS
OF INTERACTING PARTICLES
AT FINITE TEMPERATURE

We will now show that the simple thermo-
dynamic prescription of Sec. II. and the coales-
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cence model of Sec. IV are two limits of a more
complete theory. The quantity of central impor-
tance in equilibrium statistical mechanics is the
grand partition function. An expansion of the
quantum mechanical grand partition function up

to the second virial coefficient is well known.'?

We consider a box of nucleons interacting by a two
body force; for simplicity, the force acts only in
the /=0 state. The grand partition function can be
written as

InZy=A+B, 1)
=h—V3[e}""2(21rm1')3/2+ek"2(21rm'r)3/2] , (22)
=Lt 4 [P 14 B [ 500 —Par

h T
V2, 2k, AR, 3B _pt
+ole Pe et a2 [ 8, (0e =Pt (23)

For noninteracting nucleons, B is zero. The virial
expansion stops at B by assuming that only two-
body clusters are important. Higher order clusters
contribute to higher order virial coefficients. For
the second order virial coefficient one just has to
solve the two body bound and scattering problem;
in Eq. (23), 8, and &, refer to /=0 triplet and sing-
let phase shifts. At zero temperature all scattering
states are occupied and because of Pauli exclusion
principle, two body scattering at zero temperature
is more complicated.’* At high temperature (be-
cause of low occupation probability in any given
single particle state), the Pauli exclusion problem
disappears and one just has to solve the two body
scattering problem. Note that up to the order
written down in Eq. (21) deuterons are treated as
free particles; an interaction of a deuteron with
another nucleon would be a three body cluster.
One now proceeds in the following way: Given the
number of primordial protons, neutrons, and the
nonrelativistic energy, one sets

dInZ,, . .
=number of primordial protons ,
A,
dInZ,, o
=number of primordial neutrons,
oA,
—0dlnZ,,
B =energy .

These equations eliminate A, A,, and B. The
number of deuterons is now obtained from

3V hth, BE,
h3

The difference between the number of primordial

)32 =number of deuterons .

(4mm T

[

protons and deuterons is the number of the mea-
sured protons.

The simpler thermodynamic prescription of Sec.
II is obtained by setting

B=3—hK39k"+A"(41rmT)3/2eﬂEB . (24)

In treatments where the singlet state is also in-
cluded as a particle, at a positive energy E' one has
set

B:3—’;V%e}"’+k"(4qrm1')3/2eBEB
, A +A
+{;(%-mr)me_ﬂE(en"+e2}”"+e »t ).

(25)

. . E
Since, for high temperature, eﬁ B ~1, the coales-
cence model can be recovered by setting

iyt

BE,
B——-3h3 —

(drm7)¥ (e 1). (26)

The various widely used models are thus just sim-
ple approximations to the full second virial coeffi-
cient and we will now show how accurate the vari-
ous approximations are. It should be kept in mind
that there is also the question of convergence of
the virial expansion. One can mock up higher or-
der terms in the virial expansion by modifying the
second virial coefficient.

In order to estimate the relative importance of
the phase shift integrals we take the nucleon nu-
cleon potential to be hard core followed by an at-
tractive square well'%; the potentials have the
correct scattering lengths and effective ranges as
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well as having the zeros of the phase shifts at the
experimental energies for both singlet and triplet
scattering. To make the calculation more realistic
we include the A(3,3) as a particle. We use the
two fireball model,'® consider 800 MeV/nucleon
laboratory energy and equal ion collisions. Com-
pared to the full calculation [Egs. (21)—(23)] the
simple thermodynamic prescription [Eq. (24)]
overestimates the temperature by 4% and underes-
timates the deuteron cross section by about 35%.
The reason the agreement is so good is because the
minus one in Eq. (23) is cancelled by phase shifts
in both the single and triplet channels. Including
also the singlet state as a particle [Eq. (25)] the
temperature goes up by another 4% and the num-
ber of deuterons further drops. Thus, in the sim-
ple thermodynamic prescription it is better to leave
out the interactions in the singlet state. One ex-
pects that including all the resonances in the three-
and four-body channels (excited states of *H, *He,
and “He) will also lead to over counting.

In the coalescence model [Eq. (26)], the tempera-
ture is underestimated by about 5% and the num-
ber of deuterons overestimated by 45%. The
coalescence model will improve as the temperature
increases.

Given the grand partition function [Egs.
(21)—(23)] all other thermodynamic quantities can
be calculated. Correction to the entropy!® due to-
the interactions can be obtained simply. It is hard-
er to calculate d>n /d°p if all the terms in Eq. (23)
are retained. The reason is not hard to find; for
interacting fermions, the inclusive cross section is
not simple. Nonetheless, it is possible to obtain an
expression for d3n /d3p. Since the discussion of
this requires some mathematical complexity, we
consider this problem in the Appendix.
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APPENDIX

In this Appendix we develop the framework for
calculating a deuteron and proton inclusive spec-
trum when we have an interacting gas. We shall
consider only nonrelativistic kinematics with only a
few comments on possible relativistic generaliza-
tions.

We start not from the grand canonical ensemble
but from the microcanonical ensemble and proceed
as in Ref. 16. The inclusive cross section for deu-
terons can be written as a ratio

3
a% _N (A1)
d® D
where D is the total number of states available to
the system subject only-to the constraints on total
energy baryon number, charge, and momentum.
The denominator can be.expressed in the form

D=Tr8(E —H)8( 8(0—0)8(B—B), (A2

where the”denotes operators. Thus, B is the
baryon number operator. The trace is unrestricted.
The numerator N is the number of states avail-
able to the system when there is a deuteron of
momentum Py present. It can be written as

N=Tr8(E—H)83—p)5(Q—0)8B—B)P, ,

(A3)
where Pj, projects out all states that contain a deu-
teron of momentum P,;. More will be said about
this operator later.

We now proceed to evaluate D. To do this we
Laplace transform on E, P, Q , and B to obtain

L(D)=Zp(a,B,7,G)=Tre Ple—Pdo—aBy~10
(A4)

This differs from the canonical partition function
only due to the factor e~ P 9 which came from
total momentum conservation. We can approxi-
mately recover D from Zj, by using the saddle
point approximation to the Laplace inversion in-
tegral.!® Then we have only to evaluate Zp, which
can be done using the virial expansion, and we
have to second order

anD(a,B,y,ﬁ)=Ee_aBie —vQ; V fd3 —Be(p -37

i

h3

2 —a(B;+B;) —th+Q)fd3

db

X E'eﬁle"’+2hzs+l Jefe—ae|, (A5)
K

ra de
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where i,j label the different species. Note that, in principle, the A resonance can be included through the
phase shifts in the 7N channel. This would correctly include the effects of the width.

For the numerator we proceed as previously. The situation simplifies for deuterons since a deuteron is al-
ready a two body cluster, and hence, a nucleon deuteron interaction is a three body cluster and neglected.

We have
InZy=—a—y—PBeips)—q Pa+InZp .

In the limit when the saddle point for numerator and denominator occur at the same value we recover the

usual grand canonical ensemble result.

An additional complication arises in the case of protons and in this case Zy is given by

InZy=—a—y—Pe(p)—q-p+InZp

- Dr dp,

—aB, —v0. dé; _
n 26 aBle 10, 2 2S+1 f d __Ie Be,(p,)
i

1

X — fdﬂprexp

41

Bleem |[F————F, | —¢
- c.m - r|—¢p
mp+m;

m;
’
mr+ml

(A6)

where the subscript 7 refers to relative quantites (momentum, etc.). Specializing to the case of only interact-
ing neutrons and protons we have for the inclusive spectrum for protons in the grand canonical ensemble

limit

d3n vV _
@ P

—Be —a 3
PE Pi2+e a_; fdp,

—Betp,) 1 —Ble, . (2p—2p, ) —€(p)]
o S e ,

ds, _ — —2p)—
+e_a(1+e_.‘,)i fdpﬁ t —PBep,) 1 fdee Bleg . (20 —2p,)—¢€,(p)]
T r

dp, 4r
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