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The interacting boson model was invented in two independent modes: The Schwinger
mode using six bosons (s and five d bosons) and the Holstein-Primakoff mode using five
quadrupole quasibosons. We show that the mathematical equivalence of the two modes
can be used to define a number conserving quadrupole boson (the b boson). Two equivalent
bases, the usual s-d basis and a new s-b basis, are exhibited. By an exercise of (possibly ob-
jectionable) physical license, the result can be interpreted as a proof of equivalence of in-
teracting boson model I with the Bohr-Mottelson model. In the s-b basis, the Hamiltonian
and other operators depend only on the b boson. In this form, all the topics usually associ-
ated with the Bohr-Mottleson model can be discussed: potential energy surface, shape
parameters, vibrations vs rotations, etc. The precise relationship of our method to that em-

ployed in previous work is exposed. The latter is shown to correspond to the use of the
Dyson generators of SU(6).

NUCLEAR STRUCTURE Interacting bosons, Bohr-Mottelson form
of IBM, potential energy surface from IBM, generator coordinates and

IBM.

I. INTRODUCTION

The success, widely (if not universally) ack-
nowledged, of the interacting boson model'

(IBM) in the interpretation of nuclear band struc-
ture raises a basic question concerning its relation-

ship to the classic Bohr-Mottelson model
(BMM). This question has already been explored
from several standpoints. Meyer-ter-Vehn, for ex-

ample, has argued for the equivalence of the 0(5)
limit of the IBM with the y-unstable version of the
BMM. This kind of specialized study had its
stimulus in the very origins of the IBM where the
equivalence of the two models in the SU(5) limit
was almost a truism. '

In this paper, we are more interested in efforts to
understand the relationship between the two models
on a more general basis. Thus several authors"
have shown that the method of coherent states (in-
trinsic state or condensate state) yields the classical
limit of the IBM in the form of a potential energy
surface (given as a function of the intrinsic shape
variables) whose properties can be compared direct-

ly with the corresponding surface well known for
the BMM. At the same time, all the limiting sym-
metries of the IBM can be identified.

This work still leaves open the problem of corn-
paring the models in the fullest possible sense. But
we must try first to distinguish such a comparison
from a comparison of the two independently postu-
lated forms of the IBM.' The form proposed in
Ref. 1 involving six bosons, one carrying angular
momentum zero (the s boson) and five carrying an-
gular momentum two (the d boson), is usually re-
ferred to as the IBM. The form proposed in Ref. 2
involving five bosons carrying angular momentum
two is sometimes called the truncated quadrupole
phonon model (TQM). Each of these SU(6) postu-
lations (remarkably) puts restrictions on the form of
the Hamiltonian which renders the two models ex-
actly equivalent as phenomenological models, as has
been remarked by several authors. ' ' However, if
one credits the "derivation" of Ref. 2, the bosons
introduced there map quasiparticle pairs and there-
fore are necessarily quasibosons with no sharp selec-
tion rule Uis a Uis the particle number operators.
Even if one argues that the TQM is a subclass of
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the BMM, does it follow that the quadrupole pho-
nons of the latter are necessarily quasibosons? This
is one of the questions we shall address in our work
(and answer in the negative). Thus although our
mathematical tools may, in part, appear indistin-
guishable from those of Refs. 18 and 19, our phys-
ics is different.

Other aspects of the possible relationship between
the IBM and the BMM have been explored without
having provided a definitive solution to the prob-
lem. Thus in Ref. 10, it is shown that the s boson
may be eliminated, using the properties of the spe-
cial (seniority) basis used in this work. It is then ar-

gued that in the limit that the number of bosons
(E) increases without limit, we regain the forms of
the BMM. Another consequence of the present
work is that this argument is incomplete; in par-
ticular, the way the limit of large N is to be taken
depends on whether one is in the vibrational or ro-
tational regime.

A work close in spirit to the present work, but
differing greatly in technique, was carried out by
Moshinsky ' who showed how to express the stand-
ard IBM Hamiltonian in terms of the BMM vari-
ables in the intrinsic coordinate system. Here there
is no discussion of different physical regimes, nor is
there a precise statement of operator equivalence.
Both of these subjects are highlights of our discus-
sion.

Finally we must consider the work of Ginocchio
and Kirson (GK)."' There, the same coherent
state used to calculate the classical limit is utilized
once more as an intrinsic state in an application of
the method of generator coordinates. This estab-
lishes a connection of the type sought in that the
generator coordinates, five in number, are identified
with the coordinates of the BMM in the intrinsic
coordinate system, and the Hamiltonian appears, at
least superficially, of the BMM type. We shall
-demonstrate, however, that they have obtained the
Hamiltonian in a basis which is not orthonormal.

We turn then to the contents of the present
work. First of all, we have shown how to estab-
lish a unitary correspondence between the original
IBM representation of SU(6) in terms of s and d bo-
sons (the Schwinger representation '), and a repre-
sentation in terms of a five-dimensional b boson
which conserves the number of nucleons and is asso-
ciated with a Holstein-Primakoff (HP) representa-
tion. We have given a new basis in terms of s and
b bosons associated with this representation and
shown its unitary equivalence to the original basis.
The new Hamiltonian and other operators depend

only on the b boson. One interpretation of this set
of results is that it represents a Bohr-Mottelson-like
form of the IBM (i.e., a precise phenomenological
rendering of the TQM). We have, however, chosen
another presentation which is somewhat controver-
sial. (Any reader who prefers the more conservative
interpretation is strongly encouraged to make that
choice. ) We have chosen to extend the conventional
definition of the IBM and restrict the conventional
definition of the BMM, thereby doing no real
violence to physics, so that the mathematical
equivalence between the two representations be-
comes a theorem of physical equivalence. This pre-
sentation is developed in Secs. II—IV.

Whichever one of the points of view offered
above is the more acceptable, the Hamiltonian in
the BMM form which emerges from the transfor-
mation is generally not one of the well-studied
forms. In Secs. V and VI, we explain how the
standard forms utilized in the spherical and de-
formed regimes may be regained. This material is
included for the sake of continuity and complete-
ness, despite the fact that it has been discussed pre-
viously. We emphasize that this account provides
the only known method of computing the potential
energy surface distinct from that given in Refs.
11—17 and also completes the work of those refer-
ences in providing a suitable kinetic energy func-
tion.

We turn finally to a study of the connection of
our work with that of Refs. 11—17. In Sec. VII we
describe briefly the essential result by which the
utilization of a coherent state yields the potential
energy surface. In Sec. VIII, we study the applica-
tion of the generator coordinate method to this
problem and reach the conclusion that this method
is an expression of a mapping of the Schwinger
SU(6) generators onto a form of the generators ori-
ginally proposed by Dyson. This version, in con-
trast to the HP version, lacks formal Hermiticity
and is shown (and is also known) to correspond to
an orthogonal but unnormalized basis is the real
five-dimensional space of the BMM model. In a
very recent communication, Castanos et al. have
pointed out that the self-adjointness can be restored
by use of Bargman complex Hilbert space. Simi-
lar ideas have been developed in the past within the
context of the generator coordinate method.

Despite our proof of "equivalence" of the two
models, we are convinced of the importance of the
development of the IBM alternative. The reasons
for this opinion are reviewed in Sec. IX. Finally we
remark that there is no difficulty in extending the
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arguments of this paper to IBM II, which distin-
guishes neutrons and protons.

II. DEFINITION OF THE IBM MODEL

N =sts+gd„d& ——sts+dt d =n, +nd,
P

(2.1)

the algebra becomes that of SU(6).
The definition of IBM I proposed by its authors

was in terms of the structure of the model Hamil-

tonian, His~, which was assumed to be the most
general polynomial of degree two in the generators
of SU(6) invariant under rotations. The principal
transition operators were equally assumed to be the
simplest conceivable polynomials, for example,
linear combinations of the generators themselves,
with the appropriate tensorial character. Thus the
quadrupole operator, up to a scale, is given as

Qq
——s dq+dqs+X(d d)q ', (2.2)

d„=(—1)"d „. (2.3)

Each choice of the Hamiltonian and other operators
leaves invariant the symmetric representation of
SU(6) specified by a definite (integral) value of N.
The carrier space of such a representation is a sub-

space of the six-dimensional oscillator space
spanned by the s and d bosons, namely the space of
states for a fixed N.

The simplest way of characterizing this space is
in terms of the states

2

~ [ ]n, n, )= g (n„!) '~ (bq)"

subject to the restriction

N =g nz+n, :nd+n, =—constant . (2.5)

We introduce (together with their Hermitian con-
jugates) the operator st which creates a monopole
boson and the operators d&, p= —2, . . .2 which
create quadrupole bosons with magnetic quantum
number p. In the microscopic formulation, which
will not concern us in this paper, s and d& are the
fundamental elements of a mapping from the vector
space created by fermion pairs of angular momen-
tum zero or two onto the boson space of the IBM I
model. The 36 bilinear operators s~s, s~d,pp

d„s, and d„d are the generators of the Lie algebra
U(6). Under the restriction to a fixed number, N, of
bosons, where

The physical interpretation is that
~
0), the "vacu-

um state, " represents an inert core—perhaps the
nearest closed shell nucleus —and N, the number of
bosons, is half the number of fermions relative to
that core. Thus E characterizes the nucleus under
study. Finally, the technical problem posed by the
model requires the diagonalization of H&8~ in the
basis (2.4) to determine the physical states.

Although we accept the essential features of the
definition given above, we wish to broaden the de-
finition somewhat, retaining the same degrees of
freedom, but enlarging the class of permissible
operators. Thus we define IBM I as follows: For
the nucleus characterized by X, there is a class of
eigenstates which can be modeled by suitable linear
combinations of the states (2.4), carrying, in partic-
ular, a definite value of the total angular momen-
turn. With this definition we mean to imply that
the Hamiltonian can be any well-behaved rotation-
ally invariant function of the generators and is not
restricted to a simple polynomial in the generators.
We gain a corresponding generality in the definition
of other operators. In short, we are interested here
in the definition of the model in the most general
mathematical sense, rather than in the sense which

properly motivates a physical discussion —whether
a simplified form is a useful physical approxima-
tion.

What we have gained by this elaboration is the
ability to make a precise mathematical statement
about the possible equivalence of two models:
Another model is equivalent to IBM I if and only if
the vector space over which it is defined is
equivalent to the vector space (2.4) and (2.5). The
other model we have in mind is, of course, the
Bohr-Mottelson model (BMM}. We shall frame
what we consider the essential question: Is there a
formulation of the BMM which is equivalent to the
IBM? The ramifications of this question will now
be considered.

III. REDEFINITION OF
THE BOHR-MOTTELSON MODEL

We start with a concise definition of the BMM,
as it is conventionally understood. In this statement
we shall omit completely the hydrodynamical bag-
gage with which the model was weighed down in its
initial incarnation, baggage that has long since been
discarded by its authors. We frame the definition
in terms of a quadrupole boson described by its
creation and annihilation operators b„,b„: (i} In
contrast to the operator d„, the application of the
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where the designation
~
0)z implies that the Hilbert

space is constructed independently for each nucleus.

Although we intend ultimately to connect the sub-

script X to the number introduced in the previous
section, for the moment its purpose is to distinguish
different nuclei. In the usual definition, no bound
is set on nb, the number of quadrupole bosons, al-

though if the diagonalization is actually done in the
basis (3.1), there is always a practical bound.

With an eye to our eventual goal, we apply
Occam s razor to the previous definition. The in-

trusion, theoretically, of an infinite Hilbert space
has no experimental foundation. Furthermore, if
the BMM, as the IBM, is to be related to a shell

model, the b operators, in a number conserving
description, would be the essential elements in the

mapping of fermion-number conserving multipole
operators to the boson description. This suggests,
but does not imply, that we sharpen the previous
definition in two ways which tie it more closely to a
shell model picture and (not incidentally) render it
equivalent to IBM I: (i) Assume that the reference
state for the nucleus N can be related to a fixed
reference state

~
0) by the formula

i0)~ ——(N!) 'i (s ) ~0), (3 2)

where s will be identified with the s boson of the
IBM. (ii) The value of nb n~ mus——t lie in the inter-
val

0&n~ &E . (3.3)

operator b& to a state does not change the number
of fermions. (ii) The Hamiltonian HH~ of this
model may be any well-behaved, rotationally invari-
ant function of the b„,b„, the transition operators
any well-behaved tensors of appropriate rank. (iii)
The vector space is the Hilbert space of the five di-
mensional oscillator, i.e., the set of states

2

~
[n])= ff (n!) ' (b) "~0)

what less explicitly has informed the authors work

for some time. ] It is simply that if one wishes to
construct a correlated s-d shell model basis, there
are indeed two options. One is the IBM choice of
creating variable numbers of s and d bosons restrict-

ed to a sum of N. The other route is the one we

have taken in (3.4): First create a reference state of
X bosons by creating X Cooper pairs, i.e., X s bo-

sons, after which we are no longer free to change

the nucleon number. Next we use the b~ excitation
to create the requisite number, n~, of quadrupole
excitations subject to the restriction (3.3).

Finally our definition of the BMM bears the
same relation to the basis (3.4) that our definition of
the IBM bore to the basis (2.4), namely that the
states we wish to describe can be expanded in that
basis. Since the Hamiltonian 88~ depends only on
the b operator, the s boson appearing in the set (3.4)
plays only a spectator role in this formulation. To
the best of our knowledge this formulation is nu-

merically consistent with any application of the
BMM extant.

IV. PROOF OF EQUIVALENCE BY MEANS OF
THE HOLSTEIN-PRIMAKOFF

TRANSFORMATION

The IBM I formulation is a special illustration of
the general result that the generators of the algebra
U(N) [or SU(n)] may be realized (the Schwinger
representation) as bilinear, "number conserving"

operators constructed from n bosons a~, namely

a~a, X, v= 1. . .n. We shall refer to this as a linear
realization. The Holstein-Primakoff realization is
an alternative nonlinear realization in terms of
(n —1) bosons. Thus, for SU(6), to which we re-

strict further discussion, the two realizations are
connected by the correspondence

dqd„= blab (4.1)

We are thus led to consider a modified BMM
basis represented by the vectors

2

~
[n],N) = g (n„!) ' (b„) "

p= —2

d„s =(s d„) =b„[N —

+blab~]'~

s s =N —g d„d,=N —g b„b„.
P P

(4.2)

(3.4)

It is almost evident that the bases (2.4) and (3.4)
must be equivalent. [The idea of replacing the more
nebulous set (3.1) by the finite set (3.4) was actually
stimulated by a physical conception which some-

The implication of our notation is that whereas the
Schwinger realization is associated with the IBM
formulation and the basis (2.4), the nonlinear HP
realization expressed in terms of the five bosons b„
is associated with the BMM and the basis (3.4).

The most important observation of this paper is
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that the relations (4.1)—(4.3) map the two bases into
one another. The easiest way to see this is to notice
that (4.2) and (4.3) together permit us to write

b„=dqs (N —g d gdg ) (4.4)

Xdts(st)"
~
0&

= [(N -I)!]-'"

Xd„'(s')"-'
~
0) . (4.5)

Repetition of this elementary calculation then bears
witness that (4.4) effects a one-to-one transforma-
tion of the basis states (3.4) into those of (2.4) (and
conversely). By the same token, the substitutions
(4.1)—(4.3) will transform H,SM into the equivalent

HDM and conversely, as it will equally transform
other operators of interest.

The conventional definition of IBM I, we recall,
requires HtaMt to be at most quadratic in the SU(6)
generators. Under (4.1)—(4.3) the corresponding

HEM will be nonpolynomial. Conversely, a form of
HEM which is polynomial in the b&,bz will become
a nonpolynomial operator under (4.4).

Now consider the simplest example of the mapping
of states utilizing (4.4), namely

(N!) 'i bq(st)
i
0) = [(N —1)!]

(5.2a)

b~ =2 (x~+/pp),

xp =xp, pp =pp

[x„,p„]=[x„,p„]=ib„, .

(5.2b)

(5.3)

(5.4)

the resulting expressions, we realize that HEM con-
tains those square root operators which occur in

(4.2), namely (N —g b„b„)'~ . For diagonalization

in the basis (3.4), this is of no consequence. The use

of this elementary basis would be natural within the
framework of the Lanczos method. The square
root would also cause no trouble in another basis in
which the number of b bosons is a good quantum
number. Such a basis is the seniority basis, ' which
is the natural basis for studying the SU(5) or vibra-

tional limit of the theory. Of course, the seniority
basis has been widely used for diagonalizing the

H8M quite independently of any special limit. If
the vibrational limit is indeed relevant, one has
(bt b ) «N for all low-lying states, and it becomes
permissible to expand the radicals in powers of
(b b/N).

Our interest in studying HEM, however, is not to
discover alternative means for exact diagonaliza-
tion, but rather in relating to the various special
limits associated with geometrical pictures. Toward
this end, it is convenient to change coordinates, first
to canonical coordinates, x&,p&, according to the
equations

V. TRANSFORMATION
OF A SPECIFIC HAMILTONIAN

There remains some interest in looking at the ef-
fect of the mapping between models for a specific
Hamiltonian. All the qualitative information which
can be extracted from such a study can be obtained
from an example such as the Harniltonian

HtaM ——e g dqdq —a g Q~Q q( —1)", (5.1)

where Q„ is the operator defined by (2.2) and (2.3).
The operator (5.1) contains three parameters, e
describing the relative excitation energy of a d pair
relative to an s pair, ~ measuring the overall

strength of the quadrupole-quadrupole force, and 7
determining the relative importance of the two

kinds of basic quadrupole that make up the expres-

sion (2.2).
The first step in the transition to the Bohr Harn-

iltonian is the substitution of the mapping
(4.1)—(4.3). Without exposing the detailed form of

By assigning characteristic magnitudes to the ma-
trix elements of these variables, at least three re-
gimes may be distinguished: (In all cases we take
N && 1.) (i) The vibrational limit for low-lying ener-

gy states: The matrix elements of x& and p& as well

as of their commutator are all of order unity, typi-
cal for an harmonic oscillator. As stated above, we
may then expand in powers of (blab&/N), i;e., of
(x„x„/N) and (p„p„/N). (ii) The rotational limit
for low-lying energy states: The largest matrix ele-
ments of x& are of order N'~, those of p„of order
N ', whereas the commutator has the required
intermediate value. In this limit, we may carry out
the adiabatic approximation, expanding in powers
of (p&p&/N). This is the case we shall consider in
detail below, working to the second order in the mo-
rnenta, the conventional adiabatic approximation.
(iii) The semiclassical limit. In this limit both x&
and p& are 0(N'~ ), but there is a large cancellation
in the commutator reducing the latter to the size re-
quired.

Further detailed considerations will be confined
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—1/2xp~V Nx~& pp~N pi» (5.5)

to regime (ii), since in the "popular mind" it is this
regime that is most closely associated with the ori-
ginal ideas of Bohr and Mottelson. From our point
of view this limit is interesting because the associat-
ed approximate Hamiltonian is the natural object
upon which to base a discussion of phase transitions
of the nuclear ground state configuration. The
study of the semiclassical limit will not be under-
taken here because it is more of mathematical than
of physical interest, since with growing excitation
energy, we must, increasingly, take into account the
coupling to other degrees of freedom of the nuclear
system.

We therefore substitute (5.2) into HBM and ex-

pand in powers of the kinetic energy. To exhibit
most clearly the relative orders of magnitude of dif-
ferent terms for a deformed nucleus, it is convenient
to rescale coordinates and momenta,

[(x Sx)' ' Sx]' '= —( —, )' P cos3y . (5.7)

H =(HBM /Ne) =t +u (5.8)

and the dimensionless coupling strength

F=(aN/e) . (5.9)

For u, we retain the first two terms in an expansion
in N ', namely

U =vQ+N U&,
—1 (5.10)

and for t only the leading term (adiabatic approxi-
mation)

These should be viewed as mathematically accept-
able but physically tentative definitions of these
parameters (see below).

We choose, furthermore, to work with the dimen-
sionless Hamiltonian

and to introduce scalar shape variables p, y, defined
in terms of the new variables by the equations

t=N tp . (5.11)

2= 2
xi&x~ —=x =p (5.6)

The results of the relatively straightforward algebra
are

uo=( 2F)p +F(2/—V 7)X(1——,p )' p cos3y+F[1—(X /14)]p',

ui —— 6Fp +(3/V 7)F—X[1 , p ] V p—c—osy,

to —,p~+ —,F{——p~,p j FX(1/SV7)—{p cos3y, { [1——,p ] '~,p~ j j

—(I/2V 2)FX{[I——,P ]'~',
I x„,{p Sp j„"'j —,FX'{(x Sx)—„"',(p Sp)„"'j,

(5.12)

(5.13)

(5.14)

where p =p&p&. In the limit N~(x), all that
remains of h is the first term, vQ, which defines the
potential energy surface and provides the usual basis
for the discussion of nuclear shapes. This con-
clusion depends on UQ, ul, tQ, etc., being of order un-

ity (see below).

VI. STUDY OF THE POTENTIAL
ENERGY SURFACE

The dominance of UQ in the limit N —+ao holds
provided the rescaled variables (5.5) are of order un-

ity, which is characteristic of the deformed regime.
The fact that we shall also use this function to
characterize the spherical regime as well requires
further discussion. For in this case the order of
magnitude of the rescaled variables, x-N
p-N'~ dictates that potential and kinetic energies

are of the same order. However, in this regime the
equilibrium value of P is zero and the classical
minimum energy per particle is zero because both t
and u are zero (additive constants in It having been
dropped). It follows that the computation of a
spherical minimum for u is sufficient to establish
the phase. For the deformed phase, it also yields
the leading term in the energy, namely the deforma-
tion energy per particle. It is necessary to bear in
mind, however, that especially in the vibrational
and transition regions, the kinetic energy will play
an essential role in determining the level structure.

Our next task is to search for the critical points
of UQ. Before pursuing this task, we notice that v Q

becomes complex for Py V2. This is not a defect
of the theory since it can be traced to the condition
b b &N inherent in the HP mapping (4.1)—(4.3).
Of course we are accustomed, in the geometrical
versions of the collective model, to a variable p
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which has access to the entire real axis. On the oth-
er hand, if we look for a foundation of the collective
model in a finite dimensional shell model, we might
expect the "natural" definition of p to contain a re-
striction of the kind found.

We have introduced the word natural with irony
because it requires only a simple point transforma-
tion to convert scales. This transformation is also
necessary to compare with previous work. We
therefore introduce the transformation

p=—v 2P/(1+ p')'" (6.1)

under which vv(p, y) becomes (dropping the bar)

( —,—2F)2P 2FX( , )'i—P cos3y

(1+P') (1+P')'

+F[1—(X'/14)] 4 (6.2)
(1+P')'

In this form, the fact that the collective Hamiltoni-
an will support only a finite number of bound states
is expressed by the property that

lim vo ——1 —( —,)X (6.3)
P~ oo

which also puts an upper bound on interesting
values of X. Equation (6.2) agrees with corre-
sponding expressions in Refs. 11—17. For further
discussion of the potential energy surface, we refer

to these works and to Ref. 22.
The next step in a complete study is the transfor-

mation of the kinetic energy to intrinsic coordi-
nates. This has been carried out, but since the cal-
culation is standard and contains nothing of special
interest to our study, it will be omitted from the
present paper.

VII. CALCULATION OF THE POTENTIAL
ENERGY SURFACE PROM A

COHERENT STATE

iN;P, y)=
&N!(1+P')"

(7.1)

where

Bt=st+p[cosydo+ v'I/2sjny(d q+d q)] . (72)

This state is normalized. For distinct values of p, y
we have the overlap

As stated above, the potential energy surface (6.2)

has been obtained independently by a number of au-

thors. All have used the same method, distinct
from ours. Here we recall briefly the elements of
the method and then mark its limitations.

The method utilizes the coherent state

(N;p~y
i N;p, y) =[I+pp cos(y —y )p/(I+p2pi2(1+p'2)~n

N~ co

exp[Npp'cos(y —y') ——,N(p +p' )] . (7.3)

Formulas for calculating the matrix elements of any
boson number conserving operator between pairs of
states of the set (7.1) have been given by Ginocchio
and Kirson. ' They are derived by repeated appli-
cation of such simple formulas as =0

N~ oo

—+ 0.

(N;P, y iII'i N;Py) [(N;P,yia i

—N;P, y)]'
i(N;P, yiH iN;P, y)]'

(7.7)

s iN;p, y) =[N/(1+p )]'i iN —1;p,y), (7.4)

do i N;p, y) = pcosy[N/(1+p2)]'~2

(7.S)

X iN —1;P,y) . (7.6)

Examination of the results shows that

X iN 1;P,y), —

d2
i N;p, y) = psjny[N/(I+p2)]'~2

2

Thjs jmpljes that
i N;p, y) becomes an eigenstate

of H jn thjs limit. A straightforward calculation of
the expectation value of H, Eq. (S.l), in this state
then yields, when rescaled, the potential energy sur-
face (6.2), not surprisingly, since the same limit
(N~ao ) produced the latter as the surviving part
of the energy.

The elegance of the route taken to the potential
energy surface through the use of the coherent state
is balanced by the fact that it represents a cul de sac
as far as determination of the full Bohr Hamiltoni-
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an is concerned. As shown by OK a fuH collective
description can still be obtained with the help of the
coherent state when one views it as an intrinsic state
within the method of generator coordinates. We re-
view this point of view below, especially in its rela-
tion to and contrast with our method.

=&a,A' n,.«)
The "Hamiltonian" may be found by deriving

(8.8)

and to study the Schrodinger equation [notice that
in (8.7), ap occurs, rather than ap]

(N, g~II ~N, a) =4 (ap, d/dap)f~„

VIII. APPLICATIQN OF THE METHOD OF
GENERATOR COORDINATES: RELATION TQ

THE DYSQN MAPPING

(N, a ~s"=(N —l,a
~

vN,
(N, a

~ dp ——(N —1,a
~

V Nap,

(N —1, [d„=N-'"(a/a, )(N, [,

(8.9)

(8.10)

(8.11)

In order to study the full eigenvalue problem

H
i
N, v) =E~„i N, v), (8.1)

(N —l,a
~

s = N'~'[1 —N 'ag(B/Bag)] (N;a
~

.

(8.12)

where
~
N, v) is an exact eigenstate and v stands for

all quantum numbers other than the boson number,
we introduce an unnormalized intrinsic state,

~N, a)=(N!) '~ (8 ) ~0),
8 =s +n*d:—s~+e*-d~

(8.2)

l»v)=ff f «+N, .(g) ~N, u) (8.4)

is possible, where each contour is any circle enclos-
ing the origin. The demonstration consists first, in
noting that

~
N, v) may be expanded in terms of the

(unnormalized) oscillator basis

ng, n2, n ),nP, n ],n

where in place of P, y (and the Euler angles), we
find it more convenient to utilize laboratory coordi-
nates a&, which may be complex numbers.

It is not difficult to convince ourselves that a rep-
resentation of the form

For the generators of SU(6), these formulas yield

the correspondence

s dp~B/Bcx@, (8.13)

d„s~Nap[1 —N 'ag(B/B~~)],

dpdp ~txp(B/Bo!p ),
»—+[N —a~(B/Ba~)] .

(8.14)

(8.15)

(8.16)

The salient feature of this correspondence is that
it does not maintain the Hermitian conjugation rela-

tionship of the operator s d„and dps. It follows

that 4 (ap, B/Rap ), which is obtained by substitut-

ing the above correspondence into the IBM Hamil-

tonian, is also formally non-Hermitian if it contains

terms with an odd number of d boson operators (as

does the general IBM Hamiltonian studied by GK
as well as the special one considered by us).

The relationship to the Holstein-Primakoff map-

ping can be established in a few steps. First we map

=(s') '(d2) ' . (d ) '~0) . (8.5)

The latter, in turn, may be obtained from a mul-
tipole contour integral by repeated use of the for-
mula

&n!(n n&)! 1 (a—+b2;)"lb 1— lk
n! 2+i " "1+'

n„b„, (8/&&„)

Thus (8 13)—(8.16) are now written

(s dp)D bp, ——

(dts)D b„[N —b 'b]——,
(d pdp' )n bpbp

(s "s)D N b—— —

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

and (a+bz) equals either the sum of the terms in

8, Eq. (8.3), in the first step, or a partial sum of
such terms in the succeeding steps.

Thus, one is encouraged to think of the states

~
N, a) as a basis, to introduce a "wave function"

The subscript D reminds us that what we have here

is a version of the Dyson mapping. ' ' Notice25, 39,40

what happens under this mapping to a formally

Hermitian combination:

(dpdp dp"s +s dp"dp'dp )D

gn (a)=(N, a IN, v), (8.7) = btb„bt-[N bb] +b„.b—„bp, (8.22)
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which is not Hermitian because of the presence of
the term quintic in the boson operators. This is the
origin of the formal non-Hermiticity in the work of
GK.

The Dyson and Holstein-Primakoff mappings are
connected by a similarity transformation which can
be stated in several forms. We shall give it in terms
of an operator S, where

S(dqs) pS '=(dqs)HP, (8.23)

S(s dp)g)S =(s dp)Hp ——(dps)Hp. (8.24)

The solution of these conditions shows that S is a
function only of the operator nb ——b .b and is de-

fined by the recurrence relation

S(ns+1)=[N ns—] ' S(nb). (8.25)

Since the elementary orthonormal basis for the HP
representation is known [Eq. (34)], the operator S
may be used to generate the basis for the Dyson
representation whose states differ only by normali-
zation constants from the former.

Thus we have shown the equivalence of our work
to that of GK, which corresponds to the use of an

orthogonal but non-normalized basis. An interest-

ing alternative interpretation of the work of GK
may be given. It has been shown that the map-

ping (8.13)—(8.16) can be related to an orthonormal
basis in the Bargmann Hilbert space. This view of
generator coordinates is not completely new.

IX. IF THE IBM AND THE BMM
ARE EQUIVALENT,

WHY STUDY THE IBM?

The major result of this paper is that the BMM
can be put into a mold, without doing violence to its
essential physical content, which renders it unitarily

equivalent to IBM I. The ideas involved can clearly
be extended to models which treat neutron and pro-
ton pairs individually. The mapping is such that a
polynomial Hamiltonian in one form transforms
into an irrational function in the other. The deter-

mination of which model is better served by a poly-
nomial approximation has to be settled by the mi-

croscopic theory, we believe, since it appears that
there will be little distinction in the quality of fit to
experiment between polynomial models of' the two

types with the same number of parameters. What
has proved most attractive about IBM, aside from
the vigor with which it has been transformed into a
useful and active tool for the analysis of experi-

ment, has been first that it is the natural form in

which dynamical symmetries emerge, and second,
since it is formulated in terms of number changing
operators, it naturally suggests that the analysis be
carried out by smooth variation of the parameters
of the Hamiltonian with nucleon number.

It is also clear why only the SU(5) symmetry ' is

manifest in the BMM model. For the latter the na-

tural algebra is the semidirect product of the Weyl

algebra of the canonical variables b,b with the U(5)
of the products btb. If we use a polynomial in these

operators as Hamiltonian, it is impossible to realize
the O(6) and SU(3) symmetries as exact symmetries,
since the mapping (4.1)—(4.3) shows that the ex-

pression of these in terms of the b boson is non-

linear and irrational. Nevertheless, the same basic
physics as is contained in the IBM polynomials is
also expressed by the BMM polynomial forms. [It
should be noted that Janssen et al. , who first real-

ized the SU(6) symmetry in the HP mode, were led

naturally also to a consideration of the subgroups,
for instance SU(3), in the nonlinear form. ]

To conclude in a practical vein, our work implies

that fine tuning of the IBM to bring it into more

precise accord with experiment will necessarily lead

to an enlargement of the framework of the model

along the lines we have insisted upon, namely, the
inclusion of higher order terms in the various

operators.
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