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Meson fields with vanishing expectation values
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A method for treating meson fields whose expectation values must vanish because of
symmetry is presented in terms of a simplified model of pions, nucleons, and deltas consti-

tuting a model alpha particle. Self-consistent equations for the wave functions are derived

from the variational principle. The relation to the mean-field procedure, which can be used

for fields with expectation values, is discussed.

NUCLEAR STRUCTURE Self-consistent pion field. ]

INTRODUCTION

The idea that nuclear interactions are due to the
exchange of virtual mesons has been implemented
in two distinct ways in the theory of nuclear sys-
tems. Most frequently, the meson exchange interac-
tion is converted into a nucleon-nucleon potential,
which is then used in treating nuclear systems as
consisting of nucleons interacting through two-body
potentials. The framework for this paper is the al-
ternate formulation, in which a nuclear system is
considered to consist of nucleons and meson fields
with interactions of the Yukawa type 4~%4, where

4 is the nucleon field operator and 4 is a meson
field operator; generally, several meson fields are in-
volved. The Yukawa interaction can also be
thought of as describing the emission and absorp-
tion of virtual mesons by the nucleon current.
There are various techniques that have been applied
to nuclear systems in this meson-field framework;
all of them have in common the use of a scalar
meson field to provide attraction, a vector meson
field to provide repulsion, and a velocity or momen-
tum dependence in the fermion-scalar vertex that
weakens the effects of the scalar field at high densi-

ty so as to give saturation. Both the scalar field and
the vector field have nonzero expectation values in
the nuclear ground state; these expectation values or
mean fields act as potentials in which the nucleons
move. The source of the meson mean field is the
nucleon current in the mean-field potential, so that
there are coupled equations for the nucleons and the
meson mean field that must be solved self-
consistently. '

In such mean-field procedures, the pion field can

have no effect, since there can be no pion mean field
in any system with isospin zero or in a system with
spin zero and definite parity. That a field that is
known to interact so strongly with nuclei is ignored
is a serious defect of the mean-field treatments of
meson-nucleon systems. It might be argued that the
scalar and vector fields, which are typically taken to
have masses of the order of two to four pion
masses, in some way represent the effects that arise
from the exchange of virtual pion pairs. Such an
argument would be consistent with the nature of the
nucleon-nucleon potential that has been derived
from ideas about boson exchange. In this "Paris"
potential, the intermediate-range part of the poten-
tial does actually come from two-pion effects, but
there is neither a proof nor even a good heuristic ar-
gument that shows that the same intermediate-
range potential would come from the scalar and
vector meson exchanges that are used in the mean-
field treatments of nuclear systems.

What is needed is an extension of the mean-field
procedure that will provide for the treatment of a
field whose expectation value is zero. If the cou-
pling of such a field were small, perturbation theory
would provide a satisfactory way of treating its ef-
fects; however, the pion field is not weakly coupled.
In this paper, a general method for treating meson
fields whose expectation values are zero is present-
ed. The method can be applied to nuclear boson
fields with nonzero isospin or nonzero spin or odd
parity, as well as to other boson fields of interest,
such as, for example, the gluon field in quark sys-
tems. The presentation is in terms of a particular
model, but the focus is not on the specific features
of the model; rather it is the technique of treating
the meson field that is of interest. The calculation
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of numerical properties of the model, insofar as
they may be of interest, is reserved for a separate
description; because of the subordinate role of the
model, it is presented in a simpler form than a
model with more realistic properties would have.

DESCRIPTION OF THE
SIMPLIFIED MODEL

In order to emphasize the vanishing mean field,
the model is chosen to be a highly simplified alpha

particle, with four nucleons all in Os states; the Os

states all have the same radial wave function and

differ only in the spin-isospin parts of the wave

function. For such a system, the Hartree-Fock pro-
cedure would give an equation to determine the
form of the Os radial wave function. The aim here

is a corresponding determination of the form of the
radial wave function that arises from the interaction
due to virtual pions. The virtual pions are taken to
be p-wave pions because these are known to have

the strongest interaction with nucleons. The emis-

sion or absorption of a virtual pion by a nucleon is
assumed here to be accompanied by the transforma-

tion of the nucleon into a delta particle with spin —,

and isospin —,; pion-nucleon-nucleon and pion-

delta-delta vertices are omitted in the simplified

model. Parity and angular momentum conservation

allow the delta to be in an s state; there is therefore

a Os state for the delta, and its form must be deter-

mined as well as the form of the nucleon Os state.
The p-wave radial wave function is taken to be the
same for all the pions; it also must be determined.

With these restrictions on the state vector of the

system, the effective Hamiltonian is evidently

II.ff=I'w& &x &x +I'z& &~ b~ +~&~~~~~

X;i„(KbaS;Ti„—b~+K b~S; Tuba)(&;i. +&;x) .

(1)
Here bN is the annihilation operator for a nucleon
in the Os state with spin and isospin projections
specified by the subscript m, and b~m is the corre-
sponding operator for deltas; there are four spin-

isospin possibilities for the nucleon and sixteen for
the delta. The operator A;~ is the annihilation
operator for a p-state pion with angular momentum
projection i and isospin projection A,. The S and T
operators are the generalized vector spin and isospin
operators that transform a state with (iso)spin —,

into a state with (iso)spin —,. All of the information

about the nucleon and delta Os wave functions and
the pion Op wave function is contained in the con-
stants F~, I"~, 8', and E that appear in Hdf,' these

where g is the Os space wave function for the corre-

sponding fermion. For the pion it is convenient to
use a wave function with the angular part removed;
for arbitrary orbital angular momentum projection
m the pion wave function is

qr (k)Yi~(k)/k, (3)

so that the pion energy 8'is given by

W= I co(k)g) (k)dk,

co=(k'+m ')'~',
(4)

with y (k) real. Then if the Yukawa interaction

term in the field-theoretic Hamiltonian has a nu-

cleon current of the form

'EIIgTgS J4~,

it follows that K is given by

g 4'~ k
~~

k. J(p, q)
[12'�(k)] ' k

X il(z ( q )5( p —q —k )d p d q d k,

although for the present discussion the exact details
of the constants and form factors are irrelevant.
The thrm wave functions are assumed normalized.

SELF-CONSISTENT EQUATIONS

The appropriate self-consistent procedure is now
obvious. The ground-state energy of H, rr depends
on the four constants I'~, I"~, 8', and E and

through them on the three wave functions. It is

only necessary to minimize the ground-state energy
of H,rr subject to the normalization constraints and
the constraint that the baryon number of the system
be four. Let F&(F,W, K) be the four-baryon
ground-state energy of H,rr as a function of its
parameters. Then the self-consistent equations are

constants are functionals of the wave functions.
The energies F of the nucleon and delta are obvious-

ly

FN =I (p '/2MN )
I 4x ( p )

I

'"p ~

Fr=Ma M—„+J(p'/2M')
l
ga(p) I

'dp,

(2)
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5E4 BE4 p2 BEg

gF 2M
4(P)+ 5g VNa(p q)fa(q) dq =vN4N(P)

5@(p) N N

SE, aE, ~2 aE,
BF

Mh™N+
2M i~(p)+ M V~(p q)ix(q) dq=paia(p)

5y~(p) BFa 2M'

5E4 BE4 3E4 BE4
2'(k)y (k)+ pa~(k)+ pNa(k)=2@~ (k),

BW

(7)

where the potentials V and sources p are given by

y (k)

priv(k)=Pivot(k)=, ~, Jg~(P), '
QN(q)5(P —q —k)dP dq .

m.[12co(k) ]'~ k2

Some information about the nature of the solutions
is an immediate consequence of the form of Eqs. (7)
and (8). Clearly the Lagrange parameters pN and

p~ are equal and are given by the lowest eigenvalue
of the coupled single-particle equations for g~ and

fa, this is the usual result for self-consistent fer-
mion wave functions. The normalization of 1(t~ and

1(a is independent of p~ and pg. The third part of
Eq. (7) gives the form of the pion wave function
q~(k); the Lagrange parameter p must be chosen
so that the pion wave function is normalized. Re-
sults from the static model of the nucleon-pions
system show that p~ is small or zero in that case.
Other relations that follow from the form of the
equations are useful in reducing the computational
complexity of the self-consistent equations.

For present purposes, the essential feature is the
existence of a set of equations for the nucleon, delta,
and pion wave functions for this case where the ex-
pectation value of the pion field is zero. The extra
complications from the vanishing mean field appear
at the stage of determining E4(F, W,E), the lowest
four-baryon eigenvalue of H, rr. The states that
make up the ground state of Hdf are of the form

[ ~4 joo

t
A+ [X'b, j"j~ [ [A+ A+ j" j N'b, j"j~

( ( (A+)N je j ~3g jss joo

[ [ (A + )" j",f
X'&' j"j ~, etc. , (9)

where the [ j indicate vector coupling and the rest
of the notation should be self-evident. The vanish-

ing mean field means that at least two distinct
states of the nucleons-deltas system must be in-
volved in the ground-state vector, in contrast to the
case of nonvanishing mean field, where a single fer-

I

mion state vector can be used. This is just another
way of saying that a pion emission or absorption is
accompanied in the simplified model by the
transformation of a baryon from nucleon to delta or
vice versa; when a meson has nonvanishing mean
field, it can be emitted without changing the baryon
quantum numbers. In addition, an accurate calcu-
lation of E4 must take into account the effects of
pion pairs and other multipion states. Some
methods for handling pion pairs have been previ-
ously developed and applied to the static model of
the pion-nucleon system. As was the case in Ref.
5, here also the number of state components, which
are of the types shown in (9), that are involved
when there is no mean field is expected to be large,
so that it is clear that, just as was done in Ref. 5,
the symmetry properties of the Hamiltonian must
be thoroughly exploited in order to reduce the di-
mensions of the problem to manageable size.

RELATION TO THE MEAN-FIELD PROCEDURE

In the case of a meson field that can have an ex-
pectation value, the indices on the meson annihila-
tion operator A are absent. In such a case, it is also
possible to use a ground state that has only a single
fermion wave function component or single Slater
determinant (SSD). In a SSD fermion wave func-
tion, every fermion operator is equivalent to a c
number, and H,ff is equivalent to a Hamiltonian of
the form

HMp F+WA+A —K(A——++A ),
E=E~,

which is trivially solved to give
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H~~ F——K—/W+ W(A K—/W) (A K—/W),

with ground-state energy F K—/W. The essential

point is that not only does the operator A have the
expectation value K/W in the ground state, but the
ground state is an eigenstate of the operator A with
eigenvalue K/W. This information is sufficient to
permit the usual mean-field equations to be
recovered.

Additionally, it is clear that it is possible to ex-
tend the procedure leading to Eqs. (7} and (8) to the
case when there is a mean field. Several states of
the fermions can be used to model cases where the
field creation operator A is expected to couple
strongly to certain fermion particle-hole excitations.
Then a result like Eqs. (7) and (8) is obtained. The
difference is that more than one matrix element K is
needed; in particular, there are E matrix elements
that are diagonal in the fermion space in cases with
mean field, as in Eq. (10).

the meson field. Now choose a finite set of expan-
sion functions for each field operator and write

N

ai(k) =~~y~(k)+aii(k),
1

%(x)=+B;f;(x)+%i(x).
1

(12)

Then within the subspace of the Hilbert space that
is generated by the operators A~ and 8; actmg on

0

the vacuum, each of the field operators is equivalent

to the finite part of the sum; moreover, the Hamil-

tonian is equivalent within this subspace to the ori-

ginal field-theoretic Hamiltonian with each field

operator replaced by its equivalent finite sum. The
result is an effective Hamiltonian written entirely in

terms of the set of operators Ai and B; and their

adjoints. If the field-theoretic Hamiltonian is of the
Yukawa form, then the effective Hamiltonian is

H,fr =+F()B(BJ+gW~pA +p
ij ap

MESON-NUCLEON SHELL PICTURE

—g B(BqA +K,q.+~BJ.B;
ija

(13)

The form of the self-consistent problem is that of
a generalized shell model in which not only the nu-

cleon field operator is expanded in terms of a set of
single-particle orbitals, but also the delta field
operator and the pion field operator. In the static
model of the nucleon-pions system, the use of a sin-

gle preferred mode for the pion field was suggested
by Tomonaga. The use of the boson field creation
and annihilation operators A;~ and A;q in Hdf al-
lows the pion orbitals to be occupied by arbitrary
numbers of virtual mesons. In the simplified model
used above, only one pion orbital is used, but it is
clear that the model can be generalized to include
various pion orbitals, such as Os, 2s, Od, etc. More-
over, similar orbitals can be used to include effects
of other mesons; the scalar and vector mesons often
used in meson-theoretic treatments of nuclear sys-
tems can be treated in the same way.

Formally, the meson-nucleon shell picture can be
defined by expanding the meson and baryon field in
terms of orthonormal functions. For simplicity of
notation, it is assumed that there is a single baryon
field operator 4(x ) and a single meson field opera-
tor 4i(x } with isospin or color or other symmetry
index A, . For the meson field, it is not the field
operator 4i(x) that is expanded, but rather the
momentum-space annihilation operator ai ( k ),
whose relation to 4i(x) depends on the nature of

A significant point is that the number of distinct I,
W, and K coefficients is much smaller than it might
seem; many of the coefficients are related by
Clebsch-Gordan algebra, so that the number of dis-

tinct coefficients is only the number of distinct re-

duced matrix elements.
As with the effective Hamiltonian of Eq. (1}, it

seems useful to break the treatment of the effective
Hamiltonian of Eq. (13) into two steps. First it is
necessary to find the 1V-baryon ground-state energy
of II,rf as a function of the parameters I';~, W~&,
and K,z.~. The coupled equations like Eqs. (7) and
(8) for the baryon and meson wave functions can be
derived from the assumed form of E as a function
of the parameters.

EXCHANGE

When meson fields are treated in the mean-field
approximation, the result is an effective baryon en-

ergy functional that contains only the direct or Har-
tree terms that would arise from a corresponding
one-meson-exchange potential in a baryon-baryon
interaction Hamiltonian. It has previously been
shown that the effect of the Fock exchange terms is
carried by the baryon self-energy terms. The
baryon in the N-baryon system has lowered energy
because of its interaction with the meson field
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shared by the N baryons. On the other hand, a free
baryon has a self-energy due to its interaction with
its own meson field, and this latter energy must be
considered when comparing a system of N bound
baryons with the same N free baryons. A similar
situation can be expected to occur when there is no
mean field; the single-baryon self-energies must be
included in the calculations in order to produce the
effects that would usually be given by Fock ex-
change terms.

It is interesting to note that the same separation
of Fock from Hartree terms occurs also in the
path-integral formulation of theories with only
baryon-baryon interaction. In that case it is fluc-

tuation effects that produce the Fock exchange
term.

A simple model has been used to show how to
treat meson fields that. have no expectation value in
a variational procedure. The usual mean-field pro-
cedure for treating meson fields with expectation
values can be obtained as a special case of the more
general variational procedure.
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