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An extension of the Lee model in quantum field theory is presented which has some of
the features of mesic atoms. The model has three fermions V, Nl, and X2, and two bo-
sons 0» and 02, which interact according to V~N +0, a=1,2. There is also a pair in-
teraction between an N and 0 particle which can produce atomic bound states whose
energies are shifted and broadened by the interaction V~~X +0, a=1,2. The T matrix
for N~ —0 scattering is obtained in closed form, and its bound state and decaying or
resonant state poles are investigated.

NUCLEAR REACTIONS Model quantum field theory for mesic

atoms.

I. INTRODUCTION

The Lee model' was introduced to aid in the
problem of understanding the renormalization pro-
cedure in quantum field theory. The model con-
sists of two baryons N and V and a boson 0 which
interact by the elementary process V~X+8. All
divergent quantities can be removed by a mass re-

normalization and a coupling constant renormali-
zation. The physical V-particle state and the N-0
scattering states can be obtained in closed form, '

and the V-0 scattering problem, which allows for
production ( V+8~N ~28), is also solvable. 2

The model has been used to illustrate the prob-
lem of ghost states in quantum field theory and to
test the definitions of the mass and lifetime of an
unstable particle. The book by Schweber gives a
complete treatment of the V and N-8 states, as well

as extensive references to the literature.
The model presented here has a V particle, two

N particles, and two 9 particles which interact ac-
cording to VAN~+6, @=1,2. There is also a
pair interaction between Na and 8a (a = 1,2) given

by a static, Hermitian potential. As in the original
Lee model, ' only the V-particle is dressed by the
interaction. We shall see that under certain cir-
cumstances the model describes something similar
to a mesic atom, in that there can be atomic bound
states produced by the pair interaction between an

X~ and a 8~ particle, whose energies are shifted
and broadened by the strong interaction

V~N +0 . Thus, the model will be useful in

studying strong interaction effects in mesic atoms.
Apparently, all methods for determining these

effects attempt to relate them to information on

meson-nucleon and meson-nucleus scattering. A
simple formula due to Deser et al. relates the en-

ergy shift and width of the mesic-atom state to the
meson-nucleus scattering lengths. The uncertain-

ties in this relation are still a subject of interest.

Deloff ' has developed more sophisticated rela-

tions between the complex level shifts and the
meson-nucleus scattering amplitudes by analytical-

ly continuing the S matrix below threshold.
The complex energies of a mesic atom can also

be related to scattering information through the in-

termediary of a complex optical potential. A Kiss-

linger-type potential used in a Klein-Gordon
equation with an electromagnetic potential has

been relatively successful" ' in accounting for
level shifts and widths in pionic atoms. This ap-

proach is not as successful for kaonic atoms, ' '
where the dynamics involves coupled channels

(K +N~K +N, K +N, X+rr, A+m) and

subthreshold resonances [A(1405) and

X(1385)].' " In particular, it appears that in a nu-

cleus the A(1405) resonance can lead to a reversal

of the sign of the shift produced by a simple opti-
cal potential. '

In the model presented here the mesons (the 8's)
interact only with very simple objects (the V and
the N's); therefore, the model cannot be used to as-
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sess those aspects of the theory of mesic atoms
which involve complicated nuclear structure. It
can be used to investigate the validity of the for-
mula of Deser et al, as well as the relations
developed by Deloff. ' The model can also be
used to study the complications that arise as a re-

sult of coupled channels and subthreshold reso-
nances.

One possible interpretation of the model is to
think of %1 and the dressed V particle as an n, the

01 as a m, and the N2 and 02 as a p and ~,
respectively, thereby mimicking the simplest pi-
mesic atom. Even this simplest of atoms has its
atomic states broadened by the strong interaction,
since the mass of the ~ -p system is greater than
the mass of the ~ -n system by 3.3 MeV. Another
possible correspondence is N1, 01, E2, 02, V and X,
n., p, E, A(1405). The parameters of the model
can be chosen so that the dressed V particle is un-
stable. This makes it possible to study the effect
of a subthreshold resonance on an atomic state.

The detailed application of the model to the
study of mesic atoms and its extension to more
complicated "nuclei" will be presented in future
publications. Here we shall obtain a closed form
expression for the Np-0~ T matrix and investigate
its bound state and resonance or decaying state
poles. We shall see that in this sector the model is
equivalent to a system with two coupled channels,
where the strong interaction is described by energy
dependent separable potentials. We shall also find
that if the channel coupling is negligible, i.e., the
widths are small, the strong interaction
( VmN~+8 ) shifts the energies of the atomic
states so that they interlace the energies obtained
with no strong interaction.

In Sec. II the Hamiltonian is given and its sirn-

plest consequences are stated. The Ep-0 T matrix
is derived in Sec. III and the equivalent coupled
channel problem is presented. The renormalization
of the model and the poles of the T matrix are ex-
amined in Sec. IV. A brief discussion is given in
Sec. V. Units in which fi=c=1 are used
throughout.

II. THE HAMILTONIAN

The model describes three fermions V, X1, and
%2 with masses mp, m 1, and m2, and two bosons
01 and 02 with masses p1 and p2. We shall see
that the bare mass mp is renormalized to a physi-
cal mass m, while for the other masses there is no
renormalization. The Hamiltonian is given by

P+~1+~2 ~

Ap ——mpV V

2 2

+ g m~N~N +fd kg a~(k)a~(k)r0 (k),
a=1a=1

2

A ~
——fd kd q+N~~(k)U~(k, q)N~a~(q),

4 2
——fd keg Ou (k)[ V N a (k)

a=1

+a (k)N V] .

co~(k) =(k +@~)'

The term A 1 in the Hamiltonian describes the in-
teraction of a 0 particle with an N particle by
means of the Hermitian potential U (k, q )

=U~(q, k). The last term in P describes the pro-
cesses

V~X~+0~, a = 1,2,
with bare coupling constants g~p and cutoff func-
tions u~(k).

The bare vacuum characterized by

a (k) ~0&=N ~0&=V ~0&=0

is also the physical vacuum, i.e.,

H i0&=0.

(4)

The single particle states

~

8 k &=a~(k)
~
o&,

[N. &=N.'[0&

satisfy

H
i
8 q & =a) (k)

i
8 q &,

H
~
N~& =m~

~
N~&,

The operators V,E~ and V,N~ are the creation
and annihilation operators, respectively, for the
corresponding particles, and obey the usual an-
ticommutation rules for fermions. The operators
a (k) and a~(k ) are the creation and annihilation
operators, respectively, for a 0~ particle of momen-
turn k, and obey the usual commutation rules for
bosons. Recoil effects for the fermions have been

neglected, and it has been assumed that there is
never more than one V or X particle present. The
energy of the free bosons is given by
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which shows that the 0 and N are not dressed by
the interaction. However,

I
v)=v'Io)

for the in (+ ) and out ( —) scattering states. Fol-
lowing Schweber's analysis of N 8-scattering in

the Lee model, it is straighforward to show that

is not an eigenstate of H, and hence there is a dis-

tinction between a bare and physical V particle.
It is straightforward to show that the operators

B=V V+ gN N
a=1

Q~=N~N fd —k a~(k)a~(k)
(9)

commute with M. The existence of these opera-

tors is essentially the reason the model is tractable.
From now on we shall only be concerned with

those states for which the eigenvalues of the opera-

tors B, Q&, and Qq are 1, 0, and 0, respectively.

Such states are superpositions of the states
I
V)

and

IN. 8.-, &+
——

I N. ,8.-„&+r[E.(k)+i~]

X[g Ou (k)
I V)

+fd'q IN~, 8 -„)U (q, k)],

where

E (k)=m, +co (k)

r(z) =(z —H)-' .

(12}

(13)

(14)

I
N~, 8 -„)=N~ (k }

I
0), a=1,2 . (10}

From (12) it follows that the S-matrix elements are

given by

In solving the model in this subspace it is most
convenient to work with the T matrix for Np 8-
scattering, since this contains all the information

on scattering, bound states, and resonances.

IIIo THE T MATRIX FOR Np 8~ SCATTERING

We begin by solving the equation

H
I N~, 8 k )+——[m~+co~(k}]

I
N~, 8 I, )+

-&Np.8,-, IN. .8.-, &+

= 5p 5 (p k) —2n—i5[Ep(p) —EN(k)]

X Tp (p, k;z),

z =Ep(p)+ie=E~(k)+is,

with the T-matrix elements given by

(15)

Tp (p, k z)=5p U (p, k)+ up(p)gpo&v I
+fd'I Up(p 1 }&Np 8p7 I

XI(z)
I
V)g ou (k)+ fd q IN~, 8 -)U~(q, k)

We see that in order to determine the T matrix we must evaluate the matrix elements of r(z) in the sub-

space of the bare states which are eigenstates of B, Q~, and Q2 with eigenvalues 1, 0, and 0, respectively.
From (5), (8), (10), and (14), it follows that

& VIr( )
I @&—&0I [vH]r( )

I
@&=&V14&

z&N 8 k I
I'(z)

I @) &01[Nba (k),H]r (z)
I
4&=&N~ 8.r, I @&

where
I p) is any state in the subspace of interest. Working out the commutators leads to the equations

,)&VIr( ) Ill& —yg.,fd q (q)&N, 8 -„Ir( ) Il(&=&vI&&,
a=1

(17)

[z —m co (k}]&N,8—k I
r(z}

I f)—f d q U (k, q)&N, 8 -
I
r(z)

I f)
=g (k)& v

I
r( )

I y)+ &N, 8 -„
I q) (19)

Equation (19) can be solved for &N, 8 -„
I
I (z) I g) in terms of the quantities on the right hand side by us-
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ing standard Green's function techniques. Substituting the resulting expression for (N, O z ~

I (z)
~ g) into

(18}leads to an algebraic equation for ( V
~

I'(z)
~ f), which is easily solved. In writing out the results it is

convenient to use a Dirac notation. We define

(p iu )=u (p),

(p iH~ i
k) =[m~+c0~(k)]5 (p —k)+U~(p, k),

(p i

U
i
k)=U (p, k),

G (z)=(z H)—
and assume

I i
k)d k(k

i
=1.

We find for the various matrix elements of I (z) the expressions

(V~ I (z)
~

V)=d '(z),

(Vil( )[N,H -)=d '( )g (u iG ( )iq),
(Np, 8p i i

I'(z)
i
V) =( 1

i
Gp(z)

[ up)gttod '(z),

(20)

(21)

(22)

(23)

(24)

(25)

Substituting these results into (16), we find

Ttt (p, k;z)=(p
i Tft (z)

~

k),
with

(27)

where

2

d(z)=z —mo —gg~o (u~
~
G~(z)

~

u~) . (26)
(32}

Hp(z)=5tt H~+Wti (z) . (33)

Thus, T@,(z) can be thought of as arising from the
solution of a two channel problem with the Hamil-
tonian given by

Ttt (z) = 5ft t (z)+[1+UpGp(z)]

X ttt. (z)[1+G.(z}U.],
where

t~(z) =U~+ U~G~(z}U~

and

(29}

(30)

It is interesting to note that Wtt (z) is the Born
approximation for the T matrix when U =0,
a= 1,2. Energy dependent potentials of this type
have been used by Miller to describe pion-nucleon
and pion-nucleus scattering in a formalism based
on the Chew-Low theory.

IV. BOUND STATES, DECAYING STATES,
AND RESONANCES

ttt (z) = Wt(z)t+QWti„(z)Gr(z}tr (z),
y

with the energy dependent potential given by

(31)

Equations (26)—(30) are the essential results of
the model in the subspace associated with Xp-0
scattering. The structure of (28) is exactly the

same as the expression for the T matrix in the
two-potential formalism of Gell-Mann and Gold-

berger. ' ' In fact, it is straightforward to show

that t@,(z) is the solution of the equation

Bound state energies as well as pole positions for
decaying states and resonances are given by the
zeros of the denominator function d(z) defined by

Eq. (26). In order to determine the properties of
d (z) it is useful to make eigenfunction expansions
of the Green's functions G~(z) which appear in

(26) and are given by (23) and (21). We can write

G ( } y ~an)(an~
z —Ecxpl

+ ~

ak)+dik+(ak
~

z —E (k)
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where the bound states
f
an ) and the in ( + ) and

out ( —) scattering states
f
ak )+ are solutions of

with

H fan)=E „fan),
H

f
k)+ ——E ('k)

f
k)+,

(35)
Ea(k)=ma+co (k) .

Inserting (34} into (26), we obtain

(36)

pan I"d~ v' ~ pa pa(~)2 2

d(z)=z —mo — g 0 z —Eaa &a z —m a —co
(37)

where

p„=f(an fu ) f',
p (ro) =4nco

f ~ (ak
f

u )
f

', k =Qro' p' . —
(38)

1
Im =+a5(E —m —co)E+r e—m~ —co

(41)

is a generalized R function, i.e., a function of the
type that appears in the study of the Low equation
for simple field theories. '

By inserting the identity

From (28), (29), and (34) it appears that Tp (z)
has the poles of G~(z) and G (z); however, by us-

ing (30) and (37) it is straightforward to show that
these poles are illusory. Thus, all the poles of
Tp (z) arise from the zeros of d(z).

According to (37), d (z) has simple poles at
z =E „and two right hand branch cuts beginning
at z =m +p, a=1,2; also,

d'(z) =d(z*) . (39)

Thus, except for the singularities mentioned, d (z)
is a real, analytic function of z. Using (26) and
(23) it is straightforward to derive the relation

Imd(z)=Im(z) 1+ gg o (u
f
G (z)G (z)

f
u )

which shows that Imd (z) has the same sign as
Im(z), and furthermore, d (z) cannot vanish unless
Im(z) =0. All of this establishes the fact that d (z)

into (37) we find

2

Imd(E+ie) =+egg o2. +(E—m )2 —p 2

a=1

Xp (E—ma)8(E —ma —pa),

(42}

where E is a real energy and e is a positive, infini-
tesimal parameter. Assuming for the sake of de-
finiteness that m~+p~ ~m2+p2, we see that
Imd(E+ie) with E m&~ p+~ can vanish only if
p&(E —m

& ) has a zero for m, +p& &E & m2+p2,
or if p&(E —m& ) and p2(E —m2) both vanish at
some value of E & m2+p2. Of course, in order for
d (E+i e) to vanish, Red(E+ie) must vanish at the
above mentioned zeros. Thus, except under very
special circumstances d (z) can vanish only for
z=E (m)+p).

In order to proceed in as simple a way as possi-
ble, we shall assume from now on that H~ has no
bound states, and that H2 produces bound states
with energies E2„&m ~+pi. Other possibilities
can be treated along the same lines as those
presented here. From (23) it follows that

(43)
2 2

gg 0 (u fG (E) fu )=gg o (u fG (E) fu )&0, E&&m p+~

which when combined with the fact that mo —E decreases linearly with E, shows that mo can always be
chosen so that d(E) =0 has a solution for E & m&+p, ~. Assuming this has been done we identify this ener-
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gy with the physical mass m of the V particle. By combining

d(m)=0, m &mi+pi

with (26), we can write

2

d(z)=(z —m) 1+ gg (u
~
G (m)G (z)

~

u )
a=1

(44)

(45)

thereby eliminating the bare mass mo from the expression for d (z). In the spirit of the original Lee

model' we define a renormalization constant Z„by

2
—1

Z„= 1+kg 0 (u iG (m)iu )
a=1

(46)

where

0&Z„&1 . (47)

Following the treatment of the original Lee model'5 it is straightforward to show that Z„ is the probability

of finding a bare V particle in the physical V particle. Solving for the "one" in (46) and substituting it into

(45), we find

d (z) =Z„'h(z),
where

2

h(z)=(z —m) 1 —(z —m} gg~ (u~
~

G (m)G (z)
~

u )
a=1

(48)

(49)

with

1/28'a =Zu Rao ~ (50)

From (46) and (50) we find the alternate expression

2

Z„=l—gg~ (u~
~
G~ (m}

~

u~) .
a=1

(51)

We shall assume that ga and ua are such that

Z„~0, i.e., that there are no "ghost" states. ' In

order to write the T matrix in terms of renormal-

ized quantities, we combine (30), (48), and (50) to
obtain

(52)

Thus, as in the original Lee model, ' the T matrix
can be written completely in terms of renormalized

quantities.
Under the assumptions we have made, d (z) and

h (z) have only one zero on the physical sheet at
z =m, the physical mass of the V particle. We
now consider the possibility of zeros on other
Riemann sheets. If they are close enough to the
real axis, the real and imaginary parts of such zeros

can be interpreted as giving the energy and width

I

of decaying bound states and resonances. Let us

first consider what happens if we let gio ——gi =0.2

According to (26) and (48), the real zeros of d(z)
and h (z) will be given by

mo E= g20 (u——2 ~

G2(E)
~
u2), E&mz+pz. (53)

Since the right hand side of (53) has simple poles

at z =E2„and is monotonic increasing between

successive poles, there will be one solution of (53)
between each pair of adjacent poles as well as one

with E &E2 1. It is interesting to note that the

same distribution of bound state poles occurs for a
T matrix arising from a combination of an attrac-

tive Coulomb potential and an attractive, rank-one

separable potential. It is important to note that a
solution of (53) that falls on one of the intervals

E2„&E &E2 „+1 is trapped in the sense that no

matter how the parameters g20 and mo are varied

it cannot travel outside its interval.

In general, as g1
——Z„gio is turned on, the

trapped zeros of d(z) =Z„'h (z) escape to another

Riemann sheet, thus becoming decaying bound

states or resonances. Fortunately, the problem of
continuing h(z) or d(z) onto another Riemann
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where the square-root function is specified by
i8)

z —mi —pi ——~z —mi —pi ~

e, 0(8i &2m,
i 82

z —m i +p i = ~

z —m i +p i ~
e, —1r & 82 (vF,

[(z —mi) —pi 1 = l(z —mi) —pi
i (8)+82)/2ge

From (37), (41), (48), and (50) it follows that

(55}

A (E+ie) A(E —i e) =0-,
pll ) +p) (E(pl2+pp,

(56)

thus, the singularity of h (z) at z =m i+pi is given

explicitly by the square-root function in (S4). In
writing (56) we have assumed that pi (z —m i ) is

analytic in the neighborhood of the interval indi-

cated. Of course, the square-root singularity at
z =m2+p2 can be made explicit in exactly the
same way. Choosing the opposite sign for the
square root in (54) gives the continuation of h (z)
onto another Riemann sheet, which we call H (z),
s.e.,

sheet has essentially been solved by Levy in his
study of resonances in the original Lee model.
Each of the two functions of z defined by the in-
tegrals in (37) has two Riemann sheets arising
from square-root singularities at z =m +p . An
easy way to see this is to define a function A (z) by

h (z) = A (z)+migi pi(z —mi)

X[(z —mi) —pi ]'

thus, the zeros of H (z) just below the real z axis
are close to the physical region, i.e., the upper rim
of the right hand cut in h (z). As a result of (S9), a
zero of H (z) in the lower half plane will have a
mate symmetrically located with respect to the real
z axis; however, this mate is not close to the physi-
cal region.

We now proceed to find an approximate expres-
sion for one of the zeros z„ofH (z) in the lower
half of the z plane under the assumption that it is
close to E2„, one of the eigenvalues of Hz. We in-
troduce a function F(z) which is analytic in the
neighborhood of E2n by

D (z)h (z), Im(z) & 0
D(z)H(z), Im(z) &0 (61)

where D(z) is a function which is analytic in the
neighborhood of E2„and behaves similar to

D (z)~z E2„, —

z~E2n
(62)

From (34), (38), (49), and (58) it follows that

2

h (z),H(z)
82 P2n

z —E2n
(63)

by (58). From (54)—(57), it follows that

h(E+lG) =H(E —/E) &
m i+pi (E &mz+p2 ~

H(z)=A (z)—irigi pI(z —mi)

X[(z —mi) —pi ]'~

and we have

H(z)= h(z) 2migi p—i(z —mi)

X [(z —m, )'—pi']'~' .

From (39},(48), and (55), it follows that

H*(z) =K(z*)

(57)

(58)

(59)

so D (z} removes the pole at z =E2„. Using

E(z) =F(E,„)+F'(E,„}(z—E,„}+.. . (64)

F(E )
z —EN 2lt — Pi(E )

t (65)

and assuming higher order terms are negligible we
obtain

in the region in which pi(z —m i } is a real, analytic
function of z. Using (55), it is straightforward to
show that for Re(z) & m i the real part of the
square root in (58) is positive for Im(z) & 0 and
negative for Im(z) &0. Taking into account (40)
and (48), it follows that ImH(z) can vanish for
Im(z)+0, while Imh (z) cannot. Thus, it appears
that the trapped zeros of h (z}=Z„d (z) that occur
when g~

——0 move onto the Riemann sheet defined

or, with a little manipulation,

2
SZ P2n

h„(E2„+is)

where

2 2

( ) h( )
z m g2 P2n

m z

(66)

(67)
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2 2
d z —nt g2 P2n

z~E2„dz E2„—m z —E

corresponding to the single particle Hamiltonian

H2, since this will take out all of the bound state

poles in h (z) and make F (z) analytic in a large re-

gion. A much simpler choice is

V. DISCUSSION

(6&)
D(z) = Ezn —~

(z E2~—) ~

z —m

Equation (66) bears some resemblance to the re-

sults of Deser et a/. in that it is closely related to
the matrix element [see Eqs. (38) and (52)]

(2n
~
t»(E+i e)

~

2n ) =
h E+ie (69)

This will facilitate using the model presented here
to test their formula relating the energy of a mesic
atom to the meson-nucleus scattering length.

The method we have used to obtain (66) is essen-

tially the same as the one used by Deloff to locate
the complex poles of the S matrix arising from a
combination of a Coulomb potential and a complex
optical potential. In his case the role of D(z) is

played by the Coulomb Jost function, and he finds
the method to be very accurate. As he points out,
(65) can be iterated (Newton-Raphson method) to
obtain precise values for z„when ~z Eq„~ be-—
comes large. Deloff's work suggests that a good
choice here for D (z) is the Fredholm determinant

and leads to 4„=O.
precise numerical determinations of the complex

energies z„, and various approximations for them

such as (66) will be the subject of a future investi-

gation. In particular, the traj~toriM of the z. that

arise when the parameters in the strong interaction

( VmNa+ Oa) are varied, will be studied and com-

pared with the results obtained by Krell, Koch
et al. , and Kok for short-range complex in-

teractions. It will be of special interest to deter-

mine the trajectories when the V particle is un-

stable (m & m
& +pt) and has a complex energy

close to the N2 —82 bound state energies (E2„) pro-

duced by the single particle Hamiltonian H2, as

this will give some insight into the effect of
subthreshold resonances in kaonic atoms. 7
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