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Pion production and absorption in field theory
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We derive a coupled-channel description of pion production and absorption by the
many-nucleon system from the field theoretic definition of the reaction matrix. Our result

is manifestly consistent with nucleon antisymmetry, pion crossing, and unitarity and is ex-

act, up to the neglect of terms involving at least 2X —2 antinucleons. Our equation is ap-
proximately soluble in the limit of nonrelativistic nucleons, and in that limit we obtain ex-

plicit, Hamiltonian independent forms for the one-body operator and for leading terms in

the two-body operator for use in distorted-wave Born approximation calculations.

NUCLEAR REACTIONS Scattering theory, pion production, and ab-

sorption by many-nucleon systems.

I. INTRODUCTION

In this paper, we examine the general problem of
pion production and absorption by the many nu-

cleon system in relativistic quantum field theory.
Our goal is to obtain an exact, nonperturbative re-
sult to serve as a framework for the development or
examination of various approximations. Low equa-
tion considerations provide the basis for this in-

quiry.
In two previous papers' we applied the Low

equation to the HH~NN reaction. Although the
Low equation is unquestionably consistent with

pion crossing and nucleon antisymmetry, we found
that the exact manner in which these features are
embedded in the equation is a matter of some
subtlety which requires a careful treatment of the
seagull terms. The result was a coupled, linear, in-

homogeneous integral equation for the reaction ma-

trix. The generalization of the ideas developed in
these papers to the many-nucleon system is non-

trivial. In particular, in the many-nucleon system,
we encounter three formal difficulties:

(l) A straightforward extension of the channel

coupling scheme of the one- and two-nucleon sys-

tems is not possible. For example, consider the
direct term in the Low equation for pion production

«n
I
~++1(0)~ I ~N+2 ~2N &;. ,

[j (0) and Jn+ t(0) are the source functions for the
pion and an incident nucleon, respectively]. In this

expression, we may choose as intermediate states

any complete set which spans the physical Hilbert

space. For N) 2, it is not possible to choose these

states such that both matrix elements can be direct-

ly interpreted in terms of off-mass-shell scattering

processes.
(2) Truncating the Low equation destroys its con-

sistency with detailed balancing and pion crossing.
That is, time reversing the truncated equations does

not lead to the same result as crossing the external

pion line.
(3) It is not clear, even for N =2, how to make

the connection with nonrelativistic potential theory
unambiguously. Although Banerjee et a1. do make
this connection, their treatment of the seagull terms
is flawed and they are unable to obtain the pion re-

scattering contribution. The alternative treatment
of the seagulls proposed in Ref. 2 leads to a form in

which both an off-energy-shell and an off-mass-
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shell nucleon-nucleon scattering amplitude appear.
Thus it is not clear how to define a nucleon-nucleon
potential uniquely.

The present work obviates these difficulties. In Sec.
II we generalize the channel coupling scheme which
is the central idea of the Low equation for one- and
two-nucleon systems, to the many-nucleon system.
%e obtain an exact result in which nucleon an-

tisymmetry, and consistency with pion crossing and
unitarity are manifest, and the equation itself is
form invariant under time reversal. In Sec. III we
make the connection with nonrelativistic potential
theory and obtain a Hamiltonian-independent two-

I

nucleon transition operator for use in DWBA calcu-
lations.

II. DERIVATION
OF THE BASIC FORMALISM

Owing to the self-conjugate nature of the pion
field, the physical reaction matrices for pion pro-
duction and pion absorption are simply related to
the matrix element of the pion current between N-
nucleon states. Applying the standard Lehmann-
Symanzik-Zimmermann (LSZ) reduction tech-
niques, we write the fully connoted piece of this
matrix element in the form

o i{~(Pi) ~ ~ ~(PN) I j (o) l~(pN+1)' ' '~(P2N) }'.

N 2N= I dxi. . . dxiNexp i g — g p„.x„{0~&i. . . &i~T(gi. . . fivj /~+i. . . $2iv) ~0},
n =1 n =N+1

= "seagull terms"

N 2N

+ f dxi dx2xexp i g — g pn xn {'0
I
T(Ji" J~j+z+i Jim) I

0&
n =1 n =N+1

(2)

where we have introduced the notation

f(x„) n &N

1{(x„)tn & N+1 '

u(p„)( iy 8+—m) n &N

[u(p„)( iy 8+—m)] n &N+1 '

j =j (0),
and where in the second step, we have taken the dif-
ferential operators &„ inside the T product and re-
tained all nonvanishing equal-time commutators
and anticommutators (seagull terms) which result
from the time differentiations. J„=&„g„denotes
the nucleon source function.

In the following, we assume the equal-time com-
mutation and anticommutation relations (ETC's)

[P (x,O),P (y, O)] =Zi5' '(x —y),

[f (x,O), gp(y, O) ]+——Zz5 g' '(x —y),

[P (x,O),g(y, O)] =[/ (x,O),$(y, O) ]

I

etc., to be valid, with Z~,Z2 c numbers and where
the knonccker delta concerns the discrete quantum
numbers of the nucleon. We further assume that, in
addition to the above, only the ETC's

[J(x,O), g(y, O)t]~,

[|((x,O),j (0)]

[[4(x,O),j.(0)],4(y, O)']+,

and their Hermitian conjugates are nonvanishing.
That is, we neglect terms which would require the
introduction of canonical field operators with
baryon number two in the interaction Lagrangian.
In this paper, we consider only the final term in Eq.
(2) in detail, and content ourselves with a sketch of
the analysis of the seagull terms.

We wish to rewrite Eq. (2) such that: (1) the con-
tribution from the initial and final interactions are
clearly exhibited, and (2) the initial interaction is
treated equivalently to the final interaction (viz. ,
form invariance under time reversal). To appreci-
ate what the separation of the initial interaction
terms from the T product in Eq. (2) entails, consid-
er replacing the "in" label on the ket
~~n+q. . .~2n);„ in Eq. (1) by "out" and using a
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complete set of "in" states in the sum. Thus modi-
fied, Eq. (1) is a suitable candidate for the initial in-

teraction term. Application of the reduction tech-
nique to the external nucleons then leads naturally
to a separation of this term into products involving

only fully connected matrix elements, i.e., products
of the form

J Jj) la &. &n
I T(JJ+1 J2N) I

0& .

Similar considerations hold for the final interaction.
This strongly suggests looking for ways to break up
the T product in Eq. (2) into a sum of terms, each
of which involves the product of a time-ordered se-
quence of operators with an antitime ordered se-

quence, being careful to maintain a symmetry be-
tween the initial and final interaction terms. We
demonstrate a technique for doing this below.

We begin with the simple operator identity

(Jl' ' ' JNJfIJN+1' ' J2N) g( 1) [J+T(JI' J2N)8 +T(J—1)8+J~T(J2 ' J2N)8

+T(J,J2)8+j T(J3. . .J2N)8

+T{Ji JN)8+1 T(JN+i- J2N)8-

+ +T{Ji J2N)8+j. ] .

The 8 (8+) in this expression are defined such that they restrict the time arguments of the preceding T prod-
uct to less (greater) than zero, e.g.,

T(J1 J2N)8 — T{Jl J2N)801802 ' 80,2N ~

[here we introduce the obvious notation 80„——8( —x„), 8„0——8(x„),8~„=8(x~—x„)]and gj, {—1) denotes

the sum over all distinct permutations of the nucleon operators with the sign appropriate to the given permu-
tation. '

The first %+1 terms in this identity contribute to the analog of the direct term in the Low equation for
pion production, and we deal with these terms first. Associated with each of these terms is a T product of the
ofD1

T(J;. . .Jj)8 =g( —1) [J~. . .Jjgp;. . . gpjg;;+i. . . gj 1 j],
I'

(4)

where for simplicity, we have assumed the operators to be consecutively labeled, although this is clearly
inessential. Our object initially is to express Eq. (4) as a sum over the product of T and T products by succes-
sive replacements of the form 8„„+1——1 —8„+1„,e.g.,

[J;.. .Jjg;;+i. . . gj 1 jg ]

1

[Ji Jj —lg;'+1 gj 2j —18—]J—j[ —gjj —ll
'
gOj

1

[Ji Jj—ig~;i + i gj -2,j—ig ]Jj g . ~-
Oj

1 1—IJ J; 28;, +i 8, 3,j 28 ].Jj iJjg, ,j ig-. '-'g . -[ gj i,; 2]—
Oj Oj —I

etc. The curly braces indicate that at a given step of this process, where say we replace 0„ I „by 1 —0„„
we have the option of either retaining the Oo„associated with the newly isolated operator J„or replacing it
with unity, as the entire expression is multiplied by Oo;. Since the direct term corresponds to an initial interac-
tion among the incident nucleons followed by interaction with the external pion, we shall retain the Oo„when-
ever it is associated with the operator of an incoming nucleon (i.e., n &/+1) and replace it by unity other-
wise. This choice, which ensures that the initial interaction is ordered before the pionic interaction, when ap-
plied to each term in the T product in Eq. {4),leads to
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J —I

T(J,.. . .J )8 = g( —1) g ( —1)[T(J~.. . JJ k ()8 ][T(JJ k. . .JJ)8 (q k) . .. 1]
P k=0

+ ( 1V—'+-'T(J;. . .J, )8, , (5)

where 6 „=8(—x„) for n &N+1 and is unity otherwise. The final term in this expression occurs only if
j&J, that is, all current operators on the left-hand side of this equation are associated with outgoing nu-
cleons. In the following, we neglect this term as it contributes only if there are at least 2N antinucleons associ-
ated with the intermediate state sums, and it is surely negligible.

Equation (5) can now be used to separate antitime ordered sequences of nucleon operator clusters from the
first N + 1 terms in Eq. (3) in the desired fashion. To illustrate this process, we note that the k =0 part of the
sum in Eq. (5) leads to

g( —1) [J T(J. . .J )8 +. . . +T(J, . . .J„)e,J'.T(J„„.. .J,„,)e ]J,„6
P

T(J)' J1VJPN+) J2N —i)J2N6 2N-
P

—g ( —1)'[ T(Ji J)v+i)8+J T(A+i
P

+ +T(Ji Jz)v —i)8+1 ]Jm6 zw . —

Proceeding in a similar fashion with the remaining terms in the k sum, we obtain

g( —1) g T(Ji. . .J„)eyJ~T(J„+i.. .Jz)v)8
P n=0

2N —1

= g ( —1) g ( —1) T(J(. . . Jpi j+~+) . . Jp)v .k ) )[T(Jz)v k. . . Jz)v)6 (i)v k). . .6 q)v]
P k=o

N —22N —k —1

X( ) X X ( 1) [T(J( JJ)8+1' T(JJ+( Jz)v —k —i)8—]
P k =0 j=N+1

X [ (J2N —k' ' J2)v)6 —(2)v —k). 6—2)v] ~

The first term in Eq. (7) contributes to the direct term (i.e., the initial interaction term) which has the general
form that an interaction bubble with k +1 external nucleon lines, at least one of which must be an incident
nucleon line, " occurs before a second interaction bubble involving the pion and the remaining external nu-
cleon lines (see Fig. 1). The second term is a doublecounting term which we shall deal with later.

To obtain the cross term, that is, the direct term in the crossed-pion channel, in which the pionic interaction
occurs before the final interactions among the nucleons, we require the identity

j—1

T(J; .J )e~ —g .( —1) g ( —1)"[T(J;.. .Jk~, )6;. . .6k;][T(Jk; . . .J )8 ]
P k=o

+( —1V '+'T(J;. . .JJ)8

where 6„=8(x„)for n &N and unity otherwise. While the derivation of this expression is similar to that of
Eq. (5), we now retain 8„0whenever it is associated with an outgoing current operator (i.e., n &N) to order the
final interactions after the pionic interaction. Applying this expression to the N+ 1 final terms in Eq. (3), we
obtain
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N-2

N-2 N-2

+ o ~ ~ +

' ~ ( + 0 ~ ~

+ N-I
ANTI NUCLEON

CON TRI BUTIONS

FIG. 1. Contributions to the direct term. Dashed hnes represent pions, s'ons solid lines nucleons, and three closely spaced
rmediate state sum. All interaction bubbles are fully connected in that theylines capped by an arrowhead represent an intermediate s a e sum.

-the- ion-mass-shell —all otherspossess no disconnected lines. Those interaction bubbles with an external pion line are off-the-pion-mass-s e —a o ers
are off shell in the incident nucleon variables.

g( —1) g T(J). . .J„)8+j~T(J„+).. .J2~)8
n =IV

X[T(Jk+2 J )8+j T(JIy) j2~)8 1, (9)

which has the eneral form of a final interactionwhere here the first term contributes to a (pion) crossed term, w ic g
ubbleout oin and k arbitrary external nucleon lines, preceded by a pionic interaction bu ebubble involving one outgoing an ar i rary e a, u e

l
'

g the remaining external nucleon lines. The second piece o q. is ano er
In the context of doublecounting, we note that we must also subtract

g ( —1) T(J). . .J~)8+j T(JN+(. . .J2~)8

from our final expression since this term has been included in bo q .b th E s. (7) and (9).
The direct and crossed terms in qs. an'n E s. (7) and (9) are in the desired form —however, the dou e:ounting

ieces may be written much more concise y. n e1 I the Appendix we show that the doublecounting terms may e
combined to give



25 PION PRODUCTION AND ABSORPTION IN FIELD THEORY 2607

2N —2 2N —l —2—g ( —1) g g ( —1)"+'[T(J1. .Ji+1)ei ei+1][T(Ji+2 ~ ~ j ~ ~ ~ J2Ã —k —1)]
P I =0 k =0

x [T(J, ,. . .J,„)e „„,). . .e,„]. (10)

Graphically, a term in Eq. (10) has the general form of three interaction bubbles; the first with 0 + 1 external
nucleon lines, the final with I + 1 external nucleon lines, and a middle or intermediate bubble with the external

pion line and the remaining external nucleon linees. This arrangement is subject to the restriction that the
first bubble must have at least one incident nucleon line and the last bubble, at least one outgoing nucleon
line —otherwise the graph vanishes owing to energy considerations. This completes our manipulations.

We now claim that as a result of the foregoing analysis, we can write

+1' ' ' +2N (41' ' PNJnPN+1 42N)

2N —1

= g ( 1) g ( 1) [~1 ~ ~ +2N —k —1T(41 Js- ~ ~ P2N —k —1)]
P k=0

X [&2N k»-N T(42N k—AN )le (2N-k)

2N —1

+ g ( —1)' g ( —1)k[u, . . .e„,T(y, . . . l(„,)]e,. . .e„,
P k=0

+ [~k+2 ~ ~ ~2NT(il)k+2 ~ ~ Ja" ~ ~ AN )]

2N-2 2N —I —2—g ( —1) g g ( —1) + [&i. . .&&+1T(g). . . (tt'&+i)]ei. . . ei+i
P l=o k=o

X [+1+2' +2N —k —1T(Pl+2 Jg 42N k —1)]—
X[~ N —k ~2N (4 N —k $2N)]e( N k) ~ e N—~. —

To complete the derivation of Eq. (11)we sketch the proof that the complement of seagull terms in Eq. (2) are

precisely those required by the right-hand side of Eq. (11). First, consider those seagulls involving the T prod-
uct of [p„,j ] or [[p„,j ],it) ]+ with either 2N —1 (for the former ETC) or 2N —2 (the latter) nucleon

source functions, e.g.,

T(J1' ' ' JN 1[iiN j~] JN+1' —' J2N) . -
While little is known of these ETC s in general, it can be shown that Lorentz covariance, coupled with the (as-

sumed) vanishing of the ETC of f with p and p, requires both of the ETC s [p„,j ] and [fp„,j ],g ]+
to be local operators (i.e., no Schwinger terms). We note that the preceding analysis (but with different num-

bers of nucleon operators) applies directly to these T products as well. For those seagulls involving one or
more ETC of the form [J;,fz ], we note that our manipulation with regard to 8,J (whose derivative gives rise to
this ETC) has been to make the replacement 8,1~1—81, , which has the same singularity. Thus both sides of
Eq. (11) have precisely the same complement of these ETC's. It can be shown that the remaining seagulls in

Eq. (2), all of which involve Z2, do not contribute by virtue of the assumed c-number nature of Z2.
Introducing Eq. (11) into Eq. (2) and inserting complete sets of intermediate states between square brackets,

after some effort we obtain
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out&~1' ' '~N
I Jtt(0) I~X+)' ' '~&)t(&(»

g(3)
= T(DIS) (2'tr) g o t&~1 ' ~N

I J (o)
I

n& ~ .&n
I

T~ '(pN +) p»)'
I

o&
E- —E +i@'"

g(3)(

~ E E +., ' I )v (» . ») Int &o to t&nt IJ (o) I~N+) ~2)v&

—(2~)'X E @ .
@ E . &o I

T~"'(pN.
fff ff Ef—Em +l 'E Ef' —Eyf +l 6

,p2)v) I o&, (12)

where T(DIS) is a piece which cancels any contributions containing one or more completely disconnected nu-

cleon lines which arise from the terms involving the intermediate state sums, pf ——p) +. . .p)v,

pf pQ +]+ +@AN, and where

(P)+ +P)v —P ) (+)(2~) ~ E . out& n
I
~x+ (p)v.E)+.. . +EN —E„—ie

N t g pk'xk

g( —1) (i)1J dx(. . . dxie "=',„,&n
I a(pN), „,. . .a(pj+)),„tj=1 P

xT(g, . . .f )~;.

defines a cluster decomposition of the N-nucleon~
(general state n) process into contributions with
differing numbers of disconnected nucleon lines. A
similar expression holds for T' '. This equation is
shown schematically in Fig. 2.

Equation (12) is a linear, coupled integral equa-
tion for the off-the-pion-mass-shell, S-nucleon reac-
tion matrix. This equation is form invariant under
time reversal and consequently has a manifest con-
sistency with pion crossing —pion production and
pion absorption are described in a completely eqi-
valent fashion. Moreover, this feature can easily be
retained by appropriately truncating the intermedi-
ate state sums. All matrix elements are directly in-

terpretable in terms of off-shell scattering processes
and the equation itself is manifestly antisymmetric
in the nucleon variables. Additionally, we note that
we have escaped the traditional anathema of the
I.ow equation —the modeling of the seagull terms.
All dynamical information relating to the pion-
nucleon interaction enters our theory in the form of
the elementary pion-nucleon amplitudes. The
manner in which these amplitudes enter our formal-
ism mill become more obvious in Sec. III.

III. CONNECTION
WITH POTENTIAL THEORY

To illustrate the physical content of our theory
and make the connection with more standard ap-
proaches, we consider the N-nucleon intermediate

N N

FIG. 2. The diagrammatic representation of Eq. (12}.
In this diagram, the cross-hatched bubbles are allowed to
have disconnected nucleon lines. Figure 1 represents a
separation of the interaction bubbles in the direct term
{the first term on the second line) into connected contri-
butions.
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state contributions to Eq. (12) in the limit of nonre-

lativistic nucleons. Initially, we ignore the presence
of bound states, to simplify our notation. To classi-

fy the connectedness structure of this equation we
introduce the partition ~„of the N nucleons into
one n-nucleon cluster (1&n &N) and ¹

one-
nucleon clusters. For a given n, the set Ia+ I =a+,

has N!/n!(N —n)! distinct members. ' Let

I
ga(a„)'+-') be the corresponding scattering state,

with one interacting n-particle subsystem (the
members of the n-nucleon cluster in a„) and ¹

spectator (noninteracting) nucleons. This state sa-
tisfies

where U represents the sum over the potential in-
fl

teractions internal to the n-nucleon cluster. The
corresponding Moiler wave operators are

where
I Pa) =

I fa(un ) ) and
I
Xa)= I ga(at) ) are the

interacting and plane wave n-nucleon states, respec-
tively. Then in obvious notation we define the clus-
ter decomposition

(Hp+ U )
I
ftt(u„)'+-')—:Ett I

1(t (a„)'+-'), (14)

I

i (2~)'(i'"(p f+Q P 1)oot&~i ~N I
jn(0)

I ~N+i' ' ~2N }io

N

g g (gp(&„)' '
I g (&„,a„)

I 1( (u, )'+')
N =1 an 8n

(16)

g (l„,u„) is the n-connected pion transition operator which transforms the members of the n-nucleon cluster
in u„ into the members of the n-nucleon cluster in 8„. By n connected we mean that the matrix element of the
operator between interacting n-nucleon states possesses no disconnected nucleon lines. Finally, we associate
the matrix elements of Tq+' and Tz ' with the prior and post forms of the elastic N-nucleon scattering ma-
trices, respectively, e.g.,

(pf pf )out(~1 ~N
I

TN (PN~ ' ' ' ~Pl) I
0& =(4p I

U
I Xp»

where U is the full X-nucleon potential.
With the above definitions, the N-nucleon approxiination to Eq. (12) is

(4p
'

I E(~iv
N

=M(DIS)+ y y y[(XpI UG(Ep )Q(8„)' 'g(8„,a„) I1( (u„)'+')
n =1 an ~n

(17)

+(1(p(8„)' '
I g (S„,a„)Q(a„)'+' G(E,+ ) U

I Xa)

—(XpI UG(Ep )Q(8„)' 'g(8„, „)Q( „)'+'G(E+)UIX )], (18)

N
( —)=a(DIS)+ g g g(XpI [a)(8„)' 'g(8„, )coa( )'+u'

n=1 an ~n

—Q(dg)i ig(/o, u„)Q(uo)i+i ] IX ), (19)

where G(E )=(E H+ie) is the fully in—teracting ¹ucleon Greens function. The second equality is
easily obtained by using

Q(u, )'-+' G(E+)U IX )=[co(a„)'+-'—Q(a„)'-+' ] IX )

and the definition of tp(a„)'+-'.
The content of Eq. (19) is clarified by two observations. First, since the n =N contribution of the sum is
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(4p 'IX(~N aN)
I Wa ) (~pl y (~N aN) l&a}

[i.e., Q(aN)' —+'=1 and e(aN)'-+'=Q(al)' +—'], Eq. (19) reduces to an equation for the plane wave matrix ele-

ments of g (AN, aN). Second, we note that the g (8N „aN, ) contribution to W(DIS) consists of one specta-
tor nucleon and a connected piece which is identical to the right-hand side of Eq. (12) (but with N —1 total
nucleons) in the no-pion approximation. By definition, this is

[(0Q~N —I)
I
g(~N —1 aN —1}Isa(aN—1} (~PIP (~N 1 aN 1—) l&a—)]

N —1 N —1

where g (8N l, aN 1) represents the (N —1)-connected higher intermediate state contributions to the right-
hand side of the (N —1)-nucleon version of Eq. (12) (e.g., one-pion contributions). That is, we do not neces-
sarily truncate the (N —1}-nucleon equation in the same fashion as the ¹ucleon equation. More intuitively,
g'(8N l, aN 1) ls that part of the (N —1)-nucleon process which cannot be accounted for by embedding
(N —j)-nucleon processes (j & 1) in the (N —1)-nucleon system. We stress that by definition, this operator is
(N —1)-connected. The analysis of the contributions of the remaining g(8„,an) to W(DIS) is identical.
Thus, from the above considerations, the operator version of Eq. (22} is

N —1
( —) (+)~

df(~NiaN) y y y [f (~nian } Q(~n } f(~ntan)Q(an } ]+/ (~N~aN } ~

ll =1 a+

(20)

where we have added the ¹ucleon g ' to the right-hand side to account for processes not considered in the
original approximation. We note that the inclusion of bound states modifies Eq. (20) only by the extension of
the definition of Q(a„) to include all bound state possibilities.

This recursion relation gives a simple prescription for embedding the (N —i)-nucleon processes
(0 &i & N 1) in the N-n—ucleon system such that there are no disconnected nucleon contributions. For exam-

ple, when the (N —1)-nucleon transition operator contribution

(+)fg (~N —l~aN —1} Q(~N —1) g (~N —1 iaN —1)Q( N —I )

I = ~ = 2 + N ( Pl ) ) J~ (0) ) N ( P2) &

(a)

I

I

L

2

(2m) &N(Pl)l j (0) lm (q) N(P~))~ . ~N(p )~(q ) ( J (p) )p~
E ( q )+ E2- E4ti K

I

I

L

(2a) 8 (q+P4-P2) &ol J2(0)lm(q )N(P4) + t t~N(Pl)a(q ) l j~(o)~N(P&) o

E (q')+ E4-E2+I

{c)
FIG. 3. (a) The one-body operator, (b) the backward (in time) rescattering graph, and (c) the forward rescattering

graph. The pion rescattering graphs represent the leading contributions to the two-body operators.
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is embedded in the interacting X-nucleon medium,
the second term cancels the one-nucleon disconnect-
ed piece of the first. However, the real strength of
the present approach is that the transition operators

g ' can be obtainni explicitly, at least to leading or-
der. The one-body operator is obtained trivially
from the matrix element of j between one-nucleon
states [see Fig. 3(a)]. The dominant contribution to
the two-body operator follows from the one-pion
contribution to the N =2 process and is easily
determined to be the pion rescattering contribu-
tion. ' The relevant diagrams are depicted in Figs.
3(b) and (c). We note that at this point we have
recovered the canonical form of the two-nucleon
mechanism in the distorted-wave Born approxima-
tion. However, there are some important differ-
ences between the present result and previous work.
First, the diagrams in Figs. 3(b) and (c) are time-
ordered diagrams rather than Feynman diagrams.
Although the two types of diagrams have the same
pion-pole singularity, calculationally they are quite
different. For example, in the time-ordered dia-
gram, the pion vertex is off-the-nucleon-mass-shell
and thus it has both pseudoscalar and pseudovector
pieces and its form factors have a resonance struc-

ture close to the physical region. ' This is in
marked contrast to the Feynman diagram which
has a pure pseudoscalar vertex and a real form fac-
tor with a dipole type of behavior. Second, our re-
sults are independent of the choice of a model
Lagrangian. And third, our formalism has no pro-
vision for, nor does it require, the subtraction of a
pion exchange graph to prevent doublecounting.
The exact relationship of doublecounting arguments
based on perturbation theory' to the present work
is unclear, but it is unequivocally true that no par-
ticular sequence of operator and theta-function
products are doublecounted in our final expression.

The utility of the present work ultimately resides
in providing improved fits to the data. Calculations
for pion production by the two-nucleon system are
presently under way and we shall report on the re-
sults in a future paper.
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APPENDIX

To derive Eq. (10), we first use Eqs. (5) and (8) to rewrite the N + 1 term in Eq. (3) in the form

g( —1) T(J, . . . Jw)g+J' T(J~+, . . . J2lv)(9
P

N —1

= g( —1) g ( —1) [T(Ji Jill)el el+1]
P k=o

x[T(J1+2.. .J~)8+j T(J&+l. . . J21v k 1)g ]

+ [T(J2N —k J2N )e—(2N k) ~ ~ e——2N ] ~

Consider next the doublecounting piece of Eq. (7). Applying Eq. (8), this becomes

N —22N —k —1 j—1

[T(J1' ' ' Jl+l)el el+1]
k =0 j=N+1 1=0

X[T(Ji+2 Jj)()~j T(J, ~ ~ ~ J2N —k —1)() ][T(J2N —k ~ ~ J2+)e ( . . .e ]

[notice that the final term in Eq. (8) may be discarded here since j)%+1].Separating the I sum into two
pieces so that the j and l sums may be interchanged, i.e.,

N —22N —k —1 N —1 j—1

X X X+X
k =0 j=N+1 1=0 1=N k=0 1=0 j=N+1 k =0 1 =N j=1+1

N —2N —1 2N —k —1 N —22N —k —22% —k —1

(3')
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we see that the second l sum is, by definition,

N —2 2N —k —2—g ( —1) g g ( —1) +'[T(~1 &/+1)e et 1][T(~t+2. j ~2N —k —1)]
P k =0 E=N

+[T(J2N —k ~2N)e (2N k) . e 2N] . (4')

In like fashion, using Eq. (5), the doublecounting piece of Eq. (9) may be written in the form

N —2 2N —E —2

X ( 1) X X ( 1) [T(~1 Jl+1)el et+ll[T(Jl+2. j1r ~2N k —1—)1
P E=O k=N

+[T(~2N —k' ' ' J2N)e (2N k)— e——2N]

N —1N —2 N —1—g( —1) g g g ( —1) +'[T(J). . .J( ()el. . .et, ]
k=0 l=o 1=1+1

+ [T(~1+2' '~j)~+Jn T( j +1 J2N —k —1)~—l

&& [T'(~2N-k J2N)e-(2N —k) e 2N] . — (5')

It is now an elementary exercise to combine the first l sum in Eq. (2 '
) with Eq. (1 '

) and the second piece of
Eq. (5

'
) to obtain

N —1N —1—y( —1)' g g ( —1)'+'[T(J,. . .Z„,)e,. . .et+(][T(J(+2.. .J . . .J2N k 1)]
P E=o k=o

X[T(J2N —k J2N)e —(2N k) e 2N]—'—
Adding this result to Eq. (4 '

) and the first term in Eq. (5 '
) gives Eq. (10) in the main text.
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