PHYSICAL REVIEW C

VOLUME 25, NUMBER 5

MAY 1982

Pion-deuteron scattering and the optical potential

Humberto Garcilazo*
Physics Department, Texas A & M University, College Station, Texas 77843

Gilberto Mercado
UPIICSA, Instituto Politécnico Nacional, México 9, D. F.,

Mexico

(Received 5 October 1981)

We have calculated the pion-deuteron elastic, total, and differential cross sections for en-
ergies between 100 and 300 MeV, using two forms of the optical potential similar to those
used in the theory of pion-nucleus scattering. We have studied the accuracy of the optical
potential descriptions, by comparing these cross sections with the exact ones that are ob-
tained by solving the relativistic Faddeev equations. We found that in all cases the optical
potential overestimates the multiple scattering corrections. We interpret this result as
meaning that the optical potential series may not converge for pion-nucleus scattering.

NUCLEAR REACTIONS 7-d optical potentials; E =100—300 MeV,;
calculated oy, o4, and do/dQ.

I. INTRODUCTION

One of the most popular tools used in the study
of pion-nucleus scattering is the optical potential,
which is defined in the standard version as being
proportional to the matrix elements of the free
pion-nucleon 7 matrix between initial and final
ground-state wave functions of the nucleus and
plane-wave states of the pion. Two alternative
forms of the optical potential can be obtained, by
simplifying or complicating somewhat the standard
version. Thus, if one neglects the recoil of the nu-
cleon in the pion-nucleon 7 matrix, one obtains the
so-called fixed-nucleon optical potential, which is
proportional to the Fourier transform of the nuclear
density. On the other hand, if instead of using the
free pion-nucleon T matrix one includés into its
Green’s function the average single-particle poten-
tial of the nucleon with the rest of the nucleus, one
gets the so-called three-body model of the optical
potential which has been proposed by Revai' and by
Tandy, Redish, and Bollé.2

In order to understand how well an optical poten-
tial succeeds in describing the scattering process,
one has to compare it with the exact solution which
is available, however, only in the case of very simple
systems, such as that of a pion and a deuteron.>~’
Thus, using this system as a test case, Woloshyn,
Moniz, and Aaron® studied the fixed-nucleon opti-
cal potential, while Afnan and Stelbovics’ have used
it to study the three-body model of Revai and Tan-
dy, Redish, and Bollé. In this paper, we will use the
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pion-deuteron system to examine the standard opti-
cal potential which has been used extensively for en-
ergies around the 3,3 resonance.® In order to com-
pare with the exact solution, we will solve the rela-
tivistic Faddeev equations taking into account the
six .S and P-wave pion-nucleon channels and the
two S-wave nucleon-nucleon channels, as well as the
relativistic effects due to the spin of the nucleons.®

II. THE PION-DEUTERON OPTICAL POTENTIAL

The standard optical potential that has been used
extensively in the study of pion-nucleus scattering®
can be written in the case of the pion-deuteron sys-
tem, as

Vs @', ) =AQ'pg |ty | Gdag ), (1

where A4 is the number of nucleons which in this
case is two, ¢,y is the free pion-nucleon T matrix,
and g and q’ are the initial and final pion-deuteron
relative momenta, while ¢,; and ¢, are the initial
and final wave functions of the deuteron with heli-
cities M and M’, respectively. The differential cross
section in the center of mass system is given by

do/dQ=n*/S7 3 | Tarn(@,9) |3 )
MM’

where S is the invariant mass squared of the system,
and Ty is the solution of the Blankenbecler-
Sugar equation
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The optical potential (1) and wave equation (3), are straightforward generalizations, for the case of a nucleus
with spin one, of the standard expressions used in pion-nucleus scattering.?

In order to evaluate the optical potential (1) in the helicity basis, we will use the Blankenbecler-Sugar reduc-
tion of the relativistic three-body problem, which in this case is equivalent to putting the three particles on
their mass shells,’ so that we can write Eq. (1) as

dk dk, dky; dk, dk, dk;
201(k}) 20,(k3) 204(k3) 201(ky) 205(k;) 205(k3)

Vierrm @,4)=4 3,
AR,
X (T | K1 KoK 3A505) (K Ky KisAoAs | 11 | K KoKa3A005)
X { ig1 Ezﬁa;kzks | dobar ), (4)
where
w;(k,-)=(ki2+mi2)l/2,

and we have taken the pion as particle 1 and the nucleons as particles 2 and 3 (by using, in addition, the isos-
pin quantum numbers, particles 2 and 3 become identical), while A,,A; and A3,Aj3 are helicity quantum num-
bers for particles 2 and 3, respectively. In the three-body c.m. frame, the pion-nucleon T matrix ¢, is given
by

(ki E’ k3;A545 [115(8) | k 1#2_’3;127&3)
=20;(k3)8(k —K3)28(K| +kj —K;—K,)

XSA§A3 > dl;ui V2B Kipsph | t12[S +m32—28VHm 324k )] | Ky d:é;z.2(.32), (5)
Bk,

where u,,u5 and Eu, 1?12 are the initial and final helicities of particle 2 and relative momenta between particles
1 and 2, respectively, which are all measured in the c.m. frame of the pair, while d ig i. (B3) and d ,1,; ;%2(,62) are
2

the matrix elements of the unitary transformation that transforms the nucleon spinors from the three-body
c.m. frame to the two-body frame, with 3, and fB; being the angles in the Wick triangle.” With similar defini-
tions, the initial and final pion-deuteron wave functions are given by

—-»—»-—»

(k1K K3300A5 | Gdar ) =20, (k1)8(Ky — §)2[ ol k) +03(k3)18(K 4+ Ko+ K3)(my 2+ kpsh) /4
X X dif; (@)d )% (a3)( Kysivavs | dur ), ©

Va2V3

where ( E23;v2v3 | #a¢ ) is the deuteron wave function in its own c.m. frame, which in the helicity basis is given
by

(Kyvavs | by ) = <k23§V2V3 | ¢)(i77)l/ng v2—v31(,€23), (7
<k23,2 s )=(kz;—5—5 |¢)—(—)1/2¢o(k23)—(— 126, (k3), ®)
(k23;7—7 l¢)=<k23;—77 |¢)=(7)1/2¢0(k23)+('g)1/2¢2(k23), 9)

with ¢ and ¢, the usual S- and D-wave components of the deuteron. Substituting Egs. (5) and (6) into Eq. (4),
and summing over the intermediate nucleon helicities, we find for the optical potential the expression
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Xbu, | Kisvpvi ), Vi@ +B)d ) (@ +andy, (Brtar)

X (Kigh | 112[S +m32 =282 m 32+ k321 | Kigsun ) Kozvavs | ) - (10

III. THE KMT FORMALISM

A slightly different formulation of the standard
optical potential has been given by Kerman,
McManus, and Thaler (KMT),'° in which instead of
the optical potential (1), one uses

Varn (@, @) =4 —1){Q' by | toy | dbar ), (11)

while the differential cross section, instead of being
given by Eq. (2), is in this case

do/dQ=nYST3 |4/(4 — )Ty (T, )% (12)
M'M

where Ty is the solution of the Blankenbecler-
Sugar equation (3), with the optical potential (11).

The factors (4 —1)/4 and [4/(4—D]* by
which Egs. (11) and (12) differ from Egs. (1) and
(2), respectively, are usually not important when one
deals with medium or large nuclei, since they are
very close to one. However, in the case of the deu-
teron where 4 =2, one may expect to see appreci-
able differences depending on which formulation is
used.

IV. RESULTS

We have partial-wave decomposed Eqs. (3) and
(10), using the three-body helicity states constructed
by Wick® normalized as in Ref. 6, and solved Eq.
(3) for the angular momentum states with J <6, us-
ing the Born approximation for those with J > 6.

In order to construct the exact results, we solved
the relativistic Faddeev equations as described in
Ref. 6 using as input the six S- and P-wave pion-
nucleon channels and the two S-wave nucleon-
nucleon channels by means of separable T matrices.
In the case of the nucleon-nucleon channels, we
used the separable T matrices and deuteron wave
function obtained from Yamaguchi potentials,'!
which were made to be solutions of the

-

Blankenbecler-Sugar equation, by using the concept
of minimal relativity.”> For the pion-nucleon chan-
nels, we used the separable T matrices constructed
in Ref. 6.

We should point out that the Born approximation
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FIG. 1. Differential cross sections in the c.m. system,
for three different laboratory Kinetic energies of the pion.
The solid lines are the exact results, the dashed lines the
results of the Born approximation, and the dotted lines
the results of the optical potential as defined by Eqgs.
(1)—(3). The dotted-dashed line is the correction that re-
sults from two consecutive single charge exchanges of the
pion.
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FIG. 3. Pion-deuteron total and integrated elastic
cross sections. The meaning of the four curves is the
same as those of Fig. 1.
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FIG. 4. Differential cross sections in the c.m. system,
for three different laboratory kinetic energies of the pion.
The solid lines are the exact resuits, the dashed lines the
results of the Born approximation, and the dotted lines
the results of the optical potential as defined by Egs. (11),
(12), and (3).

to the Faddeev equations and to the two optical po-
tential approaches are identical, so that our calcula-
tions will measure the behavior of the multiple
scattering corrections.

We show in Figs. 1—3 the results for the dif-
ferential, total, and elastic cross sections, using the
optical potential as defined by Egs. (1)—(3). We see
that the optical potential in all cases overestimates
the multiple scattering corrections, so that even the
Born approximation is a better approximation than
the optical potential. We see, however, that the op-
tical potential does reproduce the tendency to in-
crease or decrease the cross sections as one goes
from the Born approximation to the exact solution,
except that it tends to go too far in all cases. We
also show for comparison the effect of considering
the double scattering term in which the pion under-
goes two consecutive single charge exchanges,
which as we see is not a very important correction
to the differential cross sections, except perhaps at
the last two energies which are above the 3,3 reso-
nance. This process, which represents an anomaly
of the pion-deuteron system, is very much
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FIG. 5. Same as Fig. 4.

suppressed in heavier nuclei, so that it never enters
in the optical potential description. We see, howev-
er, that even in the case of the deuteron, the
charge-exchange double-scattering term is not an
important correction for energies at and below the
3,3 resonance.

As we mentioned before, we expect to see appre-
ciable differences in the case of the deuteron, de-
pending on whether one uses the standard optical
potential, or that of the KMT theory, so that we
have plotted in Figs. 4—6, the corresponding results
for the KMT formalism, where again we see the
tendency of the optical potential to overcorrect the
solution although not as strong as in the previous
case. Our results in Figs. 3 and 6 for the elastic
cross section are in good agreement with those ob-
tained by Afnan and Stelbovics, ’ who considered
only the J™=2% channel and used relativistic
kinematics only for the pion.

The result that the optical potential overcorrects
the solution is somewhat surprising, since Egs. (1)
and (11) are the first terms of infinite series for the
full optical potential, so that one would have ex-
pected these potentials to account for only a frac-
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FIG. 6. Pion-deuteron total and integrated elastic
cross sections. The meaning of the three curves is the
same as those of Fig. 4.

tion of the multiple scattering corrections, with the
higher-order terms accounting for the rest. More-
over, if the optical potential overcorrects in the case
A =2, where the potentials (1) and (11) are weak, we
can expect it to overcorrect even more in the case of
medium or large nuclei where 4 is large and the po-
tentials (1) and (11) become very strong.

We would like to conclude by noticing that our
results are very much in line with the long-standing
puzzle of the charge-exchange reaction to the iso-
baric analog state in '3C, where all the calcula-
tions'>!* show that the optical potential is too
strong such that the multiple scattering corrections
in the initial and final states give rise to a much
larger suppression of the cross section than is ob-
served experimentally. Thus, it may be that the op-
tical potential series does not converge in the case of
pion-nucleus scattering.
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