Separable Bethe-Salpeter equation kernels for pion-nucleon scattering

J. Fröhlich,^(a) K. Schwarz,^(b) L. Streit,^(c) and H. F. K. Zingl^(b) ^(a)Institut für Theoretische Kernphysik der Universität, D-7500 Karlsruhe, West Germany ^(b)Institut für Theoretische Physik der Universität, A-8010 Graz, Austria ^(c)Fakultät für Physik der Universität, D-4800 Bielefeld, West Germany (Received 21 September 1981)

In a previous paper we solved the Bethe-Salpeter equation with separable interactions and demonstrated the applicability of the method for the most important nucleon-nucleon partial waves. In this paper we use the Bethe-Salpeter equation for pion nucleon partial waves including the necessary two potential ansatz for the P_{11} wave. A fully relativistic treatment of the π -d system can be performed with these amplitudes.

NUCLEAR REACTIONS Separable Bethe-Salpeter kernels applied to pion-nucleon scattering; E=0-300 MeV; l=0, 1; P_{11} wave with two potential ansatz.

I. INTRODUCTION

In recent years there has been increasing interest in investigations of the π -d system.¹ A relativistic description is called for; Giraud *et al.*² invoke the Blankenbecler-Sugar reduction³ of the Bethe-Salpeter (BS) equation to describe the πN subsystem. However, it is felt⁴ that the BS equation itself should be used, and so it is the goal of this paper to present a separable approach to the BS equation for the pion nucleon system, which is suitable for the three body calculations mentioned above. The same approach was used for the nucleon-nucleon system in an earlier paper.⁵ The separable kernels should be viewed as an approximation of the full BS kernel, not of the ladder approximation for which reduction techniques may have certain advantages. A particular feature of the π -N system is the occurrence of the nucleon pole in the P_{11} amplitude. The necessity of identifying the contributions from the pole term and from the one particle irreducible "background," respectively, has been emphasized by Mizutani *et al.*⁶ The results of such a decomposition within the formalism of the BS equation is given in Sec. II. Our numerical results are presented and discussed in the last section.

II. SOLUTION OF THE BS EQUATION WITH SEPARABLE INTERACTIONS

The partial wave decomposed BS equation in momentum space is given by^5

$$T_{l}(q_{0},q,q_{0}',q';s) = V_{l}(q_{0},q,q_{0}',q') + \frac{i}{4\pi^{3}} \int_{-\infty}^{\infty} dk_{0} \int_{0}^{\infty} k^{2} dk \ V_{l}(q_{0},q,k_{0},k) G_{0}(k_{0},k;s) T_{l}(k_{0},k,q_{0}',q';s) , \qquad (1)$$

where G_0 is the relativistic free two particle Green's function and V_l is the kernel ("potential") of the integral equation. q(k,q') are the absolute values of the three dimensional vectors of the initial (intermediate, final) relative momenta, respectively; the index 0 denotes the zeroth component and s is the total energy squared in the center of mass (c.m.) system.

With all external lines on the mass and energy shell we have

 $T_l(p_0,p,p_0,p;s) \equiv T_l(p)$

$$= -\frac{8\pi\sqrt{s}}{p}e^{i\delta}l^{(p)}\sin\delta_l(p) . \quad (2)$$

Except for the P_{11} wave we solve Eq. (1) with the rank one separable ansatz

$$V_{l}(q_{0},q,q_{0}',q') = g_{l}(q_{0},q)\lambda g_{l}(q_{0}',q')$$
(3)

in closed form, where $g_l(q_0,q)$ is a relativistic generalization⁷ of the well-known Yamaguchi form

© 1982 The American Physical Society

<u>25</u>

2591

factor: l=0:

$$g_0(q_0,q) = \frac{1}{[(q_0^2 - q^2 - \beta^2)^2 + \gamma^4]^{1/2}}$$
, (4a)

l=1:

$$g_1(q_0,q) = \frac{q}{(q_0^2 - q^2 - \beta^2)^2 + \gamma^4}$$
 (4b)

We have used "magic vectors" for a covariant treatment of the threshold behavior.⁸ λ , β , and γ are free parameters which were fitted to the phases $\delta_l(p)$ in Eq. (2).

The peculiarities of the P_{11} channel have been discussed in great detail by Mizutani *et al.*⁶ They emphasize that in pion-nucleus collisions the effect of the P_{11} channel is not negligible: While the phase shift starts out small (Fig. 2), its sign change is indicative of a compensation between attractive and repulsive forces. Correspondingly, on the level of Feynman diagrams one has the exchange of σ and ρ mesons in the *t* channel on the one hand, and pion absorption, i.e., the *s*-channel nucleon pole, on the other.

To single out these two effects, we do not solve the BS equation

$$T_{\rm tot} = V + VG_0 T_{\rm tot} \tag{5}$$

directly, but first decompose the total T operator (omitting the angular momentum index l=1)

$$T_{\rm tot} = T_P + T_{\rm NP} \ . \tag{6}$$

Here T_P contains the *s*-channel nucleon pole; correspondingly, T_{NP} is *s*-channel one particle irreducible.

We choose a separable ansatz for $T_{\rm NP}$

$$T_{\rm NP}(q_0, q, q'_0, q'; s) = \frac{g(q_0, q)g(q'_0, q')}{\tau_{\rm NP}(s)} , \qquad (7)$$

with g as in Eq. (4b). The one particle irreducible

part $T_{\rm NP}$ has to be unitary.⁹ This is ensured by

$$\tau_{\rm NP}(s) = \lambda^{-1} - \frac{i}{4\pi^3} \\ \times \int_{-\infty}^{\infty} dk_0 \int_0^{\infty} k^2 dk \, g^2(k_0, k) G_0(k_0, k; s) ,$$
(8)

and $T_{\rm NP}$ solves the BS equation (5) with V replaced by

$$V_{\rm NP}(q_0, q, q'_0, q'; s) = g(q_0, q) \lambda g(q'_0, q') .$$
 (9)

The second term in

$$V = V_{\rm NP} + V_P \tag{10}$$

will generate the nucleon pole term T_P through

$$T_P = (1 + T_{\rm NP} G_0) \hat{T}_P (1 + G_0 T_{\rm NP})$$
(11)

with

$$\hat{T}_P = V_P + V_P (G_0 + G_0 T_{\rm NP} G_0) \hat{T}_P .$$
(12)

This relativistic Gell-Mann-Goldberger formula is readily obtained from the formal iteration solution of the BS equation (5) with (10) by reordering the terms of the perturbation series.

For the BS kernel V_P we propose the separable ansatz

$$V_P(q_0, q, q'_0, q'; s) \equiv v(q_0, q) \Lambda(s) v(q'_0, q') .$$
(13)

The vertex function v is chosen similar to Eq. (4b):

$$v(q_0,q) = \frac{q}{(q_0^2 - q^2 - \beta_p^2)^2 + \gamma_p^4} .$$
 (14)

Equations (11)-(13) imply that T_p is also separable

$$\equiv \frac{h(q_0,q;s)h(q'_0,q';s)}{\tau_p(s)} , \qquad (15)$$

with

 $T_P(q_0, q, q'_0, q'; s)$

$$\tau_P(s) = \Lambda^{-1}(s) + \frac{i}{4\pi^3} \int_{-\infty}^{\infty} dk_0 \int_0^{\infty} k^2 dk \, v(k_0, k) G_0(k_0, k; s) h(k_0, k; s)$$
(16)

and

$$h(q_{0},q;s) = v(q_{0},q) + \frac{i}{4\pi^{3}} \int_{-\infty}^{\infty} dk'_{0} \int_{0}^{\infty} k'^{2} dk' T_{NP}(q_{0},q,k'_{0},k';s) G_{0}(k'_{0},k';s) v(k'_{0},k')$$

$$= v(q_{0},q) + \frac{i}{4\pi^{3}} g(q_{0},q) \tau_{NP}^{-1}(s) \int_{-\infty}^{\infty} dk'_{0} \int_{0}^{\infty} k'^{2} dk' g(k'_{0},k') G_{0}(k'_{0},k';s) v(k'_{0},k') .$$
(17)

2592

 $h(q_0,q;s)$ describes the absorption vertex of the pion; a similar formula is given for the emission vertex $h(q'_0,q';s)$.

The computation of these integrals is straightforward. In contrast to investigations which use reduced equations such as, e.g., Ref. 10, we do the k_0 integrations. With our choice of form factors (4) and (14) these integrations can be done analytically.

For the coupling Λ in Eq. (13) we use

$$\Lambda(s) = (s - m_0^2)^{-1} \Lambda_P \tag{18}$$

to model a bare nucleon of mass m_0 in the direct channel, chosen such that T_P exhibits the desired singularity when s approaches the squared mass of the physical nucleon:

$$\tau_P(m_N^2) = 0$$
 (19)

III. RESULTS

All partial waves are fitted to the phase shift analysis of Koch and Pietarinen,¹¹ with β , γ , and λ as free parameters.

A. Small phases

For the so-called small phases in the partial waves S_{11}, S_{31}, P_{13} , and P_{31} , the potential parameters are given in Tables I and II. The quality of our fits can be seen in the scattering lengths or volumes (Tables I and II), and particularly in the phase shifts (Fig. 1).

TABLE I. Potential parameters and scattering lengths for the pion-nucleon S waves (S_{11}, S_{31}) .

		S ₁₁		
	λ	$-3647.086 \text{ fm}^{-4}$		
	β	2.151 fm^{-1}		
	γ	2.916 fm^{-1}		
	a_{th}	$0.166m \pi^{-1}$		
	a_{exp}	$0.173 m \pi^{-1}$		
		S ₃₁		
	λ	931.819 fm ⁻⁴		
	β	$0.610 \mathrm{fm}^{-1}$		
	γ	$2.298 \ {\rm fm}^{-1}$		
	$a_{ m th}$	$-0.140m\pi^{-1}$		
	a_{exp}	$-0.101m\pi^{-1}$		

TABLI	E 1	[].	Potential	parame	eters	and	scattering
volumes f	or	the	pion-nucleor	n small	P wa	ves (i	P_{13}, P_{31}).

	P ₁₃	
λ	11914.030 fm ⁻⁶	
β	$1.304 \ fm^{-1}$	
γ	$2.872 \ fm^{-1}$	
a_{th}	$-0.040m\pi^{-3}$	
$a_{ m exp}$	$-0.030m\pi^{-3}$	
	P ₃₁	
λ	2468.943 fm ⁻⁶	
β	$0.547 \ \mathrm{fm}^{-1}$	
γ	$2.006 \ {\rm fm}^{-1}$	
$a_{ m th}$	$-0.050m\pi^{-3}$	
a _{exp}	$-0.045m\pi^{-3}$	

FIG. 1. Pion-nucleon "small" phases in the partial waves S_{11}, S_{31}, P_{13} , and P_{33} . The experimental values are taken from Ref. 11.

FIG. 2. Pion-nucleon phases in the partial waves P_{33} and P_{11} . δ_{NP} and δ_p denote the phase shifts, resulting from the nonpole part and from the effect of the direct channel pole of the P_{11} wave, respectively. The experimental values are taken from Ref. 11.

TABLE III. Potential parameters and scattering volumes for the pion-nucleon P waves (P_{33}, P_{11}) .

	P ₃₃			
λ	3864.839 fm^{-6}			
β	$1.256 \ {\rm fm}^{-1}$			
γ	$1.670 \mathrm{fm}^{-1}$			
$a_{\rm th}$	$0.103 m \pi^{-3}$			
a_{exp}	$0.214m \pi^{-3}$			
	<i>P</i> ₁₁			
λ	148.020 fm ⁻⁶ Λ_{p}	$3682.701 \ {\rm fm^{-4}}$		
β	1.317 fm ⁻¹ β_{n}^{F}	$0.870 \ {\rm fm}^{-1}$		
γ	$0.697 \text{ fm}^{-1} \qquad \gamma_p$	$1.370 \ {\rm fm}^{-1}$		
$a_{\rm th}$	$-0.066m\pi^{-3}$ $f_{\rm th}^2$	0.079		
a _{exp}	$-0.081m\pi^{-3}$ f_{\exp}^2	0.079		

B. The P_{33} phase

Parameters and scattering lengths are given in Table III and the phase shift can be found in Fig. 2. It is worth pointing out that a rank one separable kernel in the BS equation is quite adequate to describe a resonant phase such as the P_{33} without the use of an energy dependent coupling constant.^{2,12} Before turning to the two potential description of the P_{11} we note in passing that the parameter γ is of the same order in all rank one kernels, in agreement with the same observation in the nucleon-nucleon case.⁵

C. The P_{11} phase

(1) The parameters in Table III give an excellent fit to the experimental phase shift. This can be seen in Fig. 2. We also display phase shift δ_{NP} resulting from the "nonpole" part of the interaction V_{NP} as well as the effect of the direct channel pole on the phase shift

$$\delta_P(p) = \delta_{\text{tot}}(p) - \delta_{\text{NP}}(p) . \tag{20}$$

(2) Comparing with the two sets proposed in Ref. 6 we find smaller δ_p and δ_{NP} .

(3) Agreement with the experimental scattering volume is comparatively good.

(4) The πNN coupling constant which we did not introduce as an input parameter is determined by our model at its accepted value 0.08.

(5) The Roper resonance appears in our calculation at the appropriate value of 400 MeV and originates essentially from δ_{NP} since δ_P is small there. So, in particular, our model does not predict a δ_{NP} resonance effect in π -nucleon scattering away from the Roper resonance as would the Blankenbecler-Sugar treatment of Ref. 6 (model *B*).

ACKNOWLEDGMENTS

The authors have profited greatly from T. Mizutani's detailed explanations regarding the P_{11} partial wave. One of us (L. S.) acknowledges the support (Akademiestipendium) of the Volkswagen Foundation. This work was supported partly by Fonds zur Förderung der wissenschaftlichen Forschung in Österreich, project 3184.

- ¹T. V. Bugg and A. W. Thomas, invited papers in the Proceedings of 9th International Conference on High Energy Physics and Nuclear Structure, Versailles, 1981 (unpublished).
- ²N. Giraud, C. Fayard, and G. H. Lamot, Phys. Rev. C <u>21</u>, 1959 (1980).
- ³R. Blankenbecler and R. Sugar, Phys. Rev. <u>142</u>, 1052 (1966); K. Schwarz, H. F. K. Zingl, and L. Mathelitsch, Phys. Lett. <u>83B</u>, 297 (1979).
- ⁴See, for instance, C. E. Carlson in *The Few Body Problem*, edited by F. S. Levin (North-Holland, Amsterdam, 1981), p. 257c. BS investigations of the *NN* system can be found in: C. Schwarz and C. Zemach, Phys. Rev. <u>141</u>, 1454 (1966); M. J. Levine, J. Wright, and J. A. Tjon, *ibid.* <u>154</u>, 1433 (1967); J. L. Gammel, M. T. Menzel, and W. R. Wortman, Phys. Rev. D <u>3</u>, 2175 (1971); J. Fleischer and J. A. Tjon, Nucl. Phys. <u>B84</u>, 375 (1975).
- ⁵K. Schwarz, J. Fröhlich, H. F. K. Zingl, and L. Streit,

Acta Phys. Austr. 53, 191 (1981).

- ⁶T. Mizutani, C. Fayard, G. H. Lamot, and S. Nahabetian, Phys Rev C <u>24</u>, 2633 (1981); C. Fayard, G. H. Lamot, and T. Mizutani, Phys. Rev. Lett. <u>45</u>, 524 (1980); I. R. Afnan and B. Blankleider, Phys. Lett. <u>93B</u>, 367 (1980).
- ⁷J. Fröhlich and K. Schwarz, 6^e Session D'Etudes Biennale De Physique Nucleaire, Universite Claúde Bernard, Lyon, LYCEN 8102, 1981 (unpublished).
- ⁸See, for instance, W. M. Kloet and R. R. Silbar, Nucl. Phys. <u>A338</u>, 281 (1980).
- ⁹M. Ida, Phys. Rev. <u>135B</u>, 499 (1964).
- ¹⁰Y. Avishai and T. Mizutani, Nucl. Phys. <u>A338</u>, 377 (1980).
- ¹¹R. Koch and E. Pietarinen, Nucl. Phys. <u>A336</u>, 331 (1980).
- ¹²R. M. Woloshyn, E. J. Moniz, and R. Aaron, Phys. Rev. C <u>13</u>, 312 (1976); A. S. Rinat and A. W. Thomas, Nucl. Phys. <u>A282</u>, 365 (1977).

2595