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In a previous paper we solved the Bethe-Salpeter equation with separable interactions
and demonstrated the applicability of the method for the most important nucleon-nucleon

partial waves. In this paper we use the Bethe-Salpeter equation for pion nucleon partial
waves including the necessary two potential ansatz for the P&i wave. A fully relativistic

treatment of the m-d system can be performed with these amplitudes.

NUCLEAR REACTIONS Separable Bethe-Salpeter kernels applied to
pion-nucleon scattering; E=O—300 MeV; 1=0, 1; Pii wave with two

potential ansatz.

I. INTRODUCTION

In recent years there has been increasing interest
in investigations of the n. dsystem. -A relativistic
description is called for; Giraud et al. invoke the
Blankenbecler-Sugar reduction of the Bethe-
Salpeter (BS) equation to describe the trN subsys-
tem. However, it is felt that the BS equation itself
should be used, and so it is the goal of this paper to
present a separable approach to the BS equation for
the pion nucleon system, which is suitable for the
three body calculations mentioned above. The same
approach was used for the nucleon-nucleon system
in an earlier paper. The separable kernels should
be viewed as an approximation of the full BS ker-

nel, not of the ladder approximation for which
reduction techniques may have certain advantages.

A particular feature of the m.-N system is the oc-
currence of the nucleon pole in the P(( amplitude.
The necessity of identifying the contributions from
the pole term and from the one particle irreducible
"background, " respectively, has been emphasized by
Mizutani et a/. The results of such a decomposi-
tion within the formalism of the BS equation is
given in Sec. II. Our numerical results are present-
ed and discussed in the last section.

II. SOLUTION OF THE BS EQUATION
WITH SEPARABLE INTERACTIONS

The partial wave decomposed BS equation in
momentum space is given by

Tl(qo, q, tIo, tI',s)= I t( Io I Io I')
0

+ f dko f k dk I i(qo q ko k)Go(ko k's)Tt(ko k qo q's)
4m'

where Go is the relativistic free two particle Green s
function and Vt is the kernel ("potential" ) of the in-

tegral equation. (I(k,(I') are the absolute values of
the three dimensional vectors of the initial (inter-
mediate, final) relative momenta, respectively; the
index 0 denotes the zeroth component and s is the
total energy squared in the center of mass (c.m. )

system.
With all external lines on the mass and energy

shell we have

Tt(po p po p s)=Tt(p)'—
e' lt'stn5t(p) .

SKY s ts ( ) .

Except for the P(( wave we solve Eq. (l) with the
rank one separable ansatz

~l(eo q eo ~') =gl(eo e)l(gl(a ~')

in closed form, where gt(qo, (I) is a relativistic gen-
eralization7 of the well-known Yamaguchi form

2591 0~,1982 The American Physical Society



2592 FROHLICH, SCHWARZ, STREIT, AND ZINGL 25

factor:
l=o:—

1

[(q 2 q2 p2)2+y4]1/2

part TNP has to be unitary. This is ensured by

rNp(s) =A,

)& f dkp f k dkg (kp, k)Gp(kp, k;s),

qgi(qo, q) =
qo —q — ) +y

(4b) and T» solves the BS equation (5) with V replaced

by
We have used "magic vectors" for a covariant treat-
ment of the threshold behavior. A,, P, and y are
free parameters which were fitted to the phases
5,(p) in Eq. (2).

The peculiarities of the Pii channel have been
discussed in great detail by Mizutam et al. They
emphasize that in pion-nucleus collisions the effect
of the Pii channel is not negligible: While the
phase shift starts out small (Fig. 2}, its sign change
is indicative of a compensation between attractive
and repulsive forces. Correspondingly, on the level

of Feynman diagrams one has the exchange of o.

and p mesons in the t channel on the one hand, and

pion absorption, i.e., the s-channel nucleon pole, on
the other.

To single out these two effects, we do not solve

the BS equation

V»(qo q qo q"s}=g(qo q)l g(qo q'}

The second term in

V= VNP+ Vz (10}

Tp= Vp+ Vp(Gp +GpT NpGp)Tp (12)

This relativistic Gell-Mann-Goldberger formula is
readily obtained from the formal iteration solution
of the BS equation (5} with (10}by reordering the
terms of the perturbation series.

For the BS kernel Vz we propose the separable
ansatz

will generate the nucleon pole term TI through

Tp (1+TN——PGo)Tp(1+GoTNp} (11)

with

Ttot =V+ VGOTtot (5)
Vi (qp, q, qo, q', s)=u (qo, q)A(s)u (qp, q') . (13)

Ttot =Tp+ TNp ~ (6)

Here TI contains the s-channel nucleon pole; corre-
spondingly, TNp is s-channel one particle irreduci-
ble.

We choose a separable ansatz for TNp

directly, but first decompose the total T operator
(omitting the angular momentum index l = 1) The vertex function v is chosen similar to Eq. (4b}:

(qo, q) =
(qo —q Pp }+y, — (14)

Equations (11)—(13) imply that Ts is also separable

Tp(qo q qo q' s)

g(qo, q}g(qo q'}
TNp(qo qqo. q's)=

TNP(s)

with g as in Eq. (4b}. The one particle irreducible with

h (qp, q;s)h (qp, q', s)

rz(s)
(15)

&p(s)=A (s)+ '

& f dkp f k dk u(kp k)Gp(kp k;s)h (ko, k;s) (16)

l
h (qp, q s) =u (qo,q)+, dko k 'dk'T»(q»q, kp, k';s) Go(kp, k';s)u(ko, k')

4m

l 00 00

=v(qp, q)+ g(qp, q)~Np (s) dkp k dk g(kp k ) Gp(kp k;s)v(kp, k') .
4m —0O 0
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h(qo, q;s) describes the absorption vertex of the
pion; a similar formula is given for the emission
vertex h (qo, q';s).

The computation of these integrals is straightfor-
ward. In contrast to investigations which use re-
duced equations such as, e.g., Ref. 10, we do the ko
integrations. With our choice of form factors (4)
and (14) these integrations can be done analytically.

For the coupling A in Eq. (13) we use

A(s) =-(s —mo ) 'Ap

to model a bare nucleon of mass mo in the direct
channel, chosen such that Tp exhibits the desired
singularity when s approaches the squared mass of
the physical nucleon:

11914.030 fm
1.304 fm
2.872 fm

~exp

—0.040m'
—0.030m' 3

2468.943 fm
0.547 fm
2.006 fm

TABLE II. Potential parameters and scattering
volumes for the pion-nucleon small P waves (P&3,P3)).

rp(mN ) =0 .2 (19)
~th

~exp

—0.050m+
—0.045m+

III. RESULTS

All partial waves are fitted to the phase shift
analysis of Koch and Pietarinen, "with P, y, and A,

as free parameters.

A. Small phases

For the so-called small phases in the partial
waves S~~,S3~,P~3, and P3~, the potential parame-
ters are given in Tables I and II. The quality of our
fits can be seen in the scattering lengths or volumes
(Tables I and II), and particularly in the phase
shifts (Fig. 1).

TABLE I. Potential parameters and scattering lengths
for the pion-nucleon S waves (S~~,S3~ ).

16—

12—

r
4—

0 (
100

S

200 T„' (MeV) 300

~exp

—3647.086 fm
2.151 fm-'
2.916 fm

0.166m'
0.173m'

S3)

931.819 fm
0.610 fm
2.298 fm

-12—

-16—

-20— S

&th

~exp

—0.140m'
—0.101m m

FIG. 1. Pion-nucleon "small" phases in the partial
waves S~~,S3~,P~3, and P33 The experimental values are
taken from Ref. 11.
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B. The P33 phase

120—

100—

60—

40—

20—

100 200 300

—12

—10

Parameters and scattering lengths are given in
Table III and the phase shift can be found in Fig. 2.
It is worth pointing out that a rank one separable
kernel in the BS equation is quite adequate to
describe a resonant phase such as the P33 without
the use of an energy dependent coupling con-
stant. ' Before turning to the two potential
description of the P» we note in passing that the
parameter y is of the same order in all rank one ker-
nels, in agreement with the same observation in the
nucleon-nucleon case.

~NP

/ A ~ Q P/ L.
I ~ I

100 ~& 200 Tin& (yey) 300
~-e K

C. The P~~ phase

(I) The parameters in Table III give an excellent
fit to the experimental phase shift. This can be seen
in Fig. 2. We also display phase shift 5Np resulting
from the "nonpole" part of the interaction VNP as
well as the effect of the direct channel pole on the
phase shift

FIG. 2. Pion-nucleon phases in the partial waves P33
and P~~. 5~ and 5~ denote the phase shifts, resulting
from the nonpole part and from the effect of the direct
channel pole of the P~~ wave, respectively. The experi-
mental values are taken from Ref. 11.

TABLE III. Potential parameters and scattering
volumes for the pion-nucleon P waves (P33 P)) ).

3864.839 fm 6

1.256 fm
1.670 fm

~&(S ) ~tote ) ~Np(p) (20)

(2) Comparing with the two sets proposed in Ref.
6 we find smaller 5~ and 5~&.

(3) Agreement with the experimental scattering
volume is comparatively good.

(4) The ANN coupling constant which we did not
introduce as an input parameter is determined by
our model at its accepted value 0.08.

(5) The Roper resonance appears in our calcula-
tion at the appropriate value of 400 MeV and ori-

ginates essentially from S~p since 5p is small there.

So, in particular, our model does not predict a 5Np

resonance effect in m-nucleon scattering away from
the Roper resonance as would the Blankenbecler-

Sugar treatment of Ref. 6 (model 8).

~exp

0.103m@
0.214m'
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