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Equilibrium shapes and fission barriers of rotating nuclei have been calculated using a
macroscopic two-center model, with a finite-range nuclear force and a diffuse nuclear sur-
face. Our model differs from the rotating-liquid-drop model of Cohen, Plasil, and
Swiatecki in the shape parametrization and in the calculations of the surface, Coulomb,
and rotational energies. We use the two-center-model shape parametrization, which allows
for triaxial shape variations and a continuous transition from one-center to two-center
shapes with a smooth neck. We calculate the surface energy with the Yukawa-plus-
exponential folding function of Krappe, Nix, and Sierk, which incorporates the effects of
the finite range of the nuclear force and the diffuse nuclear surface, and calculate both the
Coulomb and rotational energies with surface diffuseness described by a Yukawa folding
function. The calculation includes beta-stable nuclei up to mass number A =250 and select-
ed nuclei off the line of beta stability. The results are compared with the predictions of the
rotating-liquid-drop model and with experimental results statistically deduced from heavy-
ion induced reactions.

NUCLEAR REACTIONS, FISSION Calculated equilibrium shapes,
fission barriers, and critical angular momenta for rotating nuclei. Mac.-

roscopic two-center model with triaxial shapes, rotating liquid-drop
model, Yukawa and Yukawa-plus-exponential folding, finite range of

nuclear force, surface diffuseness, heavy-ion induced fission;

I. INTRODUCTION

Studies of the properties of nuclei at high angular
moinenta are of great interest. In recent years, a
considerable amount of theoretical and experimen-
tal work has been carried out in this field. The
present work is theoretical and deals with one as-
pect of high angular moinentum phenomena, i.e.,
the equilibrium shapes and fission barriers of rotat-
ing nuclei.

The most extensively used, and perhaps the most
successful theoretical model to date, is the rotating-
liquid-drop model (RLDM} of Cohen, Plasil, and
Swiatecki. The RLDM is used routinely in the in-

terpretation of data from many different types of
heavy-ion experiments. However, questions have
been raised about the general validity of RLDM. '3

In this work, we present the results of the calcu-
lation of equilibrium shapes and fission barriers of
rotating nuclei with an alternative and perhaps an

improved macroscopic model. Unlike the RLDM,
our model explicitly includes the effects of the finite
range of the nuclear force and of the diffuse nuclear
surface, and differs from the RLDM in the shape
parametrization, and in the calculations of the sur-
face, Coulomb, and rotational energies (see Sec. II).
We use the two-center model shape parametriza-
tion, which allows for triaxial shape variations and
a continuous transition from one-center to two-
center shapes with a smooth neck. %'e calculate
the surface energy using the Yukawa-plus-
exponential folding function of Krappe, Nix, and
Sierk, ' which incorporates the effects of the finite
range of the nuclear force and the diffuse nuclear
surface. The Coulomb and rotational energies are
also calculated with surface diffuseness described by
a Yukawa folding function.

In the next section, we describe the model. The
results are given in Sec. III with emphasis on the
comparison of the predictions of our model with
those of RLDM. The results are discussed in terms

1982 The American Physical Society



EQUILIBRIUM SHAPES AND FISSION. . . 2525

of fission barriers deduced from heavy-ion-induced
fission data.

II. MACROSCOPIC TWO-CENTER MODEL
FOR ROTATING NUCLEI

In this section we describe the model and the pro-
cedure used in our calculation of equilibrium shapes
and fission barriers for rotating nuclei. As in the
RLDM, we assume that a rotating nucleus can be
described by a uniformly rotating, macroscopic
liquid drop. The total energy of such a rotating
drop is

E,o,(a,J)=Es(a)+Ec(a)+Es(a,J),

where Ez is the surface energy, Ec is the Coulomb
I

energy, and Ez is the rotational energy. Alpha
represents all the deformation variables necessary to
describe the shape variations under rotation, and J
is the angular momentum. The problem then is to
calculate the quantities Es, Ec, and E~ of Eq. (1)
for all shape variables a, and find the equilibrium
points of the potential energy surface for a given
angular momentum J.

The main differences between this work and that
of RLDM are in the nuclear shapes that we allow
under rotation, and in the definitions of the surface,
Coulomb, and rotational energy terms.

A. Nuclear shapes under rotation

The allowed nuclear shapes are those shown in
Fig. 1. The equation governing these shapes is

x y ( Iz I

—zo) +~( Iz I

—zo) @ Iz I

—zo)
+ 2 + 2

(2)

FIG. 1. Shapes of our model, as defined by Eq. (2).
The x axis is the rotation axis.

where 8(g) is a step function and is defined as

g(g)
Iy g(0
0, g&0

and 2zo is the distance between centers.
Following Mosel and Schmitt we have added a

fourth-order term in z in Eq. (2), so that nuclear
shapes are smooth at the neck. The parameter A, is
therefore fixed by the condition that the shapes and
their first derivatives should join smoothly at z =0.
This yields A, =—I/(2zo ). Note that when zo ——0
the nuclear shapes are spheres, spheroids, or ellip-
soids, i.e., one-center shapes.

In this model we have four shape variables: zo, a,
b, and c. These were collectively represented by the
parameter a in Eq. (1). Only three of these four
variables are independent, since one variable can be
eliminated by the volume conservation condition,
i.e., the nuclear volume —,mRo is held fixed as the
nucleus deforms. The quantity Ro is the sharp-
surface radius of the spherical nucleus and is related
to the nuclear-radius constant ro by Ro=r+'~,
where A is the nuclear mass number. In our calcu-
lation, we eliminate b and treat zo, a, and c as free
variables.

The primary difference between our shapes and
those of RLDM is in our explicit use of the center-
separation degree of freedom zo. Nuclear models
with such a separation coordinate have been very
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successful in calculating fission properties of nonro-
tating systems and recently in the interpretation of
heavy-ion reaction data.

B. Surface energy

C. Coulomb energy

The Coulomb energy Ec of Eq. (1) is evaluated
for a diffuse-surface charge distribution that is gen-
erated by folding a Yukawa function over a given
sharp-surfaced shape and is given by'

The surface energy E~ of Eq. (1) is calculated by
using the Yukawa-plus-exponential folding func-
tion, as introduced by Krappe, Nix, and Sierk;
Following their notation, the formal expression for
the surface energy is

&s=—

Ec=(&c) h q+~Ec
where

2

«c).h.q=
~ I I

is the sharp-surface Coulomb energy and
T

(4a)

(4b)

gd rd r' (3)

2
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a

e 'd rdr'
(4c)

with

g =I —r

The sixfold integration is over the volume of the
nuclear configuration, whose magnitude is held
fixed under deformation. The parameter a is the
range of the folding function. The effective surface
energy constant c, is given by the usual expression

cg ——ag(1 agI ), —

where I=(N Z)/A, a, is—the surface energy con-
stant, and a, is the surface-asymmetry constant.

For the shapes used in this model, Eq. (3) is cal-
culated numerically. The volume integrals were
first transformed into surface integrals, as in Ref. 6.
The integrands were then transformed to stretched
cylindrical coordinates, and then numerically in-

tegrated by means of Gauss-Legendre quadrature.
The use of the Yukawa-plus-exponential folding

function has several desirable properties:

(1) It incorporates the effects of the finite range
of the nuclear force and the diffuse nuclear surface.

(2) It satisfies the nuclear saturation condition for
two semi-infinite slabs of nuclear matter at zero
separation.

(3) It reduces the effects of sharp irregularities in
the nuclear surface.

In the limit a~0, Eq. (3) will formally be the same
as in RLDM. For additional discussion on ihe ad-
vantages and limitations of the use of the Yukawa-
plus-exponential folding function, we refer to Refs.
6 and 7.

is the diffuse-surface contribution to the Coulomb

energy, with o =r —r '. The range a' of the Yu-
kawa function is related to the surface width

parameter b "

D. Rotational energy

The rotational energy Ea of Eq. (1) is given by
the expression

J2
2MI ' (S)

where MI is the moment of inertia about the axis of
rotation (see Fig. 1) and J is the angular momen-
tum. For a Yukawa folding function describing the
surface diffuseness, MI can be written as'

Expressions (4b) and (4c) are evaluated numerically

by the same procedure as mentioned in Sec. IIB for
the surface energy Ez. Note that in RLDM, the
Coulomb energy is calculated for the sharp-surfaced
shapes only. However, we should point out that the
b,Ec term is not that important for fission-barrier
calculations. Nevertheless, inclusion of this term
makes our model internally consistent, i.e., all the
terms of Eq. (1) include surface diffuseness, and al-
lows us to use a recently determined set of nuclear
parameters for our calculation. Furthermore, be-
cause expression (4c) is very similar to Eq. (3), the
same computer code that is used to calculate the
surface energy E~ is used, with minor modifica-
tions, to calculate the diffuseness contribution to
the Coulomb energy, hE~.
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MI=(MI),h,~+4Ma', or

= (MI)sh, ~+2Mb z,

where (MI),i„~ is the sharp-surface moment of iner-
tia of the shapes given by Eq. (2), M is the mass of
the nucleus, a' is the range of the Yukawa folding
function, and b is the surface-width parameter.

Note that the moment of inertia in RLDM is cal-
culated for the sharp-surfaced shapes only. The ad-
dition of the diffuse-surface term, 4Ma' (or 2Mb ),
in our calculation is shown to have significant ef-
fects at large angular momenta, particularly for
light nuclei.

E. Nuclear parameters

The parameters needed to evaluate expression (1)
are

(1) the nuclear-radius parameter ro,
(2) the range of the Yukawa-plus-exponential

folding function a,
(3) the range of the Yukawa folding function a'

or the surface-width parameter b,
(4) the surface-energy constant a„and
(5) the surface-asymmetry constant a, .

We have taken the values of these parameters from
the work of Moiler and Nix, and for a complete dis-

cussion on the choices of these parameters we refer
to their work. The values we used are

ro ——1.16 fm,

a=0.68 fm,

a'=0.70 fm or b =0.99 fm,

a, =21.13 MeV,

F. Accuracy

Following Davies and Nix, ' we have evaluated
both the surface and Coulomb energies [Eqs. (3) and
(4)] by transforming the volume integrals into sur-
face integ rais. The integrands were then
transformed to stretched cylindrical coordinates
(p,z,P) and integrated over z and P by means of an
eight-point Gauss-Legendre quadrature formula in
order to reach high enough numerical accuracy
within reasonable computing time. Table I shows a
typical example of the numerical convergence of
our calculated fission barrier with respect to the in-
tegration points. The results shown are for J=0.
Similar convergence is also found for the fission
barriers with nonzero angular momentum. Note
that the Coulomb and surface energies do not de-
pend explicitly on the angular momentum and that
the moment of inertia calculation for our shapes,
described by Eq. (2), does not require numerical in-

tegration.
As for the shape-parameter dependence of fission

barriers, we compare our value of Bf(J=O)=30.2
MeV for '65 Tb with 29.0 MeV calculated by Nix
and Sierk' with a different shape parametriza-
tion. ' The experimentally-deduced value of
Bf(J=O) is 28.5+1.7 MeV. Our value then is 4%
higher than that of Nix and Sierk and 6% higher
than the experimental value, but at the upper end of
the experimental uncertainty. Whether similar
differences exist between the calculations and exper-
iments throughout the Periodic Table will have to
be investigated further.

We have found that the inclusion of the fourth-
order neck-smoothing term in Eq. (2) was quite im-

portant. The effect of this term is to lower fission
barriers by 1 —2 MeV throughout the Periodic
Table, except for very heavy nuclei. To be specific,
the reduction in Bf for ' Tb is 1.5 MeV for J=0.

and

Kg =2.3 .

TABLE I. Numerical convergence of the fission bar-
rier Bf{J=O), for '65Tb with respect to the integration
points {N„X~) in stretched cylindrical coordinates

(p, z, jk).

For comparison, the liquid-drop-model parameters
are

Nz

Bf(J=0)
{MeV)

and

ro ——1.2249 fm,

a, =17.9439 MeV,

+s = 1.7826 .

4
6
8

12
16

4
6
8

12
16

42.16
31.41
30.26
30.16
30.16
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III. RESULTS AND DISCUSSIONS
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In this section we present the results of our calcu-
lations of equilibrium shapes and fission barriers of
rotating nuclei. The calculations have been done
for nuclei up to mass number A =250 along Green's
approximation to the line of beta stability' (the
proton numbers have been rounded off to the
nearest integer values) and for selected nuclei off
the line of beta stability. We shall present and dis-

cuss the following results:
(1} the effects of the Yukawa-plus-exponential

folding function,
(2) the effects of the diffuse-surface term of the

moment of inertia,
(3} the equilibrium shapes (transitions from

spherical to oblate to triaxial) and fission barriers
under rotation,

(4) the critical angular momentum for which fis-
sion barrier goes to zero, and

(5) comparison of selected results with those of
RLDM and recent controversial interpretations of
heavy-ion induced fission data. '

In Fig. 2 we show the effects of the Yukawa-

plus-exponential folding function on the calculation
of fission barriers. These fission barriers are calcu-
lated for beta-stable nuclei up to mass number
A =250 with angular momentum J=0. The lower
line represents the results of the present model and
the upper line, identified by LDM, represents the
results of the liquid-drop model. The LDM calcu-
lations were done with Myers and Swiatecki param-
eters, but with nuclear shapes defined by Eq. (2),
i.e., the two-center model shapes.

The Yukawa-plus-exponential folding function
results in a substantial reduction of the fission bar-
riers for light nuclei with the magnitude of reduc-
tion increasing with decreasing mass number A.
The reduction is about 4% for A =200, 18% for
A =150, 25% for A =100, 35% for A =50, and

55% for A =20. This result is similar to that origi-
nally found by Krappe, Nix, and Sierk; the actual
magnitude of reduction may be slightly different.

In Fig. 3 we show a typical example of the effects
of addition of the diffuse-surface term to the mo-
ment of inertia on the fission barriers. These fission
barriers are shown as a function of angular momen-
tum I for gRh. The solid line was calculated using
the surface-width parameter b=0.99 fm and the
dashed line using b =0. For comparison, we also
show the results of the RLDM calculations as a

50
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5O

L
40—

I

9~7Rh

With diffuseness in
moment of inertia
(b = 0.99)
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0
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FIG. 2. Fission barriers of nonrotating nuclei along
Green's approximation to the line of beta stability (Ref.
14). It shows the effects of the Yukawa-plus-
exponential folding function. The lower line represents
the results of the present model. The upper line, identi-
fied by LDM, represents the results of the calculations
with the liquid-drop-model parameters (Ref. 9), but with
shapes defined by Eq. {2).

0
0 10 20 30 40 50 60 70 80

Angular momentum (h)

FIG. 3. Fission barriers as a function of angular
momentum for 45Rh. It shows the effects of the addi-
tion of the diffuse-surface term to the sharp-surfaced
moment of inertia. The quantity b is the surface-width
parameter (Ref. 11). The rotating-liquid-drop-model
(Ref. 1) results are given by the dotted-dashed line, iden-
tified by RLDM.
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dotted-dashed line.
The results of these calculations show that the

fission barriers are higher when the diffuse-surface
term is present (see the two lower curves). This can
be understood in terms of the relative contributions
of this term to the sharp-surfaced moment of iner-

tia at the ground state and saddle point as J in-

creases. Note that the ground-state energy increases
faster than the saddle-point energy with increasing

J, as b decreases from 0.99 to 0.0 fm. This results
in a higher fission barrier for a finite value of b

The difference between the two top lines represents
the effects of the finite range of nuclear force and
the surface diffuseness as a function of angular
momentum.

The effects of the addition of the diffuse-surface
term to the moment of inertia in other mass regions
are shown in Table II.

In both Fig. 3 and Table II, we show that the ra-
tio of fission barriers for b =0.99 fm over b =0, i.e.,
Bf(b=0.99)/Bf(b=0), increases as the angular
momentum J increases. The ratio can be quite large
even for moderate values of J for light nuclei. For
example, it is about 1.94 for J=30fi in ' V. Let us
now compare this ratio among selected A for Bf
(b =0.99 fm)=8 MeV, which is near the neutron
binding energy. The ratio is 2.29 for V, 1.72 for

Rh, 1.49 for ' Tb, and 1.22 for ' Os. The impli-
cation of these results is that the surface diffuseness
in the moment of inertia may be quite important
throughout the Periodic Table, particularly for light
nuclei.

It is of interest to compare our model with the

RLDM with respect to the critical angular momen-
tum for the fission barrier Bf——0 and the angular
momentum for Bf of the order of neutron binding
energy, Bf-8 MeV. These comparisons are shown
in Fig. 4.

For both models (Bf=0 curves), we see that nei-
ther light nor heavy nuclei can support many units
of angular momentum; for light nuclei it is simple
because of their small size and for heavy nuclei be-
cause of their reduced stability caused by the
Coulomb energy. There are, however, some differ-
ences in the models. Our model predicts lower crit-
ical angular momentum J, for lighter nuclei
(A & 140) and for heavier nuclei (A &210). In the
rniddle, we find slightly higher values for J,. The
overall difference in the predictions of the two
models for J, is at most 20go. The maximum an-
gular momentum that a nucleus can support before
fission is (J, )m,„=98%in our model, which is about
the same for the RLDM. There is, however, a shift
in the position of (J,),„. The maximum J, in our
model is at a larger A than the RLDM.

The two lower curves in Fig. 4 show the angular
momentum required to lower the fission barrier Bf
of a nucleus to 8 MeV. These curves give an indica-
tion of the maximum amount of angular momen-
tum that a compound nucleus can support and still
survive fission without further deexcitation by par-
ticle emission. The maximum angular momentum
in our model, J „=75k', occurs at A =150. The
RLDM yields a J,„=778at A =140. This differ-
ence in the predictions of the two models is not very
large. However, the relative difference increases for

TABLE II. The effects on fission barriers, Bf(J), of the addition of the diffuse-surface term to the sharp-surface mo-
ment of inertia for four nuclei: 23V 4~5Rh, 'PTb, and '760s. The surface-width parameter b =0 implies the absence of the
diffuseness term. For comparison, Bf(J) are also shown for the RLDM. The quantity J, at the bottom of the table is the
critical angular momentum for which the fission barrier goes to zero, i.e., By(J, )=0.

5
23

Present model
J(fi) b =0 b =0.99

94',Rh
Present model

RLDM b =0 b =0.99 RLDM

153Tb, 176O
65 76

Present model Present model
b =0 b =0.99 RLDM b =0 b =0.99 RLDM

0 31.3
10 27.8
20 17.6
30 47
40 0
50
60
70
80

J,(A') 37

31.3
28.6
20.7
9.1

0.2
0

46.2
43.2
34.1

19.6
6.3
0.1

0

54

35.9
34.7
31.0
25.3
17.8
8.8
2.6
0

69

35.9
34.9
31.9
27.1

20.8
13.2
5.1

0.5
0

73

48.1

46.9
43.5
37.7
30.0
20.4
10.3
3.4
0.3

82

30.3
29.4
27.9
25.1

21.4
16.8
11.5
5.6
1.4

88

30.3
29.5
28.1

25.7
22.5
18.4
13.7
8.2
3.0

92

34.3
33.7
32.0
29.1

25.2
20.3
14.7
8.5
3.2

91

18.6
18.0
16.7
14.5
11.5
7.9
3.8
0.2
0

72

18.6
18.1
16.9
15.0
12.4
9.2
5.5
1.5
0

76

17.8
17.4
16.1
13.9
11.0
7.9
4.5
1.3
0

79
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FIG. 4. The angular momentum required for the fis-
sion barrier Bf——0 and Bf——8 MeV for beta-stable nuclei
(Ref. 14). The solid lines represent the present work
and the dashed lines represent the results of the rotating
liquid drop model (Ref. 1). The proton numbers have
been rounded off to the nearest integer values.

FIG. S. The transition of equilibrium (ground-state)

shapes of beta-stable nuclei (Ref. 14) from oblate to
triaxial, as the angular momentum increases. The lower

solid line represents the present work and the lower

dashed line represents the results of the rotating-liquid-

drop model (Ref. 1). The curves identified by Bf——0
represent the critical angular momenta for which fission
barriers are zero. These curves are the same as the two

top curves in Fig. 4.

TABLE III. Fission barriers (MeV) as a function of angular momentum J(fi) for selected nuclei along Green s ap-
proximation to the line of beta stability. The critical angular momentum, J,{R), for which the fission barrier of each
nucleus goes to zero is given at the bottom.

3/Z
J(A') 30/14 40/19 SO/23 60/27 70/31 80/35 90/39 100/43 110/47 120/51 130/55 140/58

0
5

10
15
20
25
30
35
40
45,
50
55
60
65
70
75
80
85
90
95

J,(fi)

21.6
20.0
15.6
8.9
1.4
0

25

26.7
25.8
22.9
18.3
12.3
5.2
0.4
0

34

31.3
30.6
28.6
25.2
20.7
15.3
9.1
3.0
0.2
0

34.8
34.2
32.7
30.3
26.6
22.3
17.3
11.7
5.9
1.8
0.1

0

51

37.3
36.9
35.6
33.5
30.8
27.3
23.1

18.5
13.4
8.3
3.6
0.8
0

59

38.9
38.5
37.6
35.9
33.5
30.7
27.2
23.3
18.9
14.2
9.2
4.9
1.9
0.3
0

39.8
39.6
38.7
37.3
35.3
32.9
29.9
26.6
22.9
18.9
14.5
9.7
5.7
2.4
0.6
0

40.0
39.7
39.0
37.8
36.2
34.2
31.6
28.8
25.4
21.9
18.1
13.8
9.7
6.1
3.1
1.1
0.01
0

39.6
39.4
38.8
37.8
36.3
34.5
32.3
29.8
27.0
23.8
20.5
16.9
13.1
9.2
5.8
3.0
1.1
0.04
0

86

38.5
38.3
37.8
36.9
35.6
34.0
32.1-

30.0
27.4
24.7
21.7
18.5
15.0
11.5
7.8
4.9
2.4
0.8
0.03
0

91

37.0
36.9
36.4
3S.5
34.5
33.1
31.4
29.4
27.2
24.7
22.1

19.1
16.1
12.9
9.5
6.2
3.5
1.5
0.4
0

94

36.2
36.1
35.6
34.9
33.9
32.3
31.1
29.3
27.3
25.0
22.7
20.0
17.3
14.3
11.3
8.1
5.1

2.8
1.2
0.2

97
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both small and large A. In the mass range
30&2 &220, the difference could be as much as
35%.

We now describe the changes in the equilibrium
(ground-state) shapes as the angular momentum J
increases. As in the RLDM, we find that starting
from J=0, where the Coulomb plus surface ener-

gies make equilibrium shapes spherical, the equili-
brium shapes become increasingly oblate for in-

creasing J. At still higher J the preferred shapes are
triaxial and then prolate shapes where finally fission
barriers disappear. The two lower curves in Fig. 5

compare the transition line where the equilibrium
shapes change from oblate to triaxial between our
model and the RLDM. The figure also shows the
critical angular momentum J, for which the fission
barrier goes to zero in the two models.

The general predictions of our model for fission
barriers, By(J), of beta-stable nuclei are given in
Table III and also graphically shown in Fig. 6.

The fission barriers of Rh, ' Tb, and ' Os,
given in Table II, are now discussed with respect to
experiments. The deexcitation products of the com-
pound nuclei Rh and ' Os have been studied by
Beckerman and Blann, ' and ' Tb by Plasil et al.

These authors sometimes characterize fission bar-
riers as

[By(J)l "correct- =klBy( J)1RLDM ~

where the parameter k was a scaling factor. The
conclusion of Beckerman and Blann is that the
RLDM barriers are higher than what is deduced
from the data. This statement applies to fission
barriers By at large angular momenta, where fission
barriers are in the range of 6—12 MeV and not to
By(J=0). Our model gives lower values for By(J)
for Rh, but not for ' Os. Plasil et al. recently
deduced 0.83 for the. parameter k for 's3Tb and

quoted By(J=O)=28.5+1.7 MeV. Our value is

30.2 MeV (see also Table I).
We have made very selective comparison of our

By(J) with the predictions of the RLDM and exper-
iments. In comparison with the RLDM, the predic-
tions of our model are closer to experiments. How-
ever, a detailed comparison with experiments may
not be that meaningful at this time because of the
large uncertainty with which the fission barrier,
By(J=0), is deduced from the statistical-model
analyses of heavy-ion-induced fission data. '

TABLE III. (Continued ).
2/Z

J(ft) 150/62 160/66 170/69 180/73 190/76 200/80 210/83 220/87 230/90 240/94 250/97

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

J,(A')

33.6
33.5
33.1
32.4
31.6
30.5
29.1

27.5
25.7
23.7
21.5
19.2
16.6
13.9
11.1
8.2
5.3
3.1

1.3
0.2

98

30.7
30.6
30.2
29.6
28.8
27.8
26.5
25.1

23.5
21.7
19.6
17.5
15.2
12.8
10.2
7.4
4.7
2.5
0.9
0.1

97

28.0
27.9
27.5
27.0
26.3
25.4
24.3
22.9
21.5
19.9
18.1
16.1
14.1
11.9
9.7
7.3
4.6
2.4
0.8
0.06

96

24.7
24.5
24.2
23.7
23.1
22.2
21.2
20.0
18.7
17.2
15.6
13.7
11.8
9.8
7.6
5.3
3.1
1.2
0.06

- 0
92

20.9
20.7
20.4
20.0
19.4
18.7
17.9
16.8
15.7
14.3
12.9
11.3
9.6
7.8
6.0
4.1

2.1

0.4
0

17.0
16.9
16.6
16.2
15.7
15.0
14.2
13.2
12.1
10.8
9.5
8.1

6.5
4.9
3.3
1.5
0.08
0

13.2
13.1
12.8
12.5
12.0
11.4
10.7
9.9
8.9
7.9
6.7
5.6
4.3
3.0
1.7
0.5
0

79

9.8
9.7
9.4
9.1

8.7
8.1

7.5
6.7
5.9
49
4.0
3.0
2.0
1.1
0.4
0.01
0

76

7.1

7.0
6.8
6.5
6.1
5.6
5.1
4.5
3.8
3.2
2.4
1.7
1.1
0.5
0.1
0

4.6
4.5
4.3
4.1

3.8
3.4
3.0
2.5
2.0
1.5
1.0
0.6
0.3
0.04
0

2.9
2.8
2.6
2.4
2.2
2.0
1.7
1.4
1.0
0.7
0.4
0.2
0

60



MUSTAFA, BAISDEN, AND CHANDRA 25

40

Z'/A

0 5 10 15 20 25
t I I I I

Angular
momentum

30
I

35
I

0

30
L
4l

~~
lO

20

LL

10

0
0 40 80 120 160 200 240

IV. CONCLUSIONS

Mass number (A)

FIQ. 6. Fission barriers of beta-stable nuclei (Ref. 14)
for constant angular momenta from J=0 to 90fi.

substantial differences exist not only between the
predictions of theoretical models, but in the inter-
pretations of experimental data as well. Further re-
finements in the calculations and careful measure-
ments and analyses of experimental data in various
mass regions are clearly needed.

As in the RI.DM, we have used one set of nu-

clear parameters for both light and heavy nuclei
and for all deformations and angular- momenta.
The general applicability of these nuclear parame-
ters would require further investigations.

Many of the predictions made in this paper and
in the rotating liquid drop model will be substan-
tially altered when microscopic shell effects are in-

cluded. This will be particularly true for heavier
nuclei A & 200, where shell effects are known to be
very important in reproducing measured fission bar-
riers of nonrotating nuclei. However, for many
heavy-ion induced reactions a large amount of ener-

gy is transferred to the compound nucleus, and in
those cases a macroscopic description of the com-

pound nucleus will be quite appropriate even for
heavy nuclei.

We have presented in this paper the calculated re-
sults for equilibrium shapes and fission barriers of
rotating nuclei with a macroscopic two-center
model, which explicitly includes the effects of the
finite-range of the nuclear force and diffuse nuclear
surface. The differences between our model and the
rotating-liquid-drop model of Cohen et al. are dis-
cussed and the predictions of the two models are
compared. In general, the predictions of the two
models for the fission barriers are within 30% of
each other. However, at very high angular momen-
ta and very small A the difference could be as much
as a factor of 2 or more (see Fig. 1 and Table II ).

We have made a selective comparison of calculat-
ed fission barriers with those deduced from heavy-
ion-induced fission experiments. As was discussed,
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