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An effective nucleon-nucleon spin-orbit force is included in a single-channel

resonating-group calculation for the 'He('H)+a system up to a c.m. energy of 113.1
MeV. The parameters of the spin-orbit force were chosen to reproduce the phase shifts

for p+o. scattering at low energies and the bound-state properties of 'Li and 'Be. A
phenomenological, parity-dependent imaginary potential is used to account for reaction
channels. The calculation gives a reasonable account of the experimental differential

cross sections and analyzing powers available in this energy region.

NUCLEAR REACTIONS 'He( H)+n, bound states to 113.1 MeV

(c.m. ); calculated elastic differential cross sections and analyzing

powers; resonating-group method.

I. INTRODUCTION

The resonating-group method' (RGM) has been

used successfully to describe reactions and scatter-
ing for a large variety of nuclear systems. In par-
ticular, such studies have elucidated the connection
between the nucleon-nucleon force and the
nucleus-nucleus interaction and have made major
contributions toward understanding the role played

by the Pauli exclusion principle. It has been point-
ed out that investigations of the mass-7 system
have been very fruitful in this respect, especially in

view of the strong exchange effects that exist
there. Thus, a considerable amount of work has
been done in reference to the RGM on this sys-

tem, ' the latest being a calculation' of the

He(a, y) Be capture reaction at low energies,
which is relevant to branching in the proton-proton
reaction chain' '" in stars and the solar neutrino

problem. '

In the present work we have augmented the for-
malism described in Ref. 14 by including a noncen-

tral part to the nucleon-nucleon force used in our
RGM calculation for the He( H)+a system. We

have also extended the calculation and its compar-
ison with experiment up to a c.m. energy of 113.1

MeV. Part of this work has been described in

a Ph.D. thesis.

II. FORMULATION

Much of the present formulation follows that of
Ref. 14. This includes (1) the mass-4 and mass-3

wave functions, (2) the central nucleon-nucleon po-

tentials, both nuclear and Coulomb, and (3) the

parity-dependent imaginary potential. The reader

is referred to Ref. 14 for details. We only com-

ment here that with respect to item (1) because the

nucleon-nucleon force we use is nonsaturating, we

fix the parameters in the wave functions to yield

the correct rms matter radii for the cz particle, the

triton, and the He nucleus; with respect to item

(2) the central interaction yields the proper low-

energy, nucleon-nucleon scattering parameters and

gives the correct spin-orbit-averaged energies for
the P3/p and P&&z bound states of Be and Li;
and with respect to item (3) two parameters, the
strength Uo and parity dependence Cl, in the
phenomenological imaginary potential are adjusted
at each energy to aid in fitting the experimental
elastic differential cross section. This corrects
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crudely for the single-channel nature of the calcu-
lation.

In the present study we add a noncentral com-
ponent to the nucleon-nucleon force; namely, the
following spin-orbit potential Vj (so),

V"(so}=—(Vo+V T 'T }(r;—r )

TABLE I. Bound-state results for 'Be and 'Li using
the noncentral potential of Eqs. {1)and {2) and the cen-

tral potential of Ref. 14. The binding energies are in

MeV and are referenced to the a+'H and a+'He
breakup energies.

X(p; —p;) (o;+o J. )(2&)

X exp( —)i,r;~ ),2

Nucleus State
Binding energy

Calculation Experiment

Vp ———50 MeV,

V, =270 MeV,

A. =2 fm ~ (2)

where r,j ——
~

r; —rj ~

is the distance between nu-

cleon i and nucleon j. This potential contains two
strength parameters Vp and V, and one range
parameter I,. Equation (1) is to be viewed as an ef-
fective noncentral potential and not as the true
nucleon-nucleon spin-orbit potential. This is be-

cause the more complicated, but important,
nucleon-nucleon tensor interaction is not taken into
account, and it is desired that Eq. (1) compensate
as much as possible for this omission.

In order to fix the parameters of Eq. (1), the

P3&z- P~/q bound-state splittings in Be and Li
were calculated for a range of parameter values.
In addition, an RGM calculation for p+o. scatter-
ing was carried out along the lines indicated in

Refs. 21 and 22, and the phase shifts below the re-

action threshold were studied for a range of
parameter values. Although there was no parame-
ter set that gave best fits simultaneously to the
mass-5 and mass-7 data, the following values yield
a good compromise:

'Be
Be
Li
Li

2
P3/2

2P l /2
2
P3/2

2P 1 /2

1.63
1.07
2.53
1.93

1.59
1.16
2.47
1.99

The final results for the mass-7 bound states are
given in Table I. The low-energy p+a phase
shifts are not shown here, but the results are very
similar to those given in the appropriate figures of
Refs. 21 and 22. We do, however, show in Fig. 1 a
calculation of the polarization transfer coefficient

I

K," (which is identical to the Wolfenstein parame-
ter A) as compared with the data of Ref. 24. This
comparison has not been published before, and it is
seen that the noncentral force of Eqs. (1}and (2)
does quite well in reproducing the data of Ref. 24.

Finally, the form of the RGM, partial-wave-
expanded, integrodifferential equation for the radi-
al part fJi(r) of the relative-motion function is
given in Ref. 21. Here we include the imaginary
potential i W of Ref. 14 to obtain

d

2p dr

l (1+1)
r

+E ~N(r) —Vc(r}—i [1+CI(—1)']U(r) rig~ V„(r) f—z~(r)

=f [kI (r,r')+kI (r, r')+r)Jik~' (r, r')]fJI(r')dr', (3)

with

rii+igz, i=i* r)i in, i= —(1+1}. - (4)

In Eq. (3) p is the reduced mass; Vz and k& are

the direct potential and exchange kernel, respec-

tively, arising from the nuclear part of the
nucleon-nucleon central force (ki also contains the

kinetic-energy exchange terms); Vc and ki are the
direct potential and exchange kernel, respectively,
arising from the Coulomb part of the nucleon-
nucleon force; and V„and kI" are the direct po-
tential and exchange kernel, respectively, arising
from the nucleon-nucleon noncentral force of Eq.
(1). The radial function U(r) occurring in the im-

aginary potential and the Coulomb kernel k~ are
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FIG. 1. Polarization transfer coefficient K," for p+a
scattering at 9.6 MeV (c.m. ). This coefficient is identi-
cal to the Wolfenstein parameter A (Ref. 23). The curve
is from an RGM calculation and the data (points) are
from Ref. 24.

given in Ref. 14, and Vc has the form given in
Ref. 5. Because the nucleon-nucleon central force
used here'" is not the same as that used in Ref. 5,
the expressions for VN and ki are not identical to
those given there. However, the modifications to
the formulas of Ref. 5 are relatively simple and
can be implemented in the manner indicated in the
Appendix of Ref. 21. The spin-orbit terms V„
and ki" which we derived for the present work are
given in the Appendix.

III. RESULTS AND DISCUSSION

A. S matrix

We write the S matrix for our problem in the
form

SP= /Sg+-}e
where the superscript + means J=l+ —, and-
means J=I——,, and the phase shift 5I+- is a real

number. The relationships between SI—
+ and observ-

able quantities are given, e.g., in Ref. 25.
In Fig. 2 we show the phase shift 5~+ vs c.m. en-

ergy for He+a scattering. The well known odd-
even effect ' ' produced by the Pauli exclusion

principle is evident from the clustering in pairs of
the I (even) with the 1+ 1 (odd) phases, and it is

seen that the effect for this nuclear system is such
that the interaction in odd-I states is more attrac-
tive than in even-l states. In the inset is displayed
the reasonably good agreement we obtain with the
empirical phases of Ref. 28 for the F7/2 and I'5/2
resonances. The phase-shift splittings are shown in

Fig. 3, where it is seen that the splittings are gen-
erally rather small, except for resonance effects in
the l =3 and 4 partial waves.

The amplitudes
}
St+

}
and the amplitude split-

tings are illustrated in Figs. 4 and 5. The ampli-
tudes differ from unity because of the use of the
phenomenological imaginary potential in the calcu-
lation. In Fig. 6 we show an Argand plot of SI+ at
60.2 MeV (c.m. ). The counterclockwise rotation of
the odd-l pattern with respect to the even-l pattern,
resulting in a close proximity of odd-l to even-l

points, is a manifestation of the odd-even effect
mentioned above.

Figure 7 compares the ROM phases 5I+ at 17.09
MeV (c.m. ) with the empirical phases of solution C
from Ref. 29, which solution used RGM phases
as starting values in the search process. Again the
odd-even effect appears, this time as a characteris-
tic zigzag pattern in both the calculated and empir-
ical phases. The other two solutions (A and 8) of
Ref. 29 show very little odd-even effect and also
yield somewhat higher overall values of P than
the value for solution C. From a theoretical point
of view, the "true" solution should exhibit a
marked odd-even effect, and therefore we would

suggest that solution C is the most physically real-
istic of the three.

B. Level analysis

Because of the cluster structure of the wave
function used, the present calculation should reveal
mass-7 levels having a large partial width for a de-

cay. From Fig. 2 we note significant resonarice
structure in the l =2—5 partial waves. We use the
8-matrix formalism to extract somewhat more
quantitative information than is given by plots of
the phase shifts versus energy. We consider l =2,
4, and 5; the l =3 resonances have been thoroughly
considered in Ref. 28. We perform a two-level,
single-channel analysis, where the first level is asso-
ciated with the resonance and the second level is a
background level to aid in representing the non-
resonant part of the phase shift. We follow the
same procedure that was used in Ref. 31 for the
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FIG. 2. Phase shifts 5I+ for He+a scattering from
the present calculation. The inset shows a comparison
of calculated (curves) and empirical (points, Ref. 28)
phases near the l =3 resonances.

FIG. 4. Amplitudes of the 'He+a S matrix for
J=l+ —from the present calculation.
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tudes from the present calculation. Any partial waves
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a+a system. Thus, a fit is carried out for several
values of the channel radius a, and a value for a is
chosen that is in the broad minimum which exists
in the functional relationship of 7 to a. The
boundary condition parameter 8 is chosen so that
the level shift at the resonance energy E„ is zero.
The results of the analysis are given in Table II.
The values of E, and I for Be are reasonable
when compared with Fig. 2.

C. Differential cross sections
and analyzing powers

0—

0 I 5 6

FIG. 7. Phase shifts 61+ for 'He+a. scattering at
17.09 MeV {c.m. ). The points connected by straight
lines are from the present calculation, and the other
points are from the empirical phase-shift solution C of
Ref. 29.

The results for the bound states have already
been discussed and are presented in Table I. As in
Ref. 14, the parameters Uo and CI of the ima-

ginary potential in Eq. (3) were adjusted until a
good visual fit to the elastic differential cross sec-
tion was obtained. In particular, the calculated
curve was required, where feasible, to agree with
the cross sections in the regions of relative maxi-
ma. An illustration of the effect of varying Up
and CI independently is given in Fig. 2 of Ref. 14.
The parameters used, along with the resulting total
reaction cross sections, are listed in Table III.
Other values that are not given in Table III, but
which were used in constructing Figs. 2 —7, were

taken from Refs. 14 and 20. As has been noted
many times in the past, the inclusion of the ima-

ginary potential in a light system does not signifi-
cantly affect the calculated phase shifts 61+- of Eq.
(5), nor does it appreciably change the angular
shape of the differential cross section; its main ef-
fect is to lower the magnitude of the calculated
cross section. Partial waves up to 1,„=11were
used in the calculations up to 44.5 MeV (c.m. ),l,„=13was used at 44.5 MeV (c.m. ), andl,„=19was used for the higher energies.

In Figs. 8 and 9 we compare calculations with
experimental (Refs. 8, 9, 12, 28, and 33) 'He+a
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TABLE II. R-matrix parameters from a two-level analysis of ROM phases for the mass-
7 system. a is the channel radius, B is the boundary condition parameter, E„ is the reso-
nance energy, y„ is the a-particle reduced width for the resonance, I is the total width of
the resonance, E~ is the level energy for the background level, and y~ is its a-particle re-
duced width.

Nucleus Level a
(fm)

E,
(MeV)

Pr
(MeV)

r
(MeV)

E~
(MeV)

yk'

(MeV)

Be Ds/2
2D
269/2
2
&7/Z

2
H]]/2

2
H9/2

5.0
5.0
4.0
4.0
4.5
4.5

—0.253
—0.241
—0.654
—0.584
—0.857
—0.824

8.8
9.2

22
24
23
24

1.4
1.5
2.2
2.4
2.7
2.8

9
10
14
17
18
19

33
35
62
69

147
242

2.5
2.6
5.2
5.5

23
40

Li 2
Ds/2

2
D3/2

2
+9/2

2
67/2

2
H~]/z

2
H9/2

5.0
5.0
4.0
4.0
45
4.5

—0.238
—0.227
—0.649
—0.578
—0.852
—0.819

8.1

8.4
21
23
23
23

1.4
1.5
2.1

2.4
2.7
2.8

9
10
13
17
18
19

32
34
60
68

125
187

2.5
2.6
5.0
5.4

19
30

TABLE III. Values of the parameters of the ima-

ginary potential. CI is the strength of the parity depen-
dence [Eq. (3)] and Uo is the strength of U(r) [Eq. (3)],
which has the volume-plus-derivative, Woods-Saxon
form defined in Ref. 14. Also given are the total reac-
tion cross sections cr& produced by these parameters.
Values not listed here that. were used to construct Figs.
2 —7 were taken from Refs. 14 and 20.

c.m. energy
(MeV)

Up

(Mev) (mb)

4.98
10.14
24.36
44.5
60.2
80.0

113.1

0.05
0.95
2.50
3.70
4.50
5.00
5.50

0
—0.3
—0.6
—0.35
—0.2
—0.1

0

90
301
465
456
461
445
418

elastic differential cross sections over a broad ener-

gy range. Generally, the calculation does quite
well in reproducing the experimental cross sections.
The strong exchange nature of the He+a interac-
tion is illustrated by the large rise in the cross sec-
tion at backward angles. At the higher energies
there is an increasingly clear separation into

forward-angle direct scattering and backward-angle
exchange scattering, both in the data and in the
calculation. We should stress that in the calcula-
tion the exchange processes arise very naturally
through the use of a fully antisymmetrized wave
function. One rather curious discrepancy occurs at
60.2 MeV (c.m. ), where the calculated minimum is
not very close in angle to the experimental
minimum in the cross section. This is unusual in
RGM calculations, in which we usually find that
the angle at which the minimum occurs is well

reproduced by the calculation, even though the
magnitude of the cross section at the minimum

might not be.
In Fig. 10 we compare calculated cross sections

and analyzing powers with experimental data '

t+a at 9.69 MeV (c.m. ) and He+a at 17.09 MeV
(c.m. ). The calculated analyzing powers are not
unreasonable. The forward-angle discrepancy for
He+a tends to lessen at somewhat higher ener-

gies, because the calculation then develops a more
distinct minimum near 40'. The calculated t+a
analyzing power seems less satisfactory; however, it
is known that with rather small changes from the
RGM phases, an excellent fit can be generated. A
comparison of RGM He+a cross sections and
analyzing powers with experiment in the c.m. ener-

gy range 10—18 MeV is presented in Ref. 29.
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5/2

(Al)

(A2)

72a +96aa+72a 48
t15 89 e 15 +

7t 15
7'

3/2

7 12ncz 12'(xA,V„r = ——
6VO exp

12aa+ A [8a+9a] 12aa+ A [Sa+9a]
where o. and o. are the size parameters of the mass-4 and mass-3 nuclei, respectively. In Ref. 14 these size
parameters are defined, and their values are determined so that the wave functions yield the correct rms
matter radii for the a particle, the triton, and the He nucleus.

In order to list the exchange kernel kt"(r, r') it is convenient to define a variety of quantities. First, we

define the following constants in terms of a, 6, and A. :

p~„=ma+na;

1
d1S =

I
e26 =

48+6 1 12'.o.
15 1 1 ~ g15 )

t15e15 7rt15

36m +97+a.'+36K 24
1

+
7t15 7

t 26 aap89+ 2~pl 1p23

aa(72a +96aa+72a )+2ipii(18a —6aa+24a )

7t 26
1

(A3)

1$26=
3/2

12 P 1 i 12 a
gZ6=

t26e 26 alt 26

aa(36a +97aa+36a )+2AP11(9a'+46aa+12a )

1
(A4)

t15 P23(P11+2~)
pii(6a —36aa+6a )+A(36a —12aa+48a )

7t15
2

2
e1s =

3/212«pl 1 2 12a a
$15 =

2 2, g15
7rPi it, 5

Pii(3a +31aa+3a )+A(18a +92aa+24a )

7t15

2

2
d37 =

t 15
——3pi 1 + 8A, ,

144aP, 1+A, (368a —16a )

3
3

e1s =—
-2, 3/216aPi, 3 64a a

$15 3 3 & g 15
t 15e15 7rpll t15

75aP11+k(208a+ 8a)
d 15

7t15

'37 4aP23+ 6~pl i ~

4a(6a —36aa+ 6a )+ )1,( —276a —264aa+ 12a')
837 =

2
7t37

2 12api i 2 48a a2 3/2

37 2 2 ~ g37
t37e &Pli t 37

4a(3a +31aa+3a )+A(156a +162aa+6a )
2

7t37

(A5)

(A6)

(A7)
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We will also make use of the function SI(x), which depends on r and r' and is defined by

(A8)

where g „(z) is a hyperbolic, spherical Bessel function. It satisfies the recursion relation

(A9)

with

sinhzg I~2(z) =sinhz, g 3/ 2(z) = —coshz, (A10)

and is related to the Bessel function of the first kind J by

(A 1 1)

Employing the constants defined in Eqs. (A3) —(A7) and the functions SI of Eq. (A8), we display the
spin-orbit kernel as follows:

kt («r )=( ) I(Vo+3V )s isgIsSI ( —, eis)—exP[— dIs(r +r )1

+2( VO+ V )s26g26SI( e26)exp[ ——,d26(r +r )]

—4Vos tsgtsSI( ——,e „)exP[——,d ts(r2+r' )]

6V,s37g37—SI( 7 e37)exp[ 7 d37(r +r' )]

+3(V0 —V )stsgtsSI( ——,ets)exP[ — dts(r'+r')] 1 . (A12)
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