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Nuclear excitation by the inelastic photoelectric effect
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The possibility of a nucleus being excited during an interaction involving an incident
photon, a bound orbital electron, and the nucleus has been investigated. In this inelastic
photoelectric effect the angular distribution of the ejected photoelectrons has been calculat-
ed and the dependence of the total cross section on the photon energy and the nuclear exci-
tation energy has been investigated.

NUCLEAR REACTIONS Calculated probability of nuclear excitation
in interaction involving incident photon and bound atomic electron.
Dependence of cr on Z, E~, and photoelectron emission angle 8 studied.

I. INTRODUCTION

The possibility of an inelastic photoelectric effect
has been considered recently. ' Feynman diagrams
for this process are shown in Fig. 1. In this third
order process nuclear excitations occur in an in-
teraction involving an incident photon, a bound or-
bital electron, and the nucleus. The nuclear excita-
tion is produced by a dynamic interaction between
the electron and the ground state of the nucleus.
The process bears obvious resemblances to both the
internal Compton effect and Coulomb excitation.

The electron-photon interaction can be treated in
first order perturbation theory as the photoelectric
effect, and the interaction between the electron and
the nucleus can be treated by second order perturba-
tion theory as the exchange of a virtual photon. In

o-

FIG. 1. The Feynman diagrams for the inelastic pho-
toelectric effect.

our approach nuclear recoil is neglected and nuclear
degrees of freedom are described through the nu-
clear multipole transition operators between the
ground state and excited nuclear levels. These
operators enter in the respective y-ray emission pro-
babilities. Except for very high energies there is ex-
pected to be a close relation between the probabili-
ties of the two processes. A similar situation was
noted by Schiff in an analysis of inelastic electron
scattering, where the relationship persists for the
leading term in the electric multipole transition
even for large electron momentum transfers as com-
pared to the photon momentum associated with the
nuclear transition energy.

In our calculations we have neglected the effects
of the nuclear Coulomb field on the intermediate
and final electron states, and the static electron nu-
cleus interaction is only included through the zero
momentum contribution of the bound electrons.
These approximations are expected to be reasonable
for incident photon momenta large compared to the
momenta of the initial electrons and for ejected
photoelectrons energies 1arge compared with elec-
tron binding energy. %e expect our approach to be
accurate for rather large photon energies, low Z,
and for relatively low nuclear levels.

An independent suggestion of the same nuclear
excitation mechanism has been made by Batkin,
who discusses it in terms of a Compton excitation
of nuclear levels. Two photon energy regions were
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studied, one near mc, where a rough estimate of
the total cross section was made by using the Born
approximation and neglecting process (b) in Fig. 1,
and by considering only ihe zeroth component of
the electric transition operator. An estimate was
also made for photons with energies near the dec-
tron binding energy. Because of the dominant ef-
fect of the Coulomb field on the electron motion in
this energy region, we do not expect our calcula-
tions to be applicable in this situation.

In this analysis we derive the differential cross
section for the inelastic photoelectric effect (IPE),
some aspects of the energy and Z dependence of the
angular distribution of the ejected photoelectron,

and the total cross section for various multipoles
are calculated and discussed.

II. EVALUATION OF THE MATRIX ELEMENT
AND CROSS SECTION

The orbital electron is described by the wave
function %'p and the ejected electron with momen-

tum p by the wave function 4-. The nuclear elec-
P

tromagnetic current between the spin Ip ground
state and the spin I~ excited state is J&. The matrix
element corresponding to these Feynman diagrams
can be written as:

M =2~e'5(k + e—p to —e)

X f dxdydz +-(x)[y„D(z—x)J„(z)S'c'(x,y)a(y)+a(x)S' '(x, y)y„D(z —y)J„(z)]+p(y),

5(k +ep —to —e)
(aZ)

z ~ u(p)[J(q)(ij 1)e=y+fe. y(it 1)J(q)]u(0—),
(g —CO +l 2aZCO)

M=e /k
2k

(2)

where k, E'p, co, and e are the energies of the photon, orbital electron, excited nuclear level, and ejected electron,
respectively. S' ' and D are, respectively, the electron Dirac-Coulomb and photon propagators. The incident
photon four-potential a& is described by the momentum vector k and polarization vector e. We have em-

ployed the units m=c=A'=1 (m denotes a mass of the electron), e /4m =a=1/137. The Dirac matrices are
y= —iPa, y4

——P, and %=% y4. The scalar product of two four-vectors az ——(a, iap) and b& (b,ibp)——is
a.b=a„b„=a b —apbp, and a=a„y„ is understood.

We have evaluated the matrix element M in the aZ expansion, retaining only the leading term in the expan-
sion. In this evaluation we have made some mutually consistent approximations. We assume free motion of
the electron in the intermediate states; this results in the electron propagator in the external Coulomb field
S' ' being replaced by the free propagator. 4'- is assumed to be a plane wave of the momentum p and only

P

the zero momentum component of 0'p is considered. The binding energy of the electron is assumed to be
negligible as compared with mc .

It is expected that these approximations will be valid for small Z, large k, and for e& mc . The contribu-
tion of the zero momentum part of 4'p is proportional to its value at r=O and we only consider E-shell elec-
trons. M is then given by:

1/2

where u (0) and u(p) are the electron spinor func-
tions of momentum zero and p. From energy-
momentum conservation we have

electromagnetic transition current Jz( q ) is

J„(q)= f dze'q''J„(z) .

q=k —p,
j=[k,i(1+k)],
t =[—q, i(1—co)],

and the factor f is

f=(
i p i

cos8 —e)

(3)

(4)

For nuclear states with defined spin and parity,
we can write the magnetic transition current de-
fined by Eq. (5) in the form of the leading multipole
term4

QLM I q I
'&LLM

J(m)

where 8 is the angle between k and p.
In Eq. (2) the Fourier-transform of the nuclear and for electric transitions in the form
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' 1/2
(e) 2L+~ (8) I.—1

QL,Mp~
I q I YI.I. iM—L

&(e)
L+1

' 1/2

Qi'M
I q I

'1'iM ~

The quantities QIM are the nuclear matrix ele-

ments of the 2 -multipole transition operators be-
tween the initial and final nuclear states. 1'LM and

I

YL~ are the usual spherical and spherical vector
functions of the argument q =q/Iq I.

The cross section for the IPE for unpolarized
photons and electrons, and unoriented nuclei, can be
found by averaging over the initial, and summing
over the final spin states using the squared matrix
element M of Eq. (2). In the frame where k is
directed in a z axis, and p is lying in theyz plane,
the differential cross section for the IPE is given by:

a' 1pll I
Z'

k (q —ip ) +(2coaZ)

X [p3+k(1+p j)+(j j)(1 e)—]Sp' 4kR' —(pj)

+2(1+j j )I'(p) f [k +—co(1+2p.t) (t t)(1——e)]Sp'

2—4f (1+p t)I'(t)+2f (1+t.t)Ie(p)+f g G

where g =(2II+1)/(2Ip+1) and I p is the ground
state transition width of the excited nuclear level in
units of mc . The polarization dependent quantities

612 are

Ge, m
(& 1)[Re,m(j(i) &)+Re,m(r(ii j)]

k[Re, m(p t) Re, m(r(ii p(i))]

—ip[R' (p,j)+R' (j",p")]
+(1—p 'j)[I'(i)—I'(r")]
+(1+j &)[I'(p")—I'(p)]

+[(I t)(1—~)—k(p" ~ t)+~(p "I)]S,'

In Eqs. (g) and (9) we introduced the four-vectors

p =(0,0,p3, ie),
ji"=J"'=(0,0, —k,

p =(0& p2& —p3~—(1)

p =(0~p2~ —p3» —&&),(2)

=(0,—r2, —t3, itp), —(1)

(0~r29 r3t irp) ~

(2)

and the quantities S, 8,, G, and I are defined and
calculated in the Appendix.

Figures 2 —4 illustrate various aspects of our cal-
culations for different multipoles assuming a nu-

7=40
k = 800 keV

a) = 400 keV
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FIG. 2. The angular distribution of an ejected pho-

toelectron for electric multipole (full curves) and magnet-
ic multipole (dashed curves) transitions.

cleus with Z=40. In Fig. 2, the angular distribu-
tion of an ejected photoelectron is shown for an in-
cident photon energy of 800 keV and a transition
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FIG. 3. The dependence of the total cross sections for
IPE on the photon energy for a given transition energy.
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FIG. 4. The dependence of the total cross section for
IPE on the transition energy for a given photon energy.

energy of 400 keV. In Fig. 3, the dependence of the
total cross section for IPE on the photon energy is
illustrated, and in Fig. 4, for a given photon energy,
the dependence on the transition energy is shown.

III. CONCLUSIONS

Figure 2 bears some quantitative resemblance to
the angular distributions obtained at these photon
energies in the atomic photoelectric effect. Howev-
er, in the ease of the IPE, the differential cross sec-
tion also depends on the nuclear transition operators
and we should expect there to be differences from
the pure atomic effect.

In the region where qQco the cross section varies
as Z . Near q =co the term

[(q2 —co } +(2coaZ} ]
gives a Z dependence, while the width has a Z
dependence. The integral then varies as Z ' and
the cross section has a Z dependence. The same Z
dependence is observed in the internal Compton ef-
fect.'

It is difficult to compare our results with those of

Batkin, as in the latter case the results are not ex-
pressed to show a Z dependence, and the analysis
was not made for different multipoles. However,
we can conclude that there is general qualitative
agreement in the energy dependence of his estimate
and our IPE cross section calculations. Although
the ground state transition width I 0 decreases
sharply with increase of the multipole order L, the
IPE does not necessarily folio~ this trend. This is a
common feature with both Coulomb excitation and
high-energy electron inelastic scattering. At a
given photon energy, the cross section for the IPE
falls off rapidly as the nuclear excitation increases;
a similar effect is observed in Coulomb excitation.

The. IPE will always make some contribution to
nuclear level excitations in photon-nucleus investi-
gations. The process is nonresonant and even in
resonance fluorescence experiments contributions
from off-resonance photons will occur. In practice,
typical cross sections for the IPE are such that
these contributions will be negligible. For example,
in the case of the 1078 keV level of" In excited by

Co photons, the cross section was calculated to be
-5&10 cm to 5&(10 cm . As has been
shown in investigations of the photoactivation of" In (Ref. I} and "'Cd (Ref. 7} other known non-
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resonant contributions will be of greater signifi-
cance. Although the IPE is an interesting physical
phenomenon, its experimental observation will be a
formidable task.
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APPENDIX

The transition current of Eqs. (6) and (7) give the
2 -multipole transition rates for the emission of a

where m ~,m2 are the spin projections of the initial
and final nuclear states. It is assumed that Eq (A. l)
relates the nuclear matrix elements Q in the IPE
process and the respective y-transition probabilities
8'p.

The averaging and summation over the nuclear
spin states in the IPE cross section is accomplished
by using the algebraic properties of the spherical
and spherical vector functions. After some calcula-
tions the indicated quantities in Eqs. (8) and (9) are
found for the 2 multipole electric transition as:

g (JI) =So ——C'[(2L + 1)co Lq ],—2Ip+1
M

1 g (J "I):Si O'L(q ——co )——,
2Ip+ 1

M

(A2)

(A3)

1 (2)X (J' 'I)=Sz=&' L—(q o3 )+(L ——1) 2p sin 8

M

1 g Re(aJ)(bI) =—g'(a, b)
2Ip+1

M

(A4)

= 2& [co (L+1)ab+co (L —1)(aq )(bq ) —coqL(boaq —aobq )+Lq gob ]

(A5)

g Im(aI)JO—=I'(a)=qLC [~aq —qao],
2 p+1m yn

(A6)

where Re and Im mean the real and imaginary part,
respectively. The four-vector I is defined as
I =—J*,I4, ——J4, and

277 2If+ 1 q
2I, +1 2~+~ (A7)

J"'=(J),—J2, —J3 J4),
J =( —JI,J2, —J3, —J4) ~

The C' is given as

Sp ——C

S) ——0,
(A8)

(A9)

For the 2 multipole magnetic transitions we found
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2

S = —C sin 0,
q

R~(a, b)= —,C [ab —(aq )(bq )],

(A10)

(A11)

which are defined in the same way as the electric
quantities. The C is given as

C = —2m
2If + l q2L

2I +1 2i+' (A12)

In the above relations a, b are any two four-
vectors, q =

[ q ~, q = q iq, p =
~ p ~, and 8 is the

angle between l and p.

A. Ljubicic, K. Pisk, and B.A. Logan, Phys. Rev. C 23,
2238 (1981).

2L. I. Schiff, Phys. Rev. 96, 765 (19S4).
I. S. Batkin, Yad. Fiz. 29, 903 (1979).

4A. I. Ahjezer and U. B. Beresteckij, Xuantovaja Elektro-
dinamika (Nauka, Moskva, 1969), p. 482.

~L. Spruch and G. Goertzel, Phys. Rev. 94, 1671 (1954).
K. Alder and A. Winther, Coulomb Excitation

(Academic, New York, 1966).
M. Krcmar, A Ljubicic, K. Pisk, B. A. Logan, and M.

Vrtar, Phys. Rev. C (to be published).


